
Utilities

Adabas Version 7.4.2

This document applies to Adabas Version 7.4.2 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

© Copyright Software AG 1999-2003.
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered
trademarks of Software AG. Other company and product names mentioned herein may be trademarks
of their respective owners.

Table of Contents
.................. 1About this Documentation
.................... 1About this Documentation
................... 3Conventions
................... 3Conventions
............... 3Control Statement Syntax
................ 4Syntax Conventions
............... 6Control Statement Rules
................. 7Parameter Values
............. 10ADAACK: Check Address Converter
............. 10ADAACK: Check Address Converter
................. 11Functional Overview
................. 11Functional Overview
........ 12ACCHECK: Check Address Converter Against Data Storage
........ 12ACCHECK: Check Address Converter Against Data Storage
................. 12Optional Parameters
................... 12Examples
............. 14JCL/JCS Requirements and Examples
............. 14JCL/JCS Requirements and Examples
................... 14BS2000
............. 14ADAACK JCL Examples (BS2000)
................. 15z/OS or OS/390
........... 15ADAACK JCL Example (z/OS or OS/390)
................. 16z/VM or VM/ESA
.......... 16ADAACK JCL Example (z/VM or VM/ESA)
................... 16VSE/ESA
............ 17ADAACK JCS Example (VSE/ESA)
.............. 18ADACDC: Changed-Data Capture
.............. 18ADACDC: Changed-Data Capture
................. 19Functional Overview
................. 19Functional Overview
............ 19Phases of Operation and Resulting Files
.............. 20Phase 1 and the Extract File
........... 20Phase 2 or Both and the Primary Output File
.......... 21Checkpoints Written to the Primary Output File
................. 21Primary Input Data
................ 22Primary Output Data
................. 23Transaction File
............. 24Input Transaction File Processing
............. 24Output Transaction File Processing
.............. 24Using a Single Transaction File
.................. 25Running the Utility
................. 25Running the Utility
................ 25Optional Parameters
.............. 27Operating System Considerations
.............. 27Operating System Considerations
................. 27z/OS or OS/390
................... 27VSE/ESA
................... 28BS2000

i

Table of ContentsAdabas Utilities

.................. 29The ADACDC User Exit

................. 29The ADACDC User Exit

.................. 29Installing the Exit

.................. 29User Exit Interface

................... 31User Exit Calls

..................... 34Examples

..................... 34Examples

............... 35JCL/JCS Requirements and Examples

............... 35JCL/JCS Requirements and Examples

..................... 35BS2000

.............. 36ADACDC JCL Example (BS2000)

................... 36z/OS or OS/390

............ 37ADACDC JCL Example (z/OS or OS/390)

.................. 38z/VM or VM/ESA

............ 38ADACDC JCL Example (z/VM or VM/ESA)

.................... 39VSE/ESA

.............. 40ADACDC JCS Example (VSE/ESA)

............... 41ADACMP: Compress-Decompress

............... 41ADACMP: Compress-Decompress

................... 42Functional Overview

.................. 42Functional Overview

.............. 42Overview of the COMPRESS Function

............. 43Overview of the DECOMPRESS Function

.................. 44Input Data Requirements

................. 44Input Data Requirements

.................. 44Input Data Structure

................ 44Multiple-Value Field Count

.... 45Example 1: Multiple-Value Field Count with Varying Number of Occurrences

..... 45Example 2: Multiple-Value Field Count with Same Number of Occurrences

.................. 46Periodic Group Count

...... 46Example 1: Periodic Group Count with Varying Number of Occurrences

...... 47Example 2: Periodic Group Count with Same Number of Occurrences

............ 48Example 3: Adding a a Field to a PE-Group

................ 49Variable-Length Field Size

............. 49Example of Variable-Length Field Size

..................... 50Processing

..................... 50Processing

................... 50Data Verification

.................. 50Data Compression

............... 51Example of Data Compression

................ 52COMPRESS Function Output

................ 52COMPRESS Function Output

................. 52Compressed Data Records

................. 52Rejected Data Records

.............. 53Example of Rejected Data Records

.................. 53ADACMP Report

................ 55DECOMPRESS Function Output

................ 55DECOMPRESS Function Output

................. 55Rejected Data Records

ii

Adabas UtilitiesTable of Contents

.................. 57Restart Considerations

.................. 57Restart Considerations

..................... 58User Exit 6

.................... 58User Exit 6

............... 59COMPRESS: Create an Adabas File

............... 59COMPRESS: Create an Adabas File

.............. 59Optional Parameters and Subparameters

............... 63Essential Data Definition Syntax

.............. 78Optional Field Definition Statements

............... 94ADACMP COMPRESS Examples

............... 96DECOMPRESS: Decompress File(s)

............... 96DECOMPRESS: Decompress File(s)

.............. 96Optional Parameters and Subparameters

............... 99Decompressing Multiclient Files

.............. 100ADACMP DECOMPRESS Examples

............... 101JCL/JCS Requirements and Examples

............... 101JCL/JCS Requirements and Examples

................. 101User Exits with ADACMP

................ 101Compression with User Exit

................ 102Collation with User Exit

..................... 102BS2000

................ 103JCL Examples (BS2000)

................... 104OS/390 or z/OS

............... 105JCL Examples (OS/390 or z/OS)

.................. 107VM/ESA or z/VM

.............. 107JCL Example (VM/ESA or z/VM)

.................... 108VSE/ESA

................ 108JCS Examples (VSE/ESA)

................ 111ADACNV: Database Conversion

................ 111ADACNV: Database Conversion

................... 112Functional Overview

.................. 112Functional Overview

................... 112Database Status

.................... 112Procedure

............ 114CONVERT: Convert Database to Higher Version

............ 114CONVERT: Convert Database to Higher Version

.................. 114Optional Parameters

................. 115Conversion Considerations

..................... 116Example

............. 117REVERT: Revert Database to Lower Version

............. 117REVERT: Revert Database to Lower Version

.............. 117Essential Parameter and Subparameter

.................. 117Optional Parameter

................. 118Reversion Considerations

..................... 119Example

............... 120JCL/JCS Requirements and Examples

............... 120JCL/JCS Requirements and Examples

..................... 120BS2000

.............. 120ADACNV JCL Example (BS2000)

................... 122OS/390 or z/OS

............ 122ADACNV JCL Example (OS/390 or z/OS)

iii

Table of ContentsAdabas Utilities

.................. 123VM/ESA or z/MV

............ 123ADACNV JCL Example (VM/ESA or z/VM)

.................... 124VSE/ESA

.............. 124ADACNV JCS Example (VSE/ESA)

................. 126ADADBS: Database Services

................ 126ADADBS: Database Services

................... 128Functional Overview

.................. 128Functional Overview

............. 128Syntax Checking with the TEST Parameter

................... 129ADD: Add Dataset

................... 129ADD: Add Dataset

............... 129Associator or Data Storage Dataset

.................... 129Procedure

.............. 130Essential Parameter and Subparameter

.................. 130Optional Parameters

.................... 130Examples

................ 131ALLOCATE: Allocate File Extent

............... 131ALLOCATE: Allocate File Extent

.................. 131Essential Parameters

.................. 131Optional Parameters

..................... 132Example

............. 133CHANGE: Change Standard Length of a Field

............. 133CHANGE: Change Standard Length of a Field

.................. 133Essential Parameters

.................. 134Optional Parameters

..................... 135Example

........... 136CVOLSER: Print Adabas Extents on Given Volume

........... 136CVOLSER: Print Adabas Extents on Given Volume

.................. 136Essential Parameter

.................. 136Optional Parameters

..................... 137Example

.............. 138DEALLOCATE: Deallocate File Extent

.............. 138DEALLOCATE: Deallocate File Extent

.................. 138Essential Parameters

.................. 138Optional Parameters

..................... 139Example

............ 140DECREASE: Decrease Associator Data Storage

............ 140DECREASE: Decrease Associator Data Storage

.................. 140Essential Parameter

.................. 140Optional Parameters

..................... 141Example

.................... 141Procedure

............... 142DELCP: Delete Checkpoint Records

............... 142DELCP: Delete Checkpoint Records

.................. 142Essential Parameter

.................. 142Optional Parameters

..................... 143Example

................... 144DELETE: Delete File

.................. 144DELETE: Delete File

.................. 144Essential Parameter

.................. 144Optional Parameters

iv

Adabas UtilitiesTable of Contents

.................... 145Examples

.............. 146DSREUSE: Reuse Data Storage Blocks

.............. 146DSREUSE: Reuse Data Storage Blocks

.................. 146Essential Parameters

.................. 146Optional Parameters

..................... 147Example

............... 148ENCODEF: Change File Encoding

............... 148ENCODEF: Change File Encoding

.................. 148Essential Parameter

.................. 148Optional Parameters

..................... 149Example

............. 150INCREASE: Increase AssociatorData Storage

............. 150INCREASE: Increase AssociatorData Storage

.................. 150Essential Parameter

.................. 150Optional Parameters

..................... 151Example

.................. 151General Procedure

.............. 151Operating-System-Specific Procedures

................ 151OS/390 or z/OS Systems

.................. 152VSE/ESA Systems

................ 153VM/ESA or z/VM Systems

.................. 155BS2000 Systems

.................. 156ISNREUSE: Reuse ISNs

................. 156ISNREUSE: Reuse ISNs

.................. 156Essential Parameters

.................. 156Optional Parameters

..................... 157Example

............... 158MODFCB: Modify File Parameters

............... 158MODFCB: Modify File Parameters

.................. 158Essential Parameter

.................. 158Optional Parameters

..................... 159Example

................. 160NEWFIELD: Add New Field

................ 160NEWFIELD: Add New Field

.................. 160Essential Parameter

.................. 160Optional Parameters

..................... 162Example

............... 163ONLINVERT: Start Online Invert

............... 163ONLINVERT: Start Online Invert

.................. 163Essential Parameters

.................. 164Optional Parameters

..................... 165Example

......... 166ONLREORFASSO: Start Online Reorder Associator for Files

......... 166ONLREORFASSO: Start Online Reorder Associator for Files

.................. 166Essential Parameters

.................. 167Optional Parameters

..................... 167Example

.......... 168ONLREORFDATA: Start Online Reorder Data for Files

.......... 168ONLREORFDATA: Start Online Reorder Data for Files

.................. 168Essential Parameters

.................. 168Optional Parameters

v

Table of ContentsAdabas Utilities

..................... 169Example

....... 170ONLREORFILE: Start Online Reorder Associator and Data for Files

........ 170ONLREORFILE: Start Online Reorder Associator and Data for Files

.................. 170Essential Parameters

.................. 170Optional Parameters

..................... 172Example

............. 173OPERCOM: Adabas Operator Commands

.............. 173OPERCOM: Adabas Operator Commands

.......... 173Using OPERCOM Commands in Cluster Environments

.................. 173Optional Parameters

.................. 174Operator Commands

............... 188PRIORITY: Change User Priority

............... 188PRIORITY: Change User Priority

.................. 188Essential Parameter

.................. 188Optional Parameters

..................... 189Example

................. 190RECOVER: Recover Space

................. 190RECOVER: Recover Space

.................. 190Optional Parameters

............... 191REFRESH: Set File to Empty Status

............... 191REFRESH: Set File to Empty Status

.................. 191Essential Parameter

.................. 191Optional Parameters

..................... 192Example

............. 193REFRESHSTATS: Refresh Statistical Values

............. 193REFRESHSTATS: Refresh Statistical Values

.................. 193Optional Parameters

..................... 194Example

................ 195RELEASE: Release Descriptor

................ 195RELEASE: Release Descriptor

.................. 195Essential Parameters

.................. 195Optional Parameters

..................... 196Example

................ 197RENAME: Rename FileDatabase

............... 197RENAME: Rename FileDatabase

.................. 197Essential Parameter

.................. 197Optional Parameters

.................... 198Examples

............... 199RENUMBER: Change File Number

............... 199RENUMBER: Change File Number

.................. 199Essential Parameter

.................. 199Optional Parameter

..................... 200Example

............ 201RESETDIB: Reset Entries in Active Utility List

............ 201RESETDIB: Reset Entries in Active Utility List

.................. 201Essential Parameters

.................. 202Optional Parameters

.................... 202Examples

........... 203TRANSACTIONS: Suspend and Resume Transactions

........... 203TRANSACTIONS: Suspend and Resume Transactions

.................. 204Essential Parameters

vi

Adabas UtilitiesTable of Contents

.................. 204Optional Parameters

..................... 205Example

................. 206UNCOUPLE: Uncouple Files

................ 206UNCOUPLE: Uncouple Files

.................. 206Essential Parameter

.................. 206Optional Parameters

..................... 207Example

............... 208JCL/JCS Requirements and Examples

............... 208JCL/JCS Requirements and Examples

................. 208Collation with User Exit

..................... 208BS2000

.............. 209ADADBS JCL Example (BS2000)

................... 209OS/390 or z/OS

............ 210ADADBS JCL Example (OS/390 or z/OS)

.................. 210VM/ESA or z/VM

............ 211ADADBS JCL Example (VM/ESA or z/VM)

.................... 211VSE/ESA

.............. 212ADADBS JCS Example (VSE/ESA)

................ 213ADADCK: Check Data Storage

................ 213ADADCK: Check Data Storage

................... 214Functional Overview

.................. 214Functional Overview

................ 215DSCHECK: Check Data Storage

................ 215DSCHECK: Check Data Storage

.............. 215Optional Parameters and Subparameters

.................... 216Examples

............... 217JCL/JCS Requirements and Examples

............... 217JCL/JCS Requirements and Examples

..................... 217BS2000

.............. 217ADADCK JCL Example (BS2000)

................... 218OS/390 or z/OS

............ 218ADADCK JCL Example (OS/390 or z/OS)

.................. 219VM/ESA or z/VM

............ 219ADADCK JCL Example (VM/ESA or z/VM)

.................... 219VSE/ESA

.............. 220ADADCK JCS Example (VSE/ESA)

................. 221ADADEF: Define a Database

................ 221ADADEF: Define a Database

................... 222Functional Overview

.................. 222Functional Overview

................. 222Database Components

................... 222Checkpoint File

............ 223DEFINE: Defining a Database and Checkpoint File

............ 223DEFINE: Defining a Database and Checkpoint File

.................. 225Essential Parameters

.................. 226Optional Parameters

.................... 230Examples

................. 231MODIFY: Change Encodings

................ 231MODIFY: Change Encodings

.................. 231Optional Parameters

.................... 232Examples

vii

Table of ContentsAdabas Utilities

............... 234NEWWORK: Defining a Work File

............... 234NEWWORK: Defining a Work File

.................. 234Essential Parameter

.................. 234Optional Parameters

..................... 235Example

............... 236JCL/JCS Requirements and Examples

............... 236JCL/JCS Requirements and Examples

..................... 236BS2000

.............. 236ADADEF JCL Examples (BS2000)

................... 237OS/390 or z/OS

............ 237ADADEF JCL Examples (OS/390 or z/OS)

.................. 238VM/ESA or z/VM

............ 239ADADEF JCL Examples (VM/ESA or z/VM)

.................... 240VSE/ESA

.............. 240ADADEF JCS Examples (VSE/ESA)

................... 242ADAFRM: Format

................... 242ADAFRM: Format

................... 243Functional Overview

.................. 243Functional Overview

.................. 243Statement Restrictions

.................. 243Formatting Operation

................ 244Formatting Database Components

................ 244Formatting Database Components

.................. 244Formatting Modes

..................... 244Syntax

.................. 245Essential Parameter

.................. 245Optional Parameters

.................... 247Examples

............... 248JCL/JCS Requirements and Examples

............... 248JCL/JCS Requirements and Examples

..................... 248BS2000

.............. 248ADAFRM JCL Example (BS2000)

................... 250OS/390 or z/OS

............ 250ADAFRM JCL Example (OS/390 or z/OS)

.................. 251VM/ESA or z/VM

............ 251ADAFRM JCL Example (VM/ESA or z/VM)

.................... 252VSE/ESA

.............. 253ADAFRM JCS Example (VSE/ESA)

............. 254ADAICK: Check Index andAddress Converter

............. 254ADAICK: Check Index andAddress Converter

................... 255Functional Overview

.................. 255Functional Overview

.............. 256ACCHECK: Check Address Converter

.............. 256ACCHECK: Check Address Converter

.................. 256Essential Parameter

.................. 256Optional Parameters

............. 257ASSOPRINT: Print/Dump Associator Blocks

............. 257ASSOPRINT: Print/Dump Associator Blocks

.................. 257Essential Parameter

.................. 257Optional Parameter

viii

Adabas UtilitiesTable of Contents

.......... 258BATCH: Set Printout Width to 132 Characters Per Line

........... 258BATCH: Set Printout Width to 132 Characters Per Line

.................. 258Optional Parameter

............ 259DATAPRINT: Print/Dump Data Storage Blocks

............ 259DATAPRINT: Print/Dump Data Storage Blocks

.................. 259Essential Parameter

.................. 259Optional Parameter

.......... 260DSCHECK: Print/Dump Content of Data Storage Record

.......... 260DSCHECK: Print/Dump Content of Data Storage Record

.................. 260Essential Parameter

.................. 260Optional Parameters

............... 261DUMP: Suspend Dump Suppression

............... 261DUMP: Suspend Dump Suppression

.................. 261Optional Parameter

............. 262FCBPRINT: Print/Dump File Control Block

............. 262FCBPRINT: Print/Dump File Control Block

.................. 262Essential Parameter

.................. 262Optional Parameters

............ 263FDTPRINT: Print/ Dump Field Definition Table

............ 263FDTPRINT: Print/ Dump Field Definition Table

.................. 263Essential Parameter

.................. 263Optional Parameters

............ 264GCBPRINT: Print/Dump General Control Block

............ 264GCBPRINT: Print/Dump General Control Block

.................. 264Optional Parameter

............ 265ICHECK: Check Index and Address Converter

............. 265ICHECK: Check Index and Address Converter

.................. 265Essential Parameter

.................. 265Optional Parameters

............. 266INT: Cancel Formatted Printout Suppression

............. 266INT: Cancel Formatted Printout Suppression

.................. 266Optional Parameter

............... 267NIPRINT: Print/Dump Normal Index

............... 267NIPRINT: Print/Dump Normal Index

.................. 267Essential Parameter

.................. 267Optional Parameter

........... 268NOBATCH: Set Print Width to 80 Characters Per Line

........... 268NOBATCH: Set Print Width to 80 Characters Per Line

.................. 268Optional Parameter

................. 269NODUMP: Suppress Dumps

................. 269NODUMP: Suppress Dumps

.................. 269Optional Parameter

............... 270NOINT: Suppress Formatted Printout

............... 270NOINT: Suppress Formatted Printout

.................. 270Optional Parameter

........... 271PPTPRINT: Print/Dump Parallel Participant Table

............ 271PPTPRINT: Print/Dump Parallel Participant Table

.................. 271Optional Parameters

................... 271Example Output

ix

Table of ContentsAdabas Utilities

............... 273UIPRINT: Print/Dump Upper Index

............... 273UIPRINT: Print/Dump Upper Index

.................. 273Essential Parameter

.................. 273Optional Parameters

..................... 274Examples

..................... 274Examples

............... 275JCL/JCS Requirements and Examples

............... 275JCL/JCS Requirements and Examples

................. 275Collation with User Exit

..................... 275BS2000

.............. 276ADAICK JCL Example (BS2000)

................... 276OS/390 or z/OS

............. 277ADAICK JCL Example (OS/390 or z/OS)

.................. 277VM/ESA or z/VM

............ 278ADAICK JCL Example (VM/ESA or z/VM)

.................... 278VSE/ESA

.............. 278ADAICK JCS Example (VSE/ESA)

.................... 280ADAINV: Invert

................... 280ADAINV: Invert

................... 281Functional Overview

.................. 281Functional Overview

............. 282COUPLE: Define a File-Coupling Descriptor

............. 282COUPLE: Define a File-Coupling Descriptor

.................. 282Essential Parameters

.................. 283Optional Parameters

..................... 284Example

............... 284Temporary Space for File Coupling

..... 285Example: Calculating Intermediate Space Requirements for File Coupling

................. 285Associator Coupling Lists

................ 285Example: Coupling Lists

................. 286Space for Coupling Lists

............ 287Example: Coupling List Space Requirements

................... 287Space Allocation

................. 288INVERT: Create a Descriptor

................ 288INVERT: Create a Descriptor

.................. 288Essential Parameters

.............. 289Optional Parameters and Subparameters

............. 291Space Allocation for the INVERT Function

.................... 291Examples

............... 293JCL/JCS Requirements and Examples

............... 293JCL/JCS Requirements and Examples

................. 293Collation with User Exit

..................... 293BS2000

.............. 294ADAINV JCL Examples (BS2000)

................... 296OS/390 or z/OS

............. 296ADAINV JCL Example (OS/390 or z/OS)

.................. 297VM/ESA or z/VM

............ 298ADAINV JCL Examples (VM/ESA or z/VM)

.................... 299VSE/ESA

.............. 300ADAINV JCS Examples (VSE/ESA)

x

Adabas UtilitiesTable of Contents

................... 301ADALOD: Loader

................... 301ADALOD: Loader

................... 302Functional Overview

.................. 302Functional Overview

................... 303LOAD: Load a File

................... 303LOAD: Load a File

.................. 304Essential Parameters

.............. 306Optional Parameters and Subparameters

.................... 317Examples

.............. 318LOAD Data and Space Requirements

................. 321Loading Expanded Files

.............. 322Loading Data into an Expanded File

................. 323Loading Multiclient Files

........... 323Examples of Loading/Updating Multiclient Files

................ 324UPDATE: ADD/Delete Records

................ 324UPDATE: ADD/Delete Records

.................. 325Essential Parameters

.............. 325Optional Parameters and Subparameters

.................... 330Examples

................ 330Formats for Specifying ISNs

................. 331Format 1: 31-Bit Format

................. 331Format 2: 32-Bit Format

.............. 332UPDATE Data and Space Requirements

............... 333Mass Updates of Expanded Files

.............. 335Loader Storage Requirements and Use

.............. 335Loader Storage Requirements and Use

................. 336Temp Dataset Space Usage

................. 336Temp Dataset Space Usage

................. 336Sequential Temp Dataset

................ 337ADALOD Space/Statistics Report

............... 337ADALOD Space/Statistics Report

............... 339JCL/JCS Requirements and Examples

............... 339JCL/JCS Requirements and Examples

................. 339Collation with User Exit

..................... 339BS2000

.............. 340ADALOD JCL Example (BS2000)

................... 342OS/390 or z/OS

............ 344ADALOD JCL Examples (OS/390 or z/OS)

.................. 345VM/ESA or z/VM

............ 346ADALOD JCL Examples (VM/ESA or z/VM)

.................... 347VSE/ESA

.............. 348ADALOD JCS Examples (VSE/ESA)

................ 349ADAMER: ADAM Estimation

................ 349ADAMER: ADAM Estimation

................... 350Functional Overview

.................. 350Functional Overview

............... 351Estimate ADAM Access Requirements

.............. 351Estimate ADAM Access Requirements

.................. 351Essential Parameters

.................. 351Optional Parameters

.................... 353Examples

xi

Table of ContentsAdabas Utilities

............... 354ADAMER Output Report Description

............... 354ADAMER Output Report Description

............... 355JCL/JCS Requirements and Examples

............... 355JCL/JCS Requirements and Examples

..................... 355BS2000

.............. 355ADAMER JCL Example (BS2000)

................... 356OS/390 or z/OS

............ 356ADAMER JCL Example (OS/390 or z/OS)

.................. 357VM/ESA or z/VM

............ 357ADAMER JCL Example (VM/ESA or z/VM)

.................... 357VSE/ESA

.............. 358ADAMER JCS Example (VSE/ESA)

................... 359ADAORD: Reorder

................... 359ADAORD: Reorder

................... 360Functional Overview

.................. 360Functional Overview

.................. 360Reorder Functions

.................. 361Restructure Functions

................... 361Store Function

................... 361Space Allocation

................ 362REORASSO: Reorder Associator

............... 362REORASSO: Reorder Associator

.............. 362Optional Parameters and Subparameters

.................... 366Examples

............... 368REORDATA: Reorder Data Storage

............... 368REORDATA: Reorder Data Storage

............ 368Optional Parameters and Their Subparameters

.................... 371Examples

................. 372REORDB: Reorder Database

................ 372REORDB: Reorder Database

.............. 373Optional Parameters and Subparameters

.................... 378Examples

........... 380REORFASSO: Reorder Associator for a Single File

........... 380REORFASSO: Reorder Associator for a Single File

.................. 380Essential Parameter

.................. 381Optional Parameters

.................... 383Examples

........... 385REORFDATA: Reorder Data Storage for a Single File

........... 385REORFDATA: Reorder Data Storage for a Single File

.................. 385Essential Parameter

.................. 385Optional Parameters

.................... 388Examples

................. 390REORFILE: Reorder File

................. 390REORFILE: Reorder File

.................. 390Essential Parameter

.................. 391Optional Parameters

.................... 395Examples

............. 397RESTRUCTUREDB: Restructure Database

............. 397RESTRUCTUREDB: Restructure Database

.............. 397Optional Parameters and Subparameters

.................... 400Examples

xii

Adabas UtilitiesTable of Contents

............. 401RESTRUCTUREF: Restructure Single Files

............. 401RESTRUCTUREF: Restructure Single Files

.................. 401Essential Parameter

.................. 401Optional Parameters

.................... 404Examples

................... 405STORE: Store Files

................... 405STORE: Store Files

.............. 406Optional Parameters and Subparameters

.................... 412Examples

............... 414JCL/JCS Requirements and Examples

............... 414JCL/JCS Requirements and Examples

..................... 414BS2000

.............. 414ADAORD JCL Examples (BS2000)

................... 417OS/390 or z/OS

............ 418ADAORD JCL Examples (OS/390 or z/OS)

.................. 420VM/ESA or z/VM

............ 420ADAORD JCL Examples (VM/ESA or z/VM)

.................... 422VSE/ESA

.............. 422ADAORD JCS Examples (VSE/ESA)

............... 425ADAPLP: Protection Log/Work Print

............... 425ADAPLP: Protection Log/Work Print

................... 426Functional Overview

.................. 426Functional Overview

................... 427Print Protection Data

.................. 427Print Protection Data

.............. 428Optional Parameters and Subparameters

.................... 430Examples

............... 431JCL/JCS Requirements and Examples

............... 431JCL/JCS Requirements and Examples

..................... 431BS2000

.............. 431ADAPLP JCL Examples (BS2000)

................... 434OS/390 or z/OS

............ 434ADAPLP JCL Examples (OS/390 or z/OS)

.................. 436VM/ESA or z/VM

............. 437ADAPLP Examples (VM/ESA or z/VM)

.................... 438VSE/ESA

.............. 439ADAPLP JCS Examples (VSE/ESA)

.............. 441ADAPRI: Print Selected Adabas Blocks

.............. 441ADAPRI: Print Selected Adabas Blocks

................... 442Functional Overview

.................. 442Functional Overview

..................... 443Print Blocks

.................... 443Print Blocks

.................. 443Essential Parameters

.................. 443Optional Parameters

.................... 444Examples

............... 445JCL/JCS Requirements and Examples

............... 445JCL/JCS Requirements and Examples

..................... 445BS2000

.............. 445ADAPRI JCL Example (BS2000)

................... 446OS/390 or z/OS

xiii

Table of ContentsAdabas Utilities

............. 446ADAPRI JCL Example (OS/390 or z/OS)

.................. 447VM/ESA or z/VM

............. 447ADAPRI Example (VM/ESA or z/VM)

.................... 448VSE/ESA

.............. 448ADAPRI JCS Example (VSE/ESA)

................ 449ADARAI: Adabas Recovery Aid

................ 449ADARAI: Adabas Recovery Aid

................... 450Function Overview

................... 450Function Overview

................ 450Concepts and Components

................. 450The Collection Interface

................. 450Recovery Log (RLOG)

.............. 451Generation: The Unit of Recovery

.............. 451Retaining Noncurrent Generations

............... 453CHKDB: Check the Database Status

............... 453CHKDB: Check the Database Status

.............. 454DISABLE: Deactivate Recovery Logging

.............. 454DISABLE: Deactivate Recovery Logging

............. 455LIST: Display Current RLOG Generations

............. 455LIST: Display Current RLOG Generations

............. 456Additional LIST Information on BS2000

..................... 456Syntax

.................. 457Optional Parameters

.................... 458Examples

................... 458Input Examples

.................. 458Output Examples

.................... 463VSE/ESA

.............. 465PREPARE: Initialize and Start the RLOG

.............. 465PREPARE: Initialize and Start the RLOG

..................... 465Syntax

.................. 466Essential Parameter

.................. 466Optional Parameters

.................... 466Examples

.............. 467RECOVER: Build a Recovery Job Stream

.............. 467RECOVER: Build a Recovery Job Stream

.................. 468Recovery Processing

............... 469Optimized Recovery Processing

................... 470Requirements

.................... 470Restrictions

................. 471Input Needed for Recovery

.............. 472Output from the Recovery Operation

............... 472Executing the RECOVER Function

.................. 473File-Level Recovery

..................... 474Syntax

.............. 474Optional Parameters and Subparameters

.................... 477Examples

.................. 477Skeleton Job Control

................. 480User Exit to Change JCL

.................. 480Prerecovery Checking

......... 481Restarting the RECOVER Function or Recovery Job Stream

xiv

Adabas UtilitiesTable of Contents

............... 482REMOVE: Remove the Recovery Aid

.............. 482REMOVE: Remove the Recovery Aid

..................... 482Example

............... 483JCL/JCS Requirements and Examples

............... 483JCL/JCS Requirements and Examples

..................... 483BS2000

.................. 484BS2000 Datasets

.............. 484ADARAI JCL Examples (BS2000)

................. 487Skeleton Job Control

............. 490Skeleton Job Control Example (BS2000)

.................. 495ADAR2E Utility

................... 496OS/390 or z/OS

............... 497JCL Examples (OS/390 or z/OS)

........... 498Skeleton Job Control Example (OS/390 or z/OS)

.................. 501VM/ESA or z/VM

.............. 502JCL Examples (VM/ESA or z/VM)

.................... 503VSE/ESA

................ 504Example JCS (VSE/ESA)

................... 506ADAREP: REPORT

.................. 506ADAREP: REPORT

................... 507Functional Overview

.................. 507Functional Overview

.................... 508Report Syntax

.................... 508Report Syntax

.................. 508Optional Parameters

.................... 510Examples

................. 512Processing Save Tape Input

................. 512Processing Save Tape Input

................ 512Supplying Protection Log Input

.................. 513Checking Input Tapes

................. 513Concurrent Parameters

................ 513Reports for Delta Save Tapes

................... 514Report Layout

................... 515Report Description

................... 515Report Description

................ 515General Database Information

............. 516Space Allocated to Database Components

............ 517Contents of the Database: General File Status

................... 518File Options

................. 519File Space Allocations

............... 520Physical Layout of the Database

................... 521File Information

................. 521General Characteristics

.................... 523Options

................ 524Delta Save Change Flags

.................. 524Space Allocation

................. 525Field Definition Table

.................. 528Special Descriptors

................. 529Checkpoint Information

xv

Table of ContentsAdabas Utilities

............... 536JCL/JCS Requirements and Examples

............... 536JCL/JCS Requirements and Examples

..................... 536BS2000

.............. 536ADAREP JCL Example (BS2000)

................... 537OS/390 or z/OS

............. 537ADAREP JCL Example (OS/390 or z/OS)

.................. 538VM/ESA or z/VM

............. 538ADAREP Example (VM/ESA or z/VM)

.................... 539VSE/ESA

.............. 539ADAREP JCS Example (VSE/ESA)

................... 541ADARES:Restart

................... 541ADARES:Restart

................... 542Functional Overview

.................. 542Functional Overview

............... 542Information about using ADARES

......... 543Using ADARES in Adabas Nucleus Cluster Environments

.................. 546BACKOUT Functions

.................. 546BACKOUT Functions

...... 547BACKOUT: Back Out Updates Using the Sequential Protection Log (SIBA)

...... 547BACKOUT: Back Out Updates Using the Sequential Protection Log (SIBA)

.................. 548Essential Parameters

.............. 548Optional Parameters and Subparameters

.................... 552Examples

.553BACKOUT DPLOG or MPLOG: Back Out Updates Using the Dual or Multiple Protection Log

.. 553BACKOUT DPLOG or MPLOG: Back Out Updates Using the Dual or Multiple Protection Log

................. 553Executing the Function

..................... 554Syntax

.................. 555Essential Parameter

.................. 555Optional Parameters

..................... 559Example

............... 560CLCOPY: Copy Dual Command Log

............... 560CLCOPY: Copy Dual Command Log

.................. 560Optional Parameters

.................... 561Examples

........... 562COPY: Copy a Sequential Protection Log or Save Tape

........... 562COPY: Copy a Sequential Protection Log or Save Tape

.................. 563Optional Parameters

.................... 564Examples

.......... 565MERGE CLOG: Merge Nucleus Cluster Command Logs

.......... 565MERGE CLOG: Merge Nucleus Cluster Command Logs

.................. 565Essential Parameter

........... 566PLCOPY: Copy Protection Log to Sequential Dataset

........... 566PLCOPY: Copy Protection Log to Sequential Dataset

.................. 566Optional Parameters

.................... 568Examples

............... 570REGENERATE: Regenerate Updates

............... 570REGENERATE: Regenerate Updates

..................... 570Syntax

.................. 571Essential Parameters

.............. 571Optional Parameters and Subparameters

.................... 576Examples

xvi

Adabas UtilitiesTable of Contents

............... 578REPAIR: Repair Data Storage Blocks

............... 578REPAIR: Repair Data Storage Blocks

..................... 578Syntax

.................. 578Essential Parameter

.................. 579Optional Parameters

.................... 579Examples

............... 580Multithreaded Processing Statistics

............... 580Multithreaded Processing Statistics

............... 581JCL/JCS Requirements and Examples

............... 581JCL/JCS Requirements and Examples

..................... 581BS2000

.............. 582ADARES JCL Examples (BS2000)

................... 587OS/390 or z/OS

............ 588ADARES JCL Examples (OS/390 or z/OS)

.................. 594VM/ESA or z/VM

............ 595ADARES JCL Examples (VM/ESA or z/VM)

.................... 597VSE/ESA

.............. 599ADARES JCS Examples (VSE/ESA)

.............. 602ADASAV: Save/Restore Database or Files

............. 602ADASAV: Save/Restore Database or Files

................... 603Functional Overview

.................. 603Functional Overview

.............. 603RESTONL and RESTORE Functions

............. 603RESTPLOG and RESTONL Functions

................ 604Online and Offline SAVEs

............ 605RESTONL: Restore Database from Online Source

............ 605RESTONL: Restore Database from Online Source

.................... 605Conditions

..................... 606Result

..................... 606Syntax

.............. 606Optional Parameters and Subparameters

.................... 608Examples

....... 609RESTONL GCB: Restore Database Incremental from Online Source

........ 609RESTONL GCB: Restore Database Incremental from Online Source

.................... 609Conditions

..................... 610Result

..................... 610Syntax

.............. 611Optional Parameters and Subparameters

.................... 613Examples

...... 614RESTONL FILES: Restore Files to Original RABNs from Online Source

....... 614RESTONL FILES: Restore Files to Original RABNs from Online Source

.................... 614Conditions

..................... 615Result

..................... 615Syntax

.............. 616Optional Parameters and Subparameters

.................... 618Examples

....... 619RESTONL FMOVE: Restore Files to Any RABNs from Online Source

....... 619RESTONL FMOVE: Restore Files to Any RABNs from Online Source

.................... 619Conditions

..................... 620Result

..................... 620Syntax

xvii

Table of ContentsAdabas Utilities

.................. 621Optional Parameters

.................... 626Examples

............ 628RESTORE: Restore Database from Offline Source

............ 628RESTORE: Restore Database from Offline Source

.................... 628Conditions

..................... 629Result

..................... 629Syntax

.................. 629Optional Parameters

.................... 630Examples

....... 632RESTORE GCB: Restore Database Incremental from Offline Source

........ 632RESTORE GCB: Restore Database Incremental from Offline Source

.................... 632Conditions

..................... 633Result

..................... 633Syntax

.................. 633Optional Parameters

.................... 635Examples

...... 636RESTORE FILES: Restore Files to Original RABNs from Offline Source

....... 636RESTORE FILES: Restore Files to Original RABNs from Offline Source

.................... 636Conditions

..................... 637Result

..................... 637Syntax

.................. 637Optional Parameters

.................... 639Examples

....... 641RESTORE FMOVE: Restore Files to Any RABNs from Offline Source

....... 641RESTORE FMOVE: Restore Files to Any RABNs from Offline Source

.................... 641Conditions

..................... 642Result

..................... 642Syntax

.................. 643Optional Parameters

.................... 647Examples

.............. 649RESTPLOG: Restore Protection Log Only

............. 649RESTPLOG: Restore Protection Log Only

.................. 649Essential Parameters

.................. 650Optional Parameters

..................... 650Example

.................. 651SAVE: Save Database

.................. 651SAVE: Save Database

..................... 652Syntax

.................. 652Optional Parameters

..................... 653Example

............... 654SAVE FILES: Save Specified Files

............... 654SAVE FILES: Save Specified Files

..................... 655Syntax

.................. 655Optional Parameters

.................... 657Examples

............... 658JCL/JCS Requirements and Examples

............... 658JCL/JCS Requirements and Examples

..................... 658BS2000

.............. 659ADASAV JCL Examples (BS2000)

................... 663OS/390 or z/OS

............ 664ADASAV JCL Examples (OS/390 or z/OS)

xviii

Adabas UtilitiesTable of Contents

.................. 667VM/ESA or z/VM

.......... 668ADASAV Job Control Examples (VM/ESA or z/VM)

.................... 670VSE/ESA

.............. 672ADASAV JCS Examples (VSE/ESA)

................ 675ADASEL: Select Protection Data

................ 675ADASEL: Select Protection Data

................... 676Functional Overview

.................. 676Functional Overview

.................... 677ADASEL Syntax

................... 677ADASEL Syntax

.................. 678SELECT Statement

................... 679file-number

................ 679Additional Selection Criteria

.................... 679date-time

................... 680WITH Clause

.................... 681IF-statement

................... 682value-criterion

.................. 686output-instruction

........... 695Overriding ADASEL Defaults with Global Parameters

........... 695Overriding ADASEL Defaults with Global Parameters

............... 697JCL/JCS Requirements and Examples

............... 697JCL/JCS Requirements and Examples

..................... 697BS2000

.............. 697ADASEL JCL Example (BS2000)

................... 698OS/390 or z/OS

............. 698ADASEL JCL Example (OS/390 or z/OS)

.................. 699VM/ESA or z/VM

............... 699Example (VM/ESA or z/VM)

.................... 700VSE/ESA

.............. 700ADASEL JCS Example (VSE/ESA)

................. 701ADAULD: Files UNLOAD

................. 701ADAULD: Files UNLOAD

................... 702Functional Overview

.................. 702Functional Overview

.............. 703UNLOAD FILE: Unload Specified File

.............. 703UNLOAD FILE: Unload Specified File

.................. 703Essential Parameter

.............. 703Optional Parameters and Subparameters

.................... 709Examples

................. 711ADAULD Input Processing

................. 711ADAULD Input Processing

............... 711Processing a Save Tape as Input

................. 713ADAULD Output Processing

................ 713ADAULD Output Processing

................... 714ADAULD User Exit 9

.................. 714ADAULD User Exit 9

............... 715JCL/JCS Requirements and Examples

............... 715JCL/JCS Requirements and Examples

..................... 715BS2000

.............. 716ADAULD JCL Examples (BS2000)

................... 717OS/390 or z/OS

xix

Table of ContentsAdabas Utilities

............ 718ADAULD JCL Examples (OS/390 or z/OS)

.................. 719VM/ESA or z/VM

............... 719Examples (VM/ESA or z/VM)

.................... 720VSE/ESA

.............. 721ADAULD JCS Examples (VSE/ESA)

................ 723ADAVAL : Validate the Database

............... 723ADAVAL : Validate the Database

................... 724Functional Overview

.................. 724Functional Overview

............ 726VALIDATE: Validate Data Storage and Associator

............ 726VALIDATE: Validate Data Storage and Associator

.................. 726Essential Parameters

.................. 727Optional Parameters

................. 729Example of ADAVAL Output

................ 729Example of ADAVAL Output

............... 730JCL/JCS Requirements and Examples

............... 730JCL/JCS Requirements and Examples

................. 730Collation with User Exit

.................. 730Sorting Large Files

..................... 731BS2000

.............. 731ADAVAL JCL Example (BS2000)

................... 732OS/390 or z/OS

............ 732ADAVAL JCL Example (OS/390 or z/OS)

.................. 733VM/ESA or z/VM

............... 733Example (VM/ESA or z/VM)

..................... 733VSE

.............. 734ADAVAL JCS Example (VSE/ESA)

......... 735ADAZAP: Display or Modify Asso, Data, and Work Datasets

......... 735ADAZAP: Display or Modify Asso, Data, and Work Datasets

................... 736Functional Overview

.................. 736Functional Overview

.................... 737ADAZAP Syntax

................... 737ADAZAP Syntax

.................. 737Essential Parameters

.................. 737Optional Parameters

.................... 738Examples

............... 739JCL/JCS Requirements and Examples

............... 739JCL/JCS Requirements and Examples

..................... 739BS2000

.............. 739ADAZAP JCL Example (BS2000)

................... 740OS/390 or z/OS

................ 741Example (OS/390 or z/OS)

.................. 741VM/ESA or z/VM

............... 741Example (VM/ESA or z/VM)

.................... 742VSE/ESA

................. 742Example (VSE/ESA)

.................. 743Adabas Sequential Files

.................. 743Adabas Sequential Files

.................. 743Sequential File Table

............... 745Operating System Dependencies

.................. 745BS2000 Systems

xx

Adabas UtilitiesTable of Contents

............... 749OS/390 or MVS/ESA Systems

.................. 750VM/ESA Systems

.................. 751VSE/ESA Systems

............... 754Procedures for VSE/ESA Examples

............... 754Procedures for VSE/ESA Examples

............... 754Adabas Libraries (ADAVvLIB)

................ 754Adabas Files (ADAVvFIL)

xxi

Table of ContentsAdabas Utilities

About this Documentation
Each Adabas utility is described in a separate part. For a single-function utility, the part begins with a
syntax diagram showing the utility statement and all possible parameters. Parts for utilities with multiple
functions begin with a brief overview of the functions, followed by the individual function syntax
diagrams and descriptions.

Each function description contains

syntax diagram with all parameters;

individual parameter descriptions describing coding rules, restrictions, and defaults; and

utility function examples.

Following the function descriptions are job control examples for the BS2000, z/OS and OS/390, z/VM
and VM/ESA, and VSE/ESA operating systems.

Note:
Dataset names starting with DD are referred to in the Adabas ocumentation with a slash separating the DD
from the remainder of the dataset name to accommodate VSE/ESA dataset names that do not contain the
DD prefix. The slash is not part of the dataset name.

1

About this DocumentationAdabas Utilities

 Function Action

ADAACK Check Address Converter

ADACDC Changed-Data Capture

ADACMP Compress-Decompress

ADACNV Convert Database to Higher Version

ADADBS Database Services

ADADCK Check Data Storage

ADADEF Define a Database

ADAFRM Format

ADAICK Check Index and Address Converter

ADAINV Invert

ADALOD Loader

ADAMER Adam Estimation

ADAORD Reorder

ADAPLP Protection Log/Work Print

ADAPRI Print Selected Adabas Blocks

ADARAI Adabas Recovery Aid

ADAREP Report

ADARES Restart

ADASAV Save/Restore Database or Files

ADASEL Select Protection Data

ADAULD Nload

ADAVAL Validate the Database

ADAZAP Utility - Display or Modify ASSO, DATA, and WORK

ADABAS Sequential Files

Procedures for VSE/ESA Examples

2

Adabas UtilitiesAbout this Documentation

Conventions
This document covers the following topics:

Control Statement Syntax

Syntax Conventions

Control Statement Rules

Parameter Values

Control Statement Syntax

Utility control statements have the following format:

where

3

ConventionsAdabas Utilities

utility is the name of the utility to be executed. Examples of utility names include:

ADAORD
ADADBS
ADAINV

function is the name of the specific utility operation to be executed. For example:

ADAORD REORDATA
ADADBS ADD
ADAINV COUPLE

Most single-function utilities (ADASEL, ADAULD, etc.) whose function is implicit
have either no function value or an optional one.

parameter-list is a list of parameters following the function.

Parameters in the list are almost always keywords with the format:

parameter =value

A parameter may have one or more operands, and keyword parameters may be
specified in any order.

Most parameters require that you select or otherwise specify an operand value. Some
operands are positional (value1 , value2 ,..., valuex), meaning that the values must be
in a certain order as described in the text. All parameters must be separated by
commas.

In the statement syntax descriptions in this documentation, parameters are listed
vertically (stacked) or are separated by vertical bars (|). Each list shows all possible
parameters, from which one or more can (or must) be specified. Although
parameters in the list must be separated by commas, these commas are omitted in the
syntax statements when the parameters are stacked.

Syntax Conventions

The following table describes the conventions used in syntax diagrams of Adabas statements.

Convention Description Example

uppercase,
bold

Syntax elements appearing in
uppercase and bold font are
Adabas keywords. When
specified, these keywords
must be entered exactly as
shown.

The syntax elements ADADBS, CHANGE, and FILE
are Adabas keywords.

4

Adabas UtilitiesConventions

Convention Description Example

lowercase,
italic,
normal font

Syntax elements appearing in
lowercase and normal, italic
font identify items that you
must supply. The syntax element file-number identifies and describes

the kind of value you must supply. In this instance, you
must supply the number of the file affected by the
ADADBS CHANGE operation.

mixed case,
normal font

Syntax elements appearing in
mixed case and normal font
(not bold or italic) identify
items established by other
Adabas control statements.
This notation is usually used
to identify how default values
are determined for some
parameters in Adabas syntax.

The syntax element "ADARUN-device" indicates that
the device type identified by the ADARUN DEVICE
parameter will be used if a different device type is not
specified. The literal "ADARUN-device" should not be
specified for the SORTDEV parameter.

underlining Underlining is used for two
purposes:

1. To identify default
values, wherever
appropriate. Otherwise,
the defaults are
explained in the
accompanying parameter
descriptions.

2. To identify the short
form of a keyword.

In the example above, 4000 is the default that will be
used for the LRECL parameter if no other record buffer
length is specified.

In the example above, the short version of the DEVICE
parameter is DE.

vertical bars
(|)

Vertical bars are used to
separate mutually exclusive
choices.

Note:
In more complex syntax
involving the use of large
brackets or braces, mutually
exclusive choices are stacked
instead.

In the example above, you must select
RESTRUCTUREF or REF for this ADAORD function.
There are no defaults.

5

ConventionsAdabas Utilities

Convention Description Example

brackets ([
])

Brackets are used to identify
optional elements. When
multiple elements are stacked
or separated by vertical bars
within brackets, only one of
the elements may be supplied.

In this example, the SORTSEQ parameter and the MU,
NU, and STARTISN subparameters are optional.

Note:
Note that the mutually exclusive choices for the
SORTSEQ parameter are stacked.

braces ({ }) Braces are used to identify
required elements. When
multiple elements are stacked
or separated by vertical bars
within brackets, one and only
one of the elements must be
supplied.

In this example, either the SUSPEND or RESUME
parameter is required.

indentation Indentation is used to identify
subparameters of a parameter.

In this example, TTSYN and TRESUME are
subparameters of the SUSPEND parameter.

ellipsis (...) Ellipses are used to identify
elements that can be repeated.
If other punctuation is
included before a ellipsis, the
punctuation must be used to
separate repeated elements.

In this example, the FIELD parameter can be repeated.
In addition, the options associated with the field can be
repeated.

other
punctuation
and symbols

All other punctuation and
symbols must be entered
exactly as shown.

In this example, the single quotation marks must be
specified around the field definitions and their
associated options. In addition, options must be
separated by commas.

Control Statement Rules

The following rules apply for the construction of utility control statements:

1. Each control statement must contain a utility name in positions 1-6.

2. The utility function name follows the utility name, separated by at least one space.

6

Adabas UtilitiesConventions

3. Keyword parameter entries and multiple values within keyword entries must be separated by
commas.

4. No space is permitted before or after "=".

5. The comma following the last parameter entry of a statement is optional.

6. Control statement processing ends with position 72 or when a space is encountered after the
beginning of the parameter list. Entries made in positions 73-80 are not processed.

7. A statement that contains an asterisk "*" in position 1 is read as a comment and is not processed.

8. Control statements are continued by specifying the extra parameters on a new statement following
(and separated by at least one space from) the utility name in positions 1-6.

Parameter Values

Variable values actually specified following the equals "=" sign in parameters (represented by italicized
labels in the preceding examples and elsewhere in this documentation) have the following syntax:

where "value" is as described in the following sections. "Value-list" and "value-range" are variations of
"value", and are allowed either in place of or with "value", depending on the individual parameter rules as
described in the text.

value

"Value" may consist of a number or a string of alphanumeric or hexadecimal characters. In
some optional keyword parameters, a default value is assumed if the parameter is not specified.

Alphanumeric Values

Alphanumeric values are specified in one of the following ways:

If the value comprises . . . Apostrophes around it are . . .

only upper- or lowercase letters,
numeric digits and minus (-)

optional

any other characters including an
apostrophe itself (which must be
entered twice)

required

7

ConventionsAdabas Utilities

Numeric Values

Numeric values are specified as follows:

If the value represents . . . Specify . . .

a number of either blocks or
cylinders

the letter B must immediately follow
the value if blocks are being specified;
otherwise, cylinders are assumed:

SIZE=200B (200 blocks)
SIZE=200 (200 cylinders)

an Adabas file a one- to four-digit number (leading
zeros permitted):

FILE=3
FILE=03
FILE=162

a device type a four-digit number corresponding to
the model number of the device type to
be used:

DEVICE=3380

a field name or descriptor a two-character field name
corresponding to the field name or
descriptor:

FIELD1=NA

Hexadecimal values are accepted if this is specified in the parameter description. Hexadecimal
values must be within apostrophes following the indicator X:

X’0002DC9F’

value-list

value,... (numeric values)

BITRANGE=2,10,2

or

’value,...’ (alphanumeric values)

UQDE=’AA,AC,AE’

value-range

value - value, ...

8

Adabas UtilitiesConventions

ISN=600-900,1000-1200

Individual values within a value list or value range may be positional if they relate to values
specified on corresponding parameters. For example:

ADADBS UNCOUPLE FILES=13,20,PASSWORD=’PW13,PW20’

-instructs the ADADBS UNCOUPLE function to uncouple files 13 and 20, which are
password-protected.

The passwords (specified by the PASSWORD parameter) must be in the same order as their
corresponding files in the FILES parameter.

If file 13 is not password-protected, either the PASSWORD parameter must be specified with a
"placeholder" comma as shown below

... PASSWORD=’,PW20’

-to position the password "PW20" to the corresponding position of file 20 in the FILES value
list, or FILES must specify file 20 first.

9

ConventionsAdabas Utilities

ADAACK: Check Address Converter
This chapter covers the following topics:

Functional Overview

ACCHECK: Check Address Converter Against Data Storage

JCL/JCS Requirements and Examples

10

Adabas UtilitiesADAACK: Check Address Converter

Functional Overview
ADAACK checks the address converter for a specified file, a range of files, or all files and/or for a
specified ISN range or all ISNs. It is used in conjunction with ADAICK.

ADAACK checks each address converter element to determine whether the Data Storage RABN is within
the used portion of the Data Storage extents specified in the file control block (FCB).

ADAACK checks the ISN for each record in each Data Storage block (within the specified ISN range) to
ensure that the address converter element for that ISN contains the correct Data Storage RABN. This is
done in the following way:

1. Main memory is allocated for the specified range of ISNs (number of ISNs, times 4). If no range is
specified, the entire range (MINISN through TOPISN) is checked.

The address converter is read from the database into this area in memory.

2. Each used Data Storage block (according to the Data Storage extents in the FCB) is read and checked
against the address converter in memory. Each ISN in the address converter must have exactly one
associated Data Storage record.

3. The address converter in memory is checked for ISNs that did not occur in Data Storage.

For large files, ADAACK may run for a long time. ADAACK prints a message line after every 20 Data
Storage blocks processed.

Run time is not affected by the ISN range, since all used Data Storage blocks are read.

Notes:

1. ADAACK does not require the Adabas nucleus to be active.
2. A pending autorestart condition is ignored.
3. ADAACK does not synchronize with the nucleus in case of parallel updating.
4. This utility should be used only for diagnostic purposes.

ADAACK returns a condition code 8 if any errors occur.

11

Functional OverviewAdabas Utilities

ACCHECK: Check Address Converter
Against Data Storage

This chapter covers the following topics:

Optional Parameters

Examples

Optional Parameters
FILE: Files to be Checked

The file, single range of files, or all files to be checked. By default, all files in the database are
checked.

ISN: ISN Range to be Checked

A range of ISNs or all ISNs to be checked. By default, the entire range MINISN through
TOPISN is checked.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

Examples
Example 1:

ADAACK ACCHECK

Check all files in the database.

12

Adabas UtilitiesACCHECK: Check Address Converter Against Data Storage

Example 2:

ADAACK ACCHECK FILE=12, ISN=1-8000

Check ISNs 1 through 8000 for file 12.

Example 3:

ADAACK ACCHECK FILE=8-10

Check all ISNs in files 8 through 10.

13

ACCHECK: Check Address Converter Against Data StorageAdabas Utilities

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADAACK with BS2000, z/OS or
OS/390, z/VM or VM/ESA, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

BS2000

z/OS or OS/390

z/VM or VM/ESA

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

ADARUN parameters SYSDTA/ DDCARD Operations

ADAACK parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT DDPRINT Messages and Codes

ADAACK messages SYSLST DDDRUCK Messages and Codes

ADAACK JCL Examples (BS2000)

In SDF Format:

/.ADAACK LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK * A D A A C K ADDRESS CONVERTER CHECK
/REMARK *
/REMARK *
/ASS-SYSLST L.ACK.DATA
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADAACK,DB=yyyyy,IDTNAME=ADABAS5B
ADAACK ACCHECK FILE=ffff
/LOGOFF SYS-OUTPUT=DEL

14

Adabas UtilitiesJCL/JCS Requirements and Examples

In ISP Format:

/.ADAACK LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK * A D A A C K ADDRESS CONVERTER CHECK
/REMARK *
/REMARK *
/SYSFILE SYSLST=L.ACK.DATA
/FILE ADAvrs.MOD ,LINK=DDLIB
/FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
/FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
/EXEC (ADARUN,ADA.MOD)
ADARUN PROG=ADAACK,DB=yyyyy,IDTNAME=ADABAS5B
ADAACK ACCHECK FILE=ffff
/LOGOFF NOSPOOL

z/OS or OS/390

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

ADAACK messages DDDRUCK printer Messages and Codes

ADARUN messages DDPRINT printer Messages and Codes

ADARUN parameters DDCARD reader Operations

ADAACK parameters DDKARTE reader

ADAACK JCL Example (z/OS or OS/390)
//ADAACK JOB
//*
//* ADAACK:
//* ADDRESS CONVERTER CHECK
//*
//ACK EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAACK,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAACK ACCHECK FILE=ffff
/*

Refer to ADAACK in the MVSJOBS dataset for this example.

15

JCL/JCS Requirements and ExamplesAdabas Utilities

z/VM or VM/ESA

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

ADAACK messages DDDRUCK disk/ terminal/ printer Messages and Codes

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADAACK parameters DDKARTE disk/ terminal/ reader

ADAACK JCL Example (z/VM or VM/ESA)
DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDPRINT,DSN=ADAACK.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAACK.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNACK.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADAACK.CONTROL,MODE=A
ADARUN

Contents of RUNACK CONTROL A1:

ADARUN PROG=ADAACK,DEVICE=dddd,DB=yyyyy

Contents of ADAACK CONTROL A1:

ADAACK ACCHECK FILE=ffff

VSE/ESA

File Symbolic Name Storage Logical Unit More
Information

Associator ASSORn disk *

Data Storage DATARn disk *

ADAACK
messages

 printer SYS009 Messages and
Codes

ADARUN
messages

 printer SYSLST Messages and
Codes

ADARUN
parameters

CARD
CARD

reader
tape
disk

SYSRDR
SYS000
*

ADAACK
parameters

 reader SYSIPT

16

Adabas UtilitiesJCL/JCS Requirements and Examples

* Any programmer logical unit may be used.

ADAACK JCS Example (VSE/ESA)

See Procedures for VSE/ESA Examples for descriptions of the VSE/ESA procedures (PROCs).

* $$ JOB JNM=ADAACK,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
* ADDRESS CONVERTER CHECK
// JOB ADAACK
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAACK,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAACK ACCHECK FILE=27
/*
/&
* $$ EOJ

Refer to member ADAACK.X for this example.

17

JCL/JCS Requirements and ExamplesAdabas Utilities

ADACDC: Changed-Data Capture
This chapter covers the following topics:

Functional Overview

Running the Utility

Operating System Considerations

The ADACDC User Exit

Examples

JCL/JCS Requirements and Examples

18

Adabas UtilitiesADACDC: Changed-Data Capture

Functional Overview
The ADACDC utility

takes as input one or more sequential protection logs; and

produces as output a delta of all changes made to the database over the period covered by the input
protection logs.

"Delta of changes" means that the last change to each ISN in a file that was altered during this period
appears on the primary output file.

This output may be used on a regular basis as input for data warehousing population procedures so that the
delta of changes to a database is applied to the data warehouse database rather than a copy of the entire
database. This affords more frequent and less time consuming updates to the data warehouse, ensuring
greater accuracy of the information stored there.

In order to run the ADACDC utility

an external sorter must be available and installed as the standard sorter in the operating system. See
Operating System Considerations for more information.

the external sorter must have access to the database’s Associator containing the FDTs of the files for
which records are to be processed.

This chapter covers the following topics:

Phases of Operation and Resulting Files

Primary Input Data

Primary Output Data

Transaction File

Phases of Operation and Resulting Files
ADACDC processes sequential protection logs in two phases. You can execute phase 1 and phase 2
separately, or both at once (the default):

If phase 2 is being run separately or both phases are being completed together, the data is
decompressed and written to the primary output file.

If only phase 1 is being executed, the data is written to an extract file . This extract file may then be
processed multiple times by a phase 2 operation to decompress the records and write to primary
output files.

The extract file contains data records in compressed format whereas the primary output file contains
records in decompressed format. Refer to the section ADACMP (Compress - Decompress) in this
documentation for more information about these formats.

19

Functional OverviewAdabas Utilities

The primary output file and the extract file are standard operating-system-dependent files that can handle
variable length records.

Phase 1 and the Extract File

During phase 1, updates from the protection logs are analyzed and prefixed with a standard structure
called the CDCE. The format of each record on the file is a constant CDCE prefix followed by the
compressed record information. These records are passed to an external SORT routine to establish the
most recent update for each ISN on a file. Only the last change for a given file and ISN combination is
written.

The extract file created when phase 1 is run separately makes it possible to process the PLOG data once
and then optionally produce multiple primary output files from it based, for example, on file selection
criteria. The option is useful if different file changes are required for different purposes.

When the phase 1 process is being run, the extract file is opened for output. As records are output from the
SORT processing, the latest update for each file and ISN combination is written to the extract file if

the update was performed by an ET user and belongs to a completed transaction; or

the update was performed by an EXU user and belongs to a completed command; or

NOET is specified.

All other updates for the file and ISN combination for that period are discarded if there are no controlled
utility operations against that file (see Checkpoints Written to the Primary Output File).

Note:
It is possible to have duplicate file and ISN combinations on the file if the ADACDC user exit (described
later) adds records with file and ISN combination that already exist. A record added or modified by the
user exit is so marked in the CDCE structure.

Phase 2 or Both and the Primary Output File

The primary output file is used when both stages of ADACDC are run together, or for phase 2 processing
only.

If both phases are run together, the primary output file is opened and created directly using the output
from the SORT processing. In this case, processing occurs as for the extract file for phase 1
processing.

If only phase 2 is run, the primary output file is created using input from the extract file.

The format of each record on the file is a constant CDCO prefix followed by the decompressed record
information. If for some reason the record cannot be decompressed, a warning message is issued and the
compressed record is written to the primary output dataset. A flag in the CDCO structure informs a user
program when decompression for the record has failed.

Note:
It is possible to have duplicate file and ISN combinations on the file if the ADACDC user exit (described
later) adds records with file and ISN combinations that already exist. A record added or modified by the
user exit is so marked in the CDCO structure.

20

Adabas UtilitiesFunctional Overview

Checkpoints Written to the Primary Output File

The primary objective of the ADACDC utility is to provide an output dataset containing the most recent
changes for each ISN in a file that has been modified for the period concerned.

Apart from simple changes to a file, some utility operations executed against a file may fundamentally
affect its contents. For example, if the file is deleted, simply providing the last updates for ISNs in the file
does not accurately reflect the state of the file since all ISNs have been deleted.

For this reason, the following checkpoints are recorded and written to the primary output file as
appropriate with the associated indication in the output record:

ADASAV RESTORE FILE File created
ADAORD STORE FILE File created
ADALOD LOAD FILE File created
ADALOD UPDATE FILE File updated
ADADBS DELETE FILE File deleted
ADADBD REFRESH FILE File deleted

Because these operations can fundamentally impact a file and its appearance, the checkpoint is written to
the primary output dataset when it occurs relative to the other updates.

ADACDC retains the last change to all ISNs before each of the above checkpoints. This means that a file
and ISN combination could appear multiple times on the primary output file if one or more checkpoints
were written to it. This is useful for the many data warehouse packages that may wish to complete their
view of a file and maintain a copy of it prior to deletion, re-creation, or mass update.

Primary Input Data
The primary input data comprises sequential protection logs produced either

by the database directly; or

by the ADARES PLCOPY of nonsequential protection logs.

ADACDC processes this data to ensure that

when a new PLOG block is read and the PLOG number is the same, the PLOG block number is 1
greater than the previous PLOG block number.

when the PLOG number itself changes, the new PLOG number is higher than the previous PLOG
number and the new PLOG block number is 1.

Note:
When the PLOG number changes and the difference between the PLOG numbers is greater than 1, a
warning message is issued and processing continues as this can legitimately happen if online saves are
used.

If any of these checks fail, the utility execution terminates.

21

Functional OverviewAdabas Utilities

Primary Output Data
The primary output data is a sequential file comprising all database records that were added, updated, or
deleted during the period covered by the input protection logs.

If a record was changed several times, only its last change appears in the output file. ADACDC employs a
SORT process to identify multiple changes to the same record.

Each primary output record comprises a fixed-length record prefix followed by the database record in
decompressed form. The decompressed data corresponds in format to the output of the ADACMP
DECOMPRESS function.

The primary output record prefix is described by the CDCO DSECT. It has the following structure:

22

Adabas UtilitiesFunctional Overview

Bytes Description

0-1 record length (binary)

2-3 set to zeros

4-7 constant ’CDCO’

8-9 database ID

10-11 file number

12-15 ISN of the updated record

16-19 length of the decompressed data in bytes

20-47 28-byte communication ID of the last user who updated the record

48 change indicator:

X’04’ record added

X’08’ record updated

X’0C record deleted

X’10’ file created

X’14’ file updated

X’18’ file deleted or refreshed

49 flags (independent bit settings):

X’80’ record added by user exit

X’40’ record modified by user exit

X’20’ record still compressed; decompression failed

50 database version indicator

51-67 reserved for future use

68-... decompressed record data

Transaction File
To maintain input data checking over multiple runs of the utility, ADACDC stores information on the
transaction file in a transaction control record containing the last database ID, the PLOG number, and the
PLOG block number processed. This information is used to verify the latest input (unless the RESETTXF
option is specified - see section RESETTXF : Reset Input Transaction File in the ADACDC Optional
Parameters section).

23

Functional OverviewAdabas Utilities

ADACDC actually recognizes two different transaction files: input and output. Both transaction files are
standard operating-system-dependent files that can handle variable length records.

Input Transaction File Processing

During the input processing stage, ADACDC processes the input transaction file to the SORT program.

Following the control record on the input transaction file, 0 or more records may be found. These are
database updates related to transactions not completed during the last run of the utility. These records are
processed again as part of the input as their transactions will normally have been completed in the next
sequential protection logs provided to the utility. This is the reason the sequence of protection logs is so
important: updates may remain outstanding forever if the correct sequence is not maintained.

The transaction file also records whether the NOET option was specified during the last phase 1 run of the
utility. When ADACDC detects that this option has changed from one utility execution to the next, it uses
the information from the control record on the input transaction file; however, all transactional
information in the other records is ignored. This is due to the fact that changing this option may cause
inconsistent data to be written to the primary output file or extract file, as appropriate. ADACDC issues a
warning when this happens.

Output Transaction File Processing

Once output processing from the SORT program starts, the input transaction file is closed and the output
transaction file is opened. The control record is written to the output transaction file followed by any
updates that relate to incomplete transactions or, in the case where the NOET option is in effect or an
EXU user is in control, to incomplete commands. The output transaction file is closed once processing is
complete.

Using a Single Transaction File

It is possible to use the same file as both the input and output transaction file; however, if the utility fails
while writing to the output transaction file (that is, at any time during the output processing of the SORT
utility), the input transaction file will no longer exist and therefore, rerunning the utility will yield a
different result.

For this reason, the transaction file must be backed up prior to the utility run so that it can be restored in
the event of a failure.

Alternatively, you could use a facility on your operating system (if available) that produces a new version
of a file whenever a program updates the file.

24

Adabas UtilitiesFunctional Overview

Running the Utility

The first time you run the ADACDC utility, use the following syntax and either not specify or dummy the
input transaction file (CDCTXI) to create a valid transaction file for input to subsequent runs:

ADACDC RESETTXF,PHASE=BOTH

The RESETTXF option ignores the absent or dummied input transaction file, reads the primary input data,
and produces primary output using the input data.

After the input transaction file has been created during the first run, only the utility name ADACDC is
required to run this utility; the PHASE parameter defaults to BOTH. Parameter options are explained in
the following sections.

Optional Parameters
FILE: Files Processed

Use the FILE parameter to limit the file(s) processed by the utility and written to the output file:

For phase 1 operation, only records relating to the files specified are written to the extract
file.

For phase 2 and BOTH operations, only records relating to the files specified are written to
the primary output file.

Note:
Clearly, files required for phase 2 processing must have been specified on the previous phase 1
operation that created the input extract file.

When this parameter is not specified, all files are processed by the utility.

NOET: Bypass ET Processing

ADACDC normally accepts for processing only those records that are part of completed
transactions or, in the case of EXU users, records that are part of completed commands.

Use the NOET option to bypass this transaction processing when PHASE=1 or PHASE=BOTH.
NOET has no effect when PHASE=2 because the input is the extract file from phase 1 which
has already processed the protection log (PLOG) input with or without the NOET option.

25

Running the UtilityAdabas Utilities

When NOET is specified, any update made to the database is processed and written to the
extract file (PHASE=1) or primary output file (PHASE=BOTH) as soon as it is encountered on the PLOG.

Warning:
Specifying this option may result in updates recorded on the
primary output file that are related to transactions that were
not complete at the end of the input PLOG.

PHASE: Execution Phase

The PHASE parameter determines the input the utility requires and the output it produces:

PHASE=1 reads the sequential PLOG input and produces an interim extract file for later
processing by a phase 2 step.

PHASE=2 reads an extract file produced by a previously executed phase 1 step and
produces a primary output file containing the delta of changes made to the file.

PHASE=BOTH (the default) reads the sequential PLOG input and produces the primary
output file containing the delta of changes directly without reading or writing an extract
file.

Refer to the section Phases of Operation and Resulting Files for more information.

RESETTXF: Reset Input Transaction File

ADACDC checks the primary input data to the utility to ensure that the PLOGs are read in
sequence, by PLOG block and PLOG number. If these checks fail, the utility execution
terminates.

To maintain the checks over multiple runs of the utility, ADACDC maintains input and output
transaction files. These files also track record updates related to incomplete transactions or, in
the case of EXU users, incomplete commands from one utility execution to the next. Normally,
such incomplete transactions or commands are completed in the next sequential PLOGs
provided to the utility.

However, if the need arises to process PLOGs out of sequence and the information in the
transaction file can be safely removed, the RESETTXF option can be used to reset the
transaction file so that the checks are bypassed and all outstanding transaction or command data
is ignored for a given run. ADACDC ignores information on the input transaction file and writes
the output transaction file at end of job.

Warning:
If the sequence of PLOGs is interrupted, record updates related
to incomplete transactions recorded in the transaction file may
remain outstanding indefinitely.

26

Adabas UtilitiesRunning the Utility

Operating System Considerations
For its sort requirements, the ADACDC utility uses a standard sort function installed in the operating
system. The following additional considerations should be taken into account for each operating system.

This chapter covers the following topics:

z/OS or OS/390

VSE/ESA

BS2000

z/OS or OS/390
No additional job steps are required by ADACDC when the sort function is invoked. However, depending
on the amount of data to be sorted, the ADACDC job step may require additional sort-related DD
statements for work files or for other sort-specific facilities. Refer to the sort documentation for more
details.

Note:
A sort package generally supplies summary information when a SYSOUT DD statement is specified.

When ADACDC invokes sort, it expects by default to transfer control to a load module named ’SORT’. If
the sort module has a different name, you must reassemble and link the Adabas options module
ADAOPD, specifying the name of the external sort program as follows:

1. Modify the OPDOS member, specifying the name of the sort program in parameter SORTPGM=.

2. Modify and run member ASMLOPD to assemble and link the module ADAOPD.

VSE/ESA
Whenever an external sort may be called, an ADACDC utility job must reserve space in the partition area.
The EXEC statement must therefore specify the SIZE parameter as either

// EXEC ADARUN,SIZE=(ADARUN,128K)

or

// EXEC ADARUN,SIZE=(AUTO,128K)

No additional job steps are required by ADACDC when the sort function is invoked. However, depending
on the amount of data to be sorted, the ADACDC job step may require additional sort-related DLBL
statements for work files or for other sort-specific facilities. Refer to the sort documentation for more
details.

When ADACDC invokes sort, it expects by default to transfer control to a load module named ’SORT’. If
the sort module has a different name, the Adabas options module ADAOPD must first be reassembled and
relinked with the correct name of the sort module in parameter SORTPGM. See Modify, Assemble, and

27

Operating System ConsiderationsAdabas Utilities

Link the Adabas Options Table in the section VSE/ESA Systems Installation of the Adabas Installation
documentation for VSE/ESA.

BS2000
The Siemens external sort may be called for large sort operations. The following job cards are required.

/SET-FILE-LINK BLSLIBnn,$.SORTLIB
/SET-FILE-LINK SORTWK1,#SORTWK,BUF-LEN=STD(2),OPEN-MODE=OUTIN
/CREATE-FILE #SORTWK,PUB(SPACE=(&PRIM,&SEC))
/START-PROGRAM,RUN-MODE=ADVANCED,ALT-LIBRARY=YES

where

nn is a value between 00 and 99

#SORTWK was created with the BS2000 command

&PRIM is the number of primary PAM pages to allocate

&SEC is the number of secondary PAM pages to allocate

Note:
The size of the SORTWK1 file depends on the amount of data to be sorted.

28

Adabas UtilitiesOperating System Considerations

The ADACDC User Exit
ADACDC calls a user exit at various points in its processing, providing you with the opportunity to
intercede in that processing.

This chapter covers the following topics:

Installing the Exit

User Exit Interface

User Exit Calls

Installing the Exit

 To install the user exit

1. Compile the user exit you wish ADACDC to use as module name ADACDCUX.

2. Make the module available to the ADACDC utility.

A sample user exit called ADACDCUX is provided on the source dataset. The only function of the sample
is to show you how to add, delete, and update records using the user exit interface.

User Exit Interface
The user exit is called with the following registers set:

R1 user parameter list

R13 standard 72-byte register save area

R14 return address

R15 entry point

The user parameter list contains two pointers:

the first to the ADACDC user exit parameter list mapped by the CDCU DSECT; and

the second to the record area for the user exit where the record being processed is passed as
appropriate.

The action to be performed is indicated in the CDCUFUNC field whereas the action the user exit directs
ADACDC to take on return is indicated using the CDCURESP field.

29

The ADACDC User ExitAdabas Utilities

ADACDC User Exit

The structure of the ADACDC user exit interface control block (CDCU DSECT) is as follows:

Bytes Description

0-3 constant ’CDCU’

4-7 available for use by user exit

8-11 length of record in second parameter

12 function identifier:

X’00’ initialization

X’04’ before pass to SORT input

X’08’ before write to extract file

X’0C’ before write to primary output file

X’10’ termination

13 response code from user exit:

X’00’ normal processing

X’04’ ignore this record

X’08’ record has been updated

X’0C’ insert new record

14-31 reserved for future use

30

Adabas UtilitiesThe ADACDC User Exit

User Exit Calls
The following subsections describe the calls made to the user exit and their purpose.

Initialization Call (CDCUFUNC=CDCUINIT)

During initialization, ADACDC calls the user exit so that it can set up any areas it requires for
future processing. The CDCUUSER field is provided in the CDCU for anchoring a user control
block, if appropriate.

The record area pointer points to data that has no relevance for this call.

Termination Call (CDCUFUNC=CDCUTERM)

During termination, ADACDC calls the user exit so that it can close any open files or clean up
any areas still outstanding after ADACDC execution. For example, if an anchor pointer was set
in CDCUUSER, this area could be freed and the CDCUUSER field set to nulls.

The record area pointer points to data that has no relevance for this call.

SORT Input Call (CDCUFUNC=CDCUINPT)

ADACDC calls the user exit before a record is passed to the SORT routine as input.

The record area pointer points to the compressed data record to be returned prefixed by the
CDCE control block.

The exit may elect to

continue processing normally;

request that the record be ignored;

update the current record; or

add a record, in which case the record pointed to by the record area pointer is passed to the
SORT routine. Thereafter, each time the exit is called, the same record is presented again
until

normal processing continues; or

the record is ignored or updated, at which time processing continues with the next
input record.

Extract Output Call (CDCUFUNC=CDCUWRTE)

ADACDC calls the user exit before a record is written to the extract file during phase 1
processing. This exit point is only called during phase 1 processing and has no relevance in
other cases.

The record area pointer points to compressed the data record to be written prefixed by the
CDCE control block.

31

The ADACDC User ExitAdabas Utilities

The exit may elect to

continue processing normally;

request that the record be ignored;

update the current record; or

add a record, in which case the record pointed to by the record area pointer on return is
written to the extract file. Thereafter, each time the exit is called, the same record is
presented again until

normal processing continues; or

the record is ignored or updated, at which time processing continues with the next
record to be written to the extract file.

Primary Output Call (CDCUFUNC=CDCUWRTO)

ADACDC calls the user exit before a record is written to the primary output file. This exit point
is not called during phase 1 processing and has no relevance in this case.

The record area pointer points to the decompressed data record to be written prefixed by the
CDCO control block.

The exit may elect to

continue processing normally;

request that the record be ignored;

update the current record; or

add a record, in which case the record pointed to by the record area pointer on return is
written to the primary output file. Thereafter, each time the exit is called, the same record is
presented again until

normal processing continues; or

the record is ignored or updated, at which time processing continues with the next
record to be written to the output file.

Updating or Adding Records

Consider the following points when updating or adding records from the exit:

The CDCELEN/CDCERECL fields must correctly reflect the length of data following the
CDCEDATA field for the input and write extract exit points.

The CDCOLEN/CDCORECL fields must correctly reflect the length of data following the
CDCODATA field for the input and write extract exit points.

32

Adabas UtilitiesThe ADACDC User Exit

For the input exit point, records added should have a unique ISN if no ISN update is to be
replaced.

For the input exit point where an ISN is to be replaced, the last occurrence of the ISN
should be updated or the replacement record for the ISN should be added after all occurrences for the ISN
have been seen.

When adding records at the extract or primary output exit points, be aware that if file and
ISN combinations are duplicated, the duplicated information is written to the primary output file which
may confuse processing routines for that file.

33

The ADACDC User ExitAdabas Utilities

Examples
ADACDC RESETTXF,PHASE=BOTH

Ignoring any information on the input transaction file, reads the primary input data and produces primary
output using the input data.

Use this syntax and either remove or dummy the input transaction file (CDCTXI) the first time you run
the utility to create a valid transaction file for input to subsequent runs.

ADACDC PHASE=1
ADACDC FILE=20
ADACDC FILE=40-50

Reads the primary input data and processes data only for files 20 and 40 to 50 inclusive. The latest updates
for each ISN on those files are written to the extract file.

ADACDC PHASE=2
ADACDC FILE=44-47

Reads a previously created extract file and writes all records for files 44, 45, 46, and 47 to the primary
output file.

34

Adabas UtilitiesExamples

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADACDC with BS2000, z/OS or
OS/390, z/VM or VM/ESA, and VSE/ESA and shows examples of each of the job streams.

This chapter covers the following topics:

BS2000

z/OS or OS/390

z/VM or VM/ESA

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Associator DDASSORn disk required to read the
GCB and FDT entries

Protection log DDSIIN/ DDSIINnn tape/ disk sequential log (not
required when
PHASE=2)

Extract file CDCEXT tape/ disk output or input
extract file (not
required when
PHASE=BOTH)

Input transaction file CDCTXI tape/ disk not required when
RESETTXF is
specified or when
PHASE=2

Output transaction file CDCTXO tape/ disk not required when
PHASE=2

Primary output file CDCOUT tape/ disk not required when
PHASE=1

ADARUN parameters SYSDTA/ DDCARD disk/ terminal/ reader Operations

ADACDC parameters SYSDTA/ DDKARTE disk/ terminal/ reader Utilities

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADACDC messages DDDRUCK disk/ terminal/ printer Messages and Codes

35

JCL/JCS Requirements and ExamplesAdabas Utilities

ADACDC JCL Example (BS2000)
 /.ADACDC LOGON
 /REMA ADACDC: CAPTURE DELTA CHANGES
 /REMA
 /ASS-SYSOUT EXAMPLE.ADACDC.SYSOUT
 /MODIFY-TEST-OPTION DUMP=YES
 /DELETE-FILE EXAMPLE.OUTPUT.TRANS.FILE
 /SET-JOB-STEP
 /DELETE-FILE EXAMPLE.OUTPUT.PRIMARY.FILE
 /SET-JOB-STEP
 /CREATE-FILE EXAMPLE.OUTPUT.TRANS.FILE,PUB(SPACE=(48,48))
 /CREATE-FILE EXAMPLE.OUTPUT.PRIMARY.FILE,PUB(SPACE=(48,48))
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDASSOR1,EXAMPLE.DByyyyy.ASSOR1
 /SET-FILE-LINK DDSIIN,EXAMPLE.DByyyyy.PLOG000
 /SET-FILE-LINK DDSIIN01,EXAMPLE.DByyyyy.PLOG001
 /SET-FILE-LINK DDSIIN02,EXAMPLE.DByyyyy.PLOG002
 /SET-FILE-LINK DDSIIN03,EXAMPLE.DByyyyy.PLOG003
 /SET-FILE-LINK CDCTXI,EXAMPLE.INPUT.TRANS.FILE
 /SET-FILE-LINK CDCTXO,EXAMPLE.OUTPUT.TRANS.FILE
 /SET-FILE-LINK CDCOUT,EXAMPLE.OUTPUT.PRIMARY.FILE
 /SET-FILE-LINK DDDRUCK,EXAMPLE.ADACDC.DRUCK
 /SET-FILE-LINK DDPRINT,EXAMPLE.ADACDC.PRINT
 /SET-FILE-LINK DDLIB,ADABAS.Vvrs.MOD
 /START-PROGRAM *M(ADABAS.Vvrs.MOD,ADARUN)
 ADARUN
PROG=ADACDC,MODE=MULTI,IDTNAME=xxxxxxxx,DEVICE=dddd,DBID=yyyyy
 ADACDC
PHASE=BOTH,FILE=1,10,20-30
 /LOGOFF SYS-OUTPUT=DEL
NOSPOOL

z/OS or OS/390

36

Adabas UtilitiesJCL/JCS Requirements and Examples

Dataset DD Name Storage More Information

Associator DDASSORn disk required to read the
GCB and FDT entries

Protection log DDSIIN tape/ disk sequential log (not
required when
PHASE=2)

Input transaction file CDCTXI tape/ disk not required when
RESETTXF is
specified or when
PHASE=2

Output transaction file CDCTXO tape/ disk not required when
PHASE=2

Extract file CDCEXT tape/ disk output or input
extract file (not
required when
PHASE=BOTH)

Primary output file CDCOUT tape/ disk not required when
PHASE=1

ADARUN parameters DDCARD reader Operations

ADACDC parameters DDKARTE reader Utilities

ADARUN messages DDPRINT printer Messages and Codes

ADACDC messages DDDRUCK printer Messages and Codes

ADACDC JCL Example (z/OS or OS/390)

Refer to ADACDC in the MVSJOBS dataset for this example.

//ADACDC JOB
//*
//* ADACDC: CAPTURE DELTA CHANGES
//*
//CDC EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDSIIN DD DSN=EXAMPLE.DByyyyy.PLOG(-3),DISP=SHR <== PLOG TAPE
// DD DSN=EXAMPLE.DByyyyy.PLOG(-2),DISP=SHR <== PLOG TAPE
// DD DSN=EXAMPLE.DByyyyy.PLOG(-1),DISP=SHR <== PLOG TAPE
// DD DSN=EXAMPLE.DByyyyy.PLOG(0),DISP=SHR <== PLOG TAPE
//CDCTXI DD DSN=EXAMPLE.input.trans.file,DISP=SHR
//CDCTXO DD DSN=EXAMPLE.output.trans.file,DISP=OLD
//CDCOUT DD DSN=EXAMPLE.output.primary.file,DISP=OLD
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADACDC,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy

37

JCL/JCS Requirements and ExamplesAdabas Utilities

/*
//DDKARTE DD *
ADACDC PHASE=BOTH,FILE=1,10,20-30
/*

z/VM or VM/ESA

Dataset DD Name Storage More Information

Associator DDASSORn disk required to read the
GCB and FDT entries

Protection log (PLOG) DDSIIN disk/ tape sequential log (not
required when
PHASE=2)

Input transaction file CDCTXI disk/ tape not required when
RESETTXF is
specified or when
PHASE=2

Output transaction file CDCTXO disk/ tape not required when
PHASE=2

Extract file CDCEXT disk/ tape output or input
extract file (not
required when
PHASE=BOTH)

Primary output file CDCOUT disk/ tape not required when
PHASE=1

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADACDC parameters DDKARTE reader Utilities

ADARUN messages DDPRINT printer Messages and Codes

ADACDC messages DDDRUCK printer Messages and Codes

ADACDC JCL Example (z/VM or VM/ESA)
/* */
/* ADACDC JCL Example (VM/ESA) */
/* */
DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
/* */
DATADEF DDSIIN,DSN=ADACDC.PLOG,MODE=A
DATADEF CDCTXI,DSN=ADACDC.INNPUT,MODE=A
DATADEF CDCTXO,DSN=ADACDC.OUTPUT,MODE=A
DATADEF CDCOUT,DSN=ADACDC.PRIMARY,MODE=A
/* */
DATADEF DDPRINT,DSN=ADACDC,DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADACDC.DDDRUCK,MODE=A
/* */
DATADEF DDCARD,DSN=RUNCDC.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADACDC.CONTROL,MODE=A

38

Adabas UtilitiesJCL/JCS Requirements and Examples

EXECOS ADARUN
RCODE = RC
EXIT RCODE

Contents of RUNCDC CONTROL A1:

ADARUN PROG=ADACDC,DEVICE=dddd,DB=yyyyy

Contents of ADACDC CONTROL A1:

ADACDC PHASE=BOTH,FILE=1,10,20-30

VSE/ESA

File Symbolic Name Storage Logical Unit More
Information

Associator ASSORn disk * required to read
the GCB and FDT
entries

Protection log SIIN tape
disk

SYS010
*

sequential log (not
required when
PHASE=2)

Input transaction CDCTXI tape
disk

SYS015
*

not required when
RESETTXF is
specified or when
PHASE=2

Output transaction CDCTXO tape
disk

SYS016
*

not required when
PHASE=2

Extract CDCEXT tape
disk

SYS017
*

output or input
extract file (not
required when
PHASE=BOTH)

Primary output CDCOUT tape
disk

SYS018
*

not required when
PHASE=1

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
*

Operations

ADACDC
parameters

- reader SYSIPT Utilities

ADARUN
messages

- printer SYSLST Messages and
Codes

ADACDC
messages

- printer SYS009 Messages and
Codes

39

JCL/JCS Requirements and ExamplesAdabas Utilities

* Any programmer logical unit may be used.

ADACDC JCS Example (VSE/ESA)

See Procedures for VSE/ESA Examples for descriptions of the VSE/ESA procedures (PROCs).

Refer to member ADACDC.X for this example.

* $$ JOB JNM=ADACDC,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADACDC
* CAPTURE DELTA CHANGES
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS010,TAPE
// PAUSE MOUNT LOAD INPUT FILE ON TAPE cuu
// TLBL SIIN,’EXAMPLE.DByyy.PLOG’
// MTC REW,SYS010
// DLBL CDCTXI,’EXAMPLE.INPUT.TRANS.FILE’,,SD
// EXTENT SYS015
// ASSGN SYS015,DISK,VOL=DISK01,SHR
// DLBL CDCTXO,’EXAMPLE.OUTPUT.TRANS.FILE’,,SD
// EXTENT SYS016,,,,sssss,nnnnn
// ASSGN SYS016,DISK,VOL=DISK02
// DLBL CDCOUT,’EXAMPLE.OUTPUT.TRANS.FILE’,,SD
// EXTENT SYS018,,,,sssss,nnnnn
// ASSGN SYS018,DISK,VOL=DISK04
// EXEC ADARUN,SIZE=ADARUN
ADARUN DBID=yyyyy,DEVICE=dddd,PROG=ADACDC,SVC=xxx,MODE=MULTI
/*
ADACDC PHASE=BOTH,FILE=1,10,20-30
/*
/&
* $$ EOJ

40

Adabas UtilitiesJCL/JCS Requirements and Examples

ADACMP: Compress-Decompress
This chapter covers the following topics:

Functional Overview

Input Data Requirements

Processing

COMPRESS Function Output

DECOMPRESS Function Output

Restart Considerations

User Exit 6

COMPRESS: Create an Adabas File

DECOMPRESS: Decompress File(s)

JCL/JCS Requirements and Examples

41

ADACMP: Compress-DecompressAdabas Utilities

Functional Overview
This chapter covers the following topics:

Overview of the COMPRESS Function

Overview of the DECOMPRESS Function

Overview of the COMPRESS Function
The COMPRESS function edits and compresses data records that are to be loaded into the database:

Input can be data records from

a physical sequential dataset (fixed- or variable-length records) supplied by the user; or

an existing Adabas file (that is, from ADACMP DECOMPRESS or ADAULD UNLOAD).

The logical structure and characteristics of the input data are described with field definition statements:

The FNDEF statement is used to define a field (or group of fields).

The SUBFN and SUPFN statements are used to define a subfield and a superfield, respectively.

The COLDE, HYPDE, PHONDE, SUBDE, and SUPDE statements are used to define a collation
descirptor, hyperdescriptor, phonetic descriptor, subdescriptor and superdescriptor, respectively.

The field definitions provided are used to create the Adabas field definition table (FDT) for the file. It is
also possible to use an existing Adabas FDT instead of providing field definitions (see the FDT parameter
description in the COMPRESS Optional Parameters and Subparameters section).

If the fields in the input record are to be processed in an order that is different from their position in the
input record, and/or if one or more fields are to be skipped, the FORMAT parameter may be used to
indicate the order and location of the input fields.

The ADACMP COMPRESS function processes the input data as follows:

Checks numeric data for validity.

Removes trailing blanks from alphanumeric fields.

Removes leading zeros from numeric fields.

Packs numeric unpacked fields.

42

Adabas UtilitiesFunctional Overview

Fields defined with the fixed (FI) option are not compressed.

A user exit can be used to further edit the input data.

The output of the ADACMP COMPRESS function that is used as input to the ADALOD utility includes
the FDT, compressed records, and on the utility report, the Data Storage space requirement (for the
ADALOC DSSIZE parameter) and the temp and sort dataset size estimates (TEMPSIZE and SORTSIZE).

The ADACMP COMPRESS function report also indicates

the number of records processed;

the number of records rejected; and

the compression rate percentage.

A dataset containing rejected records is also produced.

Overview of the DECOMPRESS Function
The DECOMPRESS function decompresses individual files:

Input data can be data records from existing Adabas files

unloaded using the ADAULD (file unload) utility; or

directly (without separate file unloading).

The INFILE parameter of ADACMP DECOMPRESS is used for Adabas files that are directly
decompressed. As part of the decompression process, the target file is unloaded without FDT information,
which can save time when decompressing larger files.

The output of the ADACMP DECOMPRESS function includes ISNs if the ISN parameter is specified.
The DECOMPRESS output may be used as input to a non-Adabas program or as input to the COMPRESS
function, once any desired changes to the data structure or field definitions for the file are completed.

43

Functional OverviewAdabas Utilities

Input Data Requirements
This chapter covers the following topics:

Input Data Structure

Multiple-Value Field Count

Periodic Group Count

Variable-Length Field Size

Input Data Structure
ADACMP input data must be in a sequential dataset/file. Indexed sequential and VSAM input cannot be
used.

The records may be fixed, variable, or of undefined length. The maximum input record length permitted
depends on the operating system. The maximum compressed record length is restricted by the Data
Storage block size in use and the maximum compressed record length set for the file (see the MAXRECL
parameter, ADALOD utility). The input records can be in either blocked or unblocked format.

The fields in each record must be structured according to the field definition statements provided (or the
specified FDT if an existing Adabas FDT is being used). If a user exit routine is used, the structure
following user exit processing must agree with the field definitions. Any trailing information contained in
an input record for which a corresponding field definition statement is not present is ignored and is not
included in the ADACMP output.

Datasets that contain no records are also permitted.

The input dataset can be omitted if the parameter NUMREC=0 is supplied.

Multiple-Value Field Count
The number of values in each record’s multiple-value field must either be specified in the field definition
statement, or the value count must precede the values in each input record. When specified in the field
definition statement, the minimum multiple-value count is 1, and the maximum is 191. When the
minimum count is specified in the input record, zero (0) can be specified to indicate a multiple-value field
containing no values.

If the number of values is the same for each record, this number may be specified with the field definition
statement for the multiple-value field. In this case, the count byte in the input record must be omitted. If
the record definitions are from an existing FDT or if the input data is from an earlier DECOMPRESS
operation, the data already contains the length values; the count must not be specified in the field
definition statements.

The count you specify may be changed by ADACMP if the NU option is specified for the field.
ADACMP suppresses null values, and changes the count field accordingly. This is true whether you
specify the value count before each series of values, or in the field definition statement. Refer to the
section Field/Group Definition/Multiple-Value Field (MU).

44

Adabas UtilitiesInput Data Requirements

Example 1: Multiple-Value Field Count with Varying Number of Occurrences

Field Definition:

ADACMP FNDEF=’01,MF,5,A,MU,NU’

Each record contains a different number of values for MF, and the count comes before each series of
occurrences.

 Before ADACMP After ADACMP

Input Record 1
(3 values)

MF count=3
AAAA
BBBB
CCCC

MF count=3
AAAA
BBBB
CCCC

Input Record 2
(2 values)

MF count=2
AAAA
BBBB

MF count=2
AAAA
BBBB

Input Record 3
(3 values)

MF count=3
AAAA
bbbb
CCCC

MF count=2
AAAA
CCCC

Input Record 4
(no values)

MF count=0 MF count=0

Input Record 5
(1 value)

MF count=1
bbbb

MF count=0

Example 2: Multiple-Value Field Count with Same Number of Occurrences

Field Definition:

ADACMP FNDEF=’01,MF,4,A,MU(3),NU’

Each record contains 3 values for MF, as specified in the field definition statement.

45

Input Data RequirementsAdabas Utilities

 Before ADACMP After ADACMP

Input Record 1 AAAA
BBBB
CCCC

MF count=3
AAAA
BBBB
CCCC

Input Record 2 AAAA
BBBB
bbbb

MF count=2
AAAA
BBBB

Input Record 3 AAAA
bbbb
CCCC

MF count=2
AAAA
CCCC

Input Record 4 bbbb
bbbb
bbbb

MF count=0

Periodic Group Count
Each periodic group must specify a count of field iterations (occurrences) in the record. The count is
specified either within the field definition statement for all records, or as a one-byte binary value before
each occurrence group in every record. If the count is in the field definition statement, the count byte must
be omitted from the input records. When specified in the field definition statement, the minimum count
allowed is 1, and the maximum number of periodic group occurrences allowed is 99 (or 191, if the
MAXPE191 parameter is specified). When the minimum count is specified in the record, the value can be
zero (0) for a periodic group with no occurrences.

The occurrence count provided may be modified by ADACMP if all the fields contained in the periodic
group are defined with the NU option. If all the fields within a given occurrence contain null values and
there are no following occurrences that contain non-null values, the occurrence will be suppressed and the
periodic group occurrence count will be adjusted accordingly.

Example 1: Periodic Group Count with Varying Number of Occurrences

Field Definitions:

ADACMP COMPRESS MAXPE191,...
ADACMP FNDEF=’01,GA,PE’
ADACMP FNDEF=’02,A1,4,A,NU’
ADACMP FNDEF=’02,A2,4,A,NU’

The input records contain a variable number of occurrences for GA (up to 191 occurrences are permitted).
The count of occurrences comes before each occurrence group in the input records.

46

Adabas UtilitiesInput Data Requirements

 Before ADACMP After ADACMP

Input Record 1 GA count=2 GA count=2

 GA (1st occurrence)
A1=AAAA
A2=BBBB

A1=AAAA
A2=BBBB

 GA (2nd occurrence)
A1=CCCC
A2=DDDD

A1=CCCC
A2=DDDD

Input Record 2 GA count=1 GA count=0

 GA (1st occurrence)
A1=bbbb
A2=bbbb

suppressed
suppressed

Input Record 3 GA count=3 GA count=3

 GA (1st occurrence)
A1=AAAA
A2=bbbb

A1=AAAA
A2=suppressed

 GA (2nd occurrence)
A1=BBBB
A2=bbbb

A1=BBBB
A2=suppressed

 GA (3rd occurrence)
A1=CCCC
A2=bbbb

A1=CCCC
A2=suppressed

Input Record 4 GA count=0 GA count=0

Example 2: Periodic Group Count with Same Number of Occurrences

Field Definitions:

ADACMP FNDEF=’01,GA,PE(3)’
ADACMP FNDEF=’02,A1,4,A,NU’
ADACMP FNDEF=’02,A2,4,A,NU’

All input records contain 3 occurrences for GA, as specified in the field definition statement.

47

Input Data RequirementsAdabas Utilities

 Before ADACMP After ADACMP

Input Record 1 GA count=3

 GA (1st occurrence)
A1=AAAA
A2=bbbb

A1=AAAA
A2 suppressed

 GA (2nd occurrence)
A1=BBBB
A2=bbbb

A1=BBBB
A2 suppressed

 GA (3rd occurrence)
A1=CCCC
A2=bbbb

A1=CCCC
A2 suppressed

Input Record 2 GA count=2 (see note)

 GA (1st occurrence)
A1=bbbb
A2=bbbb

A1=suppressed
A2=suppressed

 GA (2nd occurrence)
A1=BBBB
A2=bbbb

A1=BBBB
A2=suppressed

 GA (3rd occurrence)
A1=bbbb
A2=bbbb

A1=suppressed
A2=suppressed

Input Record 3 All occurrences contain
null values

GA count=0
All occurrences are suppressed

Note:
The first occurrence is included in the count since occurrences follow that contain non-null values. The
third occurrence is not included in the count since there are no non-null values in the occurrences that
follow.

Example 3: Adding a a Field to a PE-Group

In the PE named AW, the field AY should be added:

Old FDT New FDT

01 AA,8,A,DE,UQ 01 AA,8,A,DE,UQ

01 AW,PE 01 AW,PE

02 AX,8,U,NU 02 AX,8,U,NU

02 AT,8,U,NU 02 AT,8,U,NU

01,AZ,3,A,DE,MU,NU 02 AY,8,U,NU

 01,AZ,3,A,DE,MU,NU

48

Adabas UtilitiesInput Data Requirements

Note:
All of the currently existing fields in the PE must be specified.

1. Determine the maximum occurrence of the PE (for example, a result of 2).

2. Decompress the file with the format parameter.

3. Decompress INFILE=xx,FORMAT=’AA,AX1-2,AT1-2,AZ’

4. Compress again:

ADACMP COMPRESS FILE=32
ADACMP FORMAT=’AA,AX1-2,AT1-2,AZ’
ADACMP FNDEF=’01,AA,8,A,DE,UQ’
ADACMP FNDEF=’01,AW,PE(2)’
ADACMP FNDEF=’02,AX,8,U,NU’
ADACMP FNDEF=’02,AT,8,U,NU’
ADACMP FNDEF=’02,AY,8,U,NU’
ADACMP FNDEF=’01,AZ,3,A,DE,MU,NU’

Variable-Length Field Size
Each value of a variable-length field (length parameter not specified in the field definition) must be
preceded by a one-byte binary count indicating the value length (including the length byte itself).

Example of Variable-Length Field Size

Field Definitions:

ADACMP FNDEF=’01,AA,5,A,DE’
ADACMP FNDEF=’01,VF,0,A’
ADACMP FNDEF=’01,VR,0,A’

Input record:

49

Input Data RequirementsAdabas Utilities

Processing
This chapter covers the following topics:

Data Verification

Data Compression

Data Verification
ADACMP checks each field defined with format P (packed) or U (unpacked) to ensure that the field value
is numeric and in the correct format. If a value is empty, the null characters must correspond to the format
specified for the field (see Representing SQL Null Values in the COMPRESS Essential Data Definition
Syntax section.

Alphanumeric (A) blanks (hex ’40’)

Binary (B) binary zeros (hex ’00’)

Fixed (F) binary zeros (hex ’00’)

Floating Point (G) binary zeros (hex ’00’)

Packed (P) decimal packed zeros with sign (hex ’00’ followed by ’0F’, ’0C’, or ’0D’ in
the rightmost, low-order byte)

Unpacked (U) decimal unpacked zeros with sign (hex ’F0’ followed by ’C0’ or ’D0’ in the
rightmost, low-order byte)

Any record that contains invalid data is written to the ADACMP error (DD/FEHL) dataset and is not
written to the compressed dataset.

Data Compression
The value for each field is compressed (unless the FI option is specified) as follows:

Trailing blanks are removed for fields defined with A format.

Leading zeros are removed for numeric fields (fields defined with B, F, P or U format).

If the field is defined with U (unpacked) format, the value is converted to packed (P) format.

Trailing zeros in floating-point (G format) fields are removed.

If the field is defined with the NU option and the value is a null value, a one-byte indicator is stored.
Hexadecimal ’C1’ indicates one empty field follows, ’C2’ indicates that two empty fields follow, and
so on, up to a maximum of 63 before the indicator byte is repeated. For SQL null value (NC option
field) compression, see Representing SQL Null Values in the COMPRESS Essential Data Definition
Syntax section.

50

Adabas UtilitiesProcessing

Empty fields located at the end of the record are not stored, and therefore not compressed.

Example of Data Compression

ADACMP Compression

The graphic shows how the following field definitions and corresponding values would be processed by
ADACMP:

FNDEF=’01,ID,4,B,DE’
FNDEF=’01,BD,6,U,DE,NU’
FNDEF=’01,SA,5,P’
FNDEF=’01,DI,2,P,NU’
FNDEF=’01,FN,9,A,NU’
FNDEF=’01,LN,10,A,NU’
FNDEF=’01,SE,1,A,FI’
FNDEF=’01,HO,7,A,NU’

51

ProcessingAdabas Utilities

COMPRESS Function Output
This chapter covers the following topics:

Compressed Data Records

Rejected Data Records

ADACMP Report

Compressed Data Records
The data records that ADACMP has processed, edited, and compressed are written out together with the
file definition information to a sequential dataset with the "variable blocked" record format. This dataset
may be used as input to the ADALOD utility. The output of several ADACMP executions may also be
used as input to ADALOD.

If the output dataset contains no records (no records provided on the input dataset or all records rejected),
the output may still be used as input to the ADALOD utility. In this case, you must ensure that the amount
of Associator space allocated to the file is sufficient since an accurate estimate cannot be made by the
ADALOD utility without a representative sample of input record values (see the ADALOD utility for
additional information).

Rejected Data Records
Any records rejected during ADACMP editing are written to the DD/FEHL error dataset. The records are
output in variable blocked format and have the following structure:

Bytes Description

0-1 Record length in binary format

2-3 Set to zero (X’0000’)

4-5 Field name as stored in FDT

6-7 Offset from beginning of input record to error value

8-11 Input record sequence number (the first input record is "1")

12 PE index (if applicable)

13 Adabas response code (in hexadecimal)*

14-15 (reserved; set to zeros)

16 DD/EBAND input record

* Additionally the following response codes may occur:

X’E7’(231) Input record too short (COMPRESS)

X’E8’(232) Output record length error (COMPRESS)

52

Adabas UtilitiesCOMPRESS Function Output

Only the first incorrect field within a record is detected and referenced. If there are other errors, they are
not detected until subsequent runs are made.

Example of Rejected Data Records

Field Definitions:

ADACMP FNDEF=’01,AA,3,A,DE’
ADACMP FNDEF=’01,AB,2,U’
ADACMP FNDEF=’01,AC,3,P,NU’

Input record values (shown in hexadecimal): ISN = 3849 (decimal)

Rejected record as output by ADACMP (shown in hexadecimal):

The error dataset may be printed using the standard print utility provided with the operating system in use
at the user installation. OS/390 or z/OS users may use the IEBPTPCH utility. VSE/ESA users may use the
DITTO program. RDW (record descriptor word, bytes 1-4) may or may not be present, depending on the
print utility used.

ADACMP Report
ADACMP calculates the approximate amount of space (in both blocks and cylinders) required for Data
Storage for the compressed records. This information is printed as a matrix which contains the required
space for the different device types requested by the DEVICE parameter for various Data Storage padding
factors between 5 and 30 percent.

The following is an example of ADACMP report output:

PARAMETERS:

ADACMP COMPRESS NUMREC=1000
ADACMP FNDEF=’01,AA,8,B,DE’
ADACMP FNDEF=’01,BA,6,A,NU’
ADACMP FNDEF=’01,BB,8,P,NU’
ADACMP FNDEF=’01,AD,1,A,FI’
ADACMP SUBDE=’CA=BA(1,3)’

COMPRESS PROCESSING STATISTICS:

NUMBER OF RECORDS READ 1,000
NUMBER OF INCORRECT RECORDS 0
NUMBER OF COMPRESSED RECORDS 1,000

RAW DATA 24,000 BYTES
COMPRESSED DATA 16,656 BYTES

53

COMPRESS Function OutputAdabas Utilities

COMPRESSION RATE 31.9 %
LARGEST COMPRESSED RECORD 20 BYTES

DATASTORAGE SPACE REQUIREMENTS:

I DEVICE I PADDING I BLOCKSIZE I NUMBER OF I
I I FACTOR I BYTES I BLOCKS CYLS I
I----------I----------I------------I------------------------I
I 3380 I I 4,820 I I
I I 5% I 4,578 I 4 1 I
I I 10% I 4,337 I 4 1 I
I I 15% I 4,096 I 5 1 I
I I 20% I 3,856 I 5 1 I
I I 25% I 3,615 I 5 1 I
I I 30% I 3,373 I 5 1 I
I I I I I
I----------I----------I------------I------------------------I

TEMP SPACE ESTIMATION:

I DEVICE I BLOCKSIZE I NUMBER OF I
I I BYTES I BLOCKS CYLS I
I----------I------------I------------------------I
I 3380 I 7,476 I 5 1 I
I----------I------------I------------------------I

THE LARGEST DESCRIPTOR IS AA, IT WILL OCCUPY 1 TEMP BLOCKS

SORT SPACE ESTIMATION:

I DEVICE I BLOCKSIZE I LWP I NR OF I
I I (BYTES) I (BYTES) I BLOCKS CYLS I

I 3380 I 7476 I 139264 (MINIMUM) I 2 1 I
I I I 1048576 (DEFAULT) I 2 1 I
I I I 139264 (OPTIMUM) I 2 1 I
I--------I-----------I--------------------I-----------------I

The compression rate is computed based on the real amount of data used as input to the compression
routine. Fields skipped by a format element "nX" (used to fill a field with blanks) are not counted.

54

Adabas UtilitiesCOMPRESS Function Output

DECOMPRESS Function Output
The ADACMP DECOMPRESS function decompresses each record and then stores the record in a
sequential dataset. The records are output in variable-length, blocked format. Each decompressed record is
output either with or without the ISN option according to the format shown below:

length xx [ISN] data

where

length is a two-byte binary length of the data, + 8 (or +4 if the ISN parameter is not
specified).

xx is a two-byte field containing binary zeros.

ISN is a four-byte binary ISN of the record.

data is a decompressed data record.

The fields of the data record are provided in the order in which they appeared in the FDT when the file
was unloaded. The standard length and format are in effect for each field.

If a field value exceeds the standard length, the value will be truncated to the standard length if the field is
alphanumeric and the TRUNCATE parameter was specified; otherwise, ADACMP writes the record to
the DD/FEHL error dataset (see the following section).

Any count bytes for multiple-value fields or periodic groups contained in the record are included in the
decompressed data output. ADACMP generates a count of 1 if the MU field or PE group is empty. This
makes it possible to use the output of the DECOMPRESS operation as the input to a subsequent
COMPRESS operation.

Rejected Data Records
Data records rejected by the DECOMPRESS operation are written to the DD/FEHL error dataset.
ADACMP rejects a record whenever a compressed field’s size is greater than the default length held in the
FDT, unless the TRUNCATE parameter is specified.

The records are output in variable blocked format, and have the following structure:

55

DECOMPRESS Function OutputAdabas Utilities

Bytes Description

0-1 Record length in binary format (see note 2 below)

2-3 Set to zero; that is, X’0000’ (see note 2 below)

4-5 Field name as stored in FDT

6-7 Offset from beginning of input record to error value

8-11 ISN in binary format

12 PE index (if applicable)

13 Adabas response code (in hexadecimal)*

14-15 (reserved; set to zeros)

16 DD/EBAND input record

* Additionally the following response codes may occur:

X’E7’(231) Input record too short (DECOMPRESS)

X’E8’(232) Output record length error (DECOMPRESS)

Notes:

1. Only the first incorrect field within a record is detected and referenced in DD/FEHL. Other errors
within the record are not detected or recorded.

2. Bytes 0-1 and 2-3 are not visible when the output record is viewed from an editor. However, the
bytes are provided when the record is accessed from an application program.

56

Adabas UtilitiesDECOMPRESS Function Output

Restart Considerations
ADACMP has no restart capability. An interrupted ADACMP execution must be reexecuted from the
beginning.

57

Restart ConsiderationsAdabas Utilities

User Exit 6
A user-written routine called user exit 6 can be used for editing during ADACMP COMPRESS
processing. The routine may be written in Assembler or COBOL. It must be assembled or compiled and
then linked into the Adabas load library (or any library concatenated with it).

User exit 6 is invoked by specifying:

ADARUN UEX6=program

where program is the routine name in the load library.

See the Adabas DBA Reference documentation, section User Exits for specific information about the user
exit 6 structure and parameters.

58

Adabas UtilitiesUser Exit 6

COMPRESS: Create an Adabas File

This chapter covers the following topics:

Optional Parameters and Subparameters

Essential Data Definition Syntax

Optional Field Definition Statements

ADACMP COMPRESS Examples

Optional Parameters and Subparameters
CODE: Cipher Code

If the data is to be loaded into the database in ciphered form, the cipher code must be specified
with this parameter. See the Adabas Security documentation for additional information on the
use of ciphering.

59

COMPRESS: Create an Adabas FileAdabas Utilities

DEVICE: Device Type

ADACMP calculates and displays a report of this run’s space requirements for each specified
device type. If DEVICE= is not specified, the default is the ADARUN device type.

FACODE: Alphanumeric Field Encoding

FACODE must be specified if you want to define UES file encoding for alphanumeric fields in
the file. The alphanumeric encoding must belong to the EBCDIC encoding family; that is, the
space character is X’40’.

FDT: Use Existing Adabas Field Definition Table

An existing Adabas FDT is to be used. The FDT may be that of an existing file or a file that has
been deleted with the KEEPFDT option of the ADADBS utility.

The input data must be consistent with the structure as defined in the specified FDT, unless the
FORMAT parameter is used. When the FDT defines multiple-value fields or periodic groups,
length values must be defined or already included in the FDT; refer to the sections
Multiple-Value Field Count and Periodic Group Field Count.

If the FDT parameter is used, any field definitions specified will be ignored.

FILE: File Number

If the FDT contains a hyperdescriptor, this parameter must be specified. The specified file
number becomes input for the related hyperexit. For more information about hyperexits, refer to
the Adabas DBA Referencedocumentation.

User exit 6 is always supplied with this file number. If FILE is not specified, a value of zero is
assumed.

FORMAT: Input Record Format Definition

Use this parameter to provide a format definition that indicates the location, format, and length
of fields in the input record. The format provided must follow the rules for format buffer entries
for update commands as described in the Adabas Command Reference documentation.

Conversion rules are those described for Adabas update commands in the Adabas Command
Reference documentation. For conversion of SQL null (NC option) field values, see NC: SQL
Null Value Option. If a field is omitted in the FORMAT parameter, that field is assigned no
value.

If the FORMAT parameter is omitted, the input record is processed in the order of the field
definition statements provided or, if the FDT parameter is used, according to an existing Adabas
field definition table.

FUWCODE: Wide-Character Field Default User Encoding

FUWCODE defines the default user encoding for wide-character fields for the file when loaded
in the database. If this parameter is omitted, the encoding is taken from the UWCODE definition
of the database.

60

Adabas UtilitiesCOMPRESS: Create an Adabas File

FWCODE: Wide-Character Field Encoding

If fields with format W (wide-character) exist in the compressed file, you must specify
FWCODE to define the file encoding for them.

FWCODE also determines the maximum byte length of the wide-character field.

LRECL: Input Record Length (VSE Only)

If RECFM=F or RECFM=FB is specified, this parameter must also be specified to provide the
record length (in bytes) of the input data; otherwise, do not specify LRECL.

For z/OS or OS/390, the record length is taken from the input dataset label or DD statement.

For BS2000, the record length is taken from the catalog entry or /FILE statement.

MAXPE191: Enable Periodic Group Count Up to 191

Periodic groups can have up to 191 occurrences. The limit of 191 is allowed by the nucleus
without further specification; however, to compress records with more than 99 periodic group
occurrences, the parameter MAXPE191 must be specified.

Note:
This option is not compatible with Adabas 5.2 releases; therefore, backward conversion to
Adabas 5.2 is not possible once records with more than 99 PE group occurrences have been
loaded.

MINISN: Starting ISN

For automatic ISN assignment, MINISN defines the lowest ISN to be used. If MINISN is not
specified, the default is 1. If USERISN is specified, MINISN cannot be specified.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

NUMREC: Number of Records to Be Processed

Specifies the number of input records to be processed. If this parameter is omitted, all input
records contained on the input dataset are processed.

Software AG recommends using this parameter for the initial ADACMP execution if a large
number of records are contained on the input dataset. This avoids unneeded processing of all
records when a field definition error or invalid input data results in a large number of rejected
records. This parameter is also useful for creating small files for test purposes.

Setting NUMREC to zero (0) prevents the input dataset from being opened.

61

COMPRESS: Create an Adabas FileAdabas Utilities

PASSWORD: Password for FDT File

If the FDT parameter is specified and the file is password-protected, this parameter must be used
to provide a valid password for that file.

RECFM: Input Record Format (VSE Only)

You must specify the input record format with this parameter as follows:

F fixed length, unblocked (requires that you also specify the
LRECL parameter)

FB fixed length, blocked (requires that you also specify the
LRECL parameter)

V variable length, unblocked

VB variable length, blocked

U undefined

Under z/OS or OS/390, the record format is taken from the input dataset label or DD statement.

Under BS2000, the record format is taken from the catalog entry or FILE statement.

UACODE: User Encoding for Input Alphanumeric Fields

UACODE defines the user encoding of the sequential input of alphanumeric fields. If you
specify UACODE, you must also specify FACODE.

UARC: Architecture for Input Uncompressed User Data

The UARC parameter specifies the architecture of the sequential input of the uncompressed user
data. The "userdata-architecture-key" is an integer which is of the sum of the following
numbers:

byte order b=0 high-order byte first

 b=1 low-order byte first

encoding family e=0 ASCII encoding family

 e=2 EBCDIC encoding family (default)

floating-point
format

f=0 IBM370 floating-point format

 f=4 VAX floating-point format

 f=8 IEEE floating-point format

The default is ARC = b + e + f = 2; that is, high-order byte first; EBCDIC encoding family; and
IBM370 floating-point format (b=0; e=2; f=0).

62

Adabas UtilitiesCOMPRESS: Create an Adabas File

User data from an Intel386 PC provides the example: b=1; e=0; f=8; or ARC=9.

USERISN: User ISN Assignment

The ISN for each record is to be provided by the user. If this parameter is omitted, the ISN for
each record is assigned by Adabas.

If USERISN is specified, the user must provide the ISN to be assigned to each record as a
four-byte binary number immediately preceding each data record. If the MINISN parameter is
specified, USERISN cannot be specified.

The format for fixed or undefined length input records with user-defined ISNs is:

userisn / data

The format for variable-length input records with user-defined ISNs is

length / xx / userisn / data

where

length is a two-byte binary physical record length (length of record
data, plus 8 bytes).

xx is a two-byte field containing binary zeros.

userisn is a four-byte binary ISN to be assigned to the record.

data is input record data.

ISNs may be assigned in any order, must be unique (for the file), and must not exceed the
MAXISN setting specified for the file (see the ADALOD utility).

ADACMP does not check for unique ISNs or for ISNs that exceed MAXISN. These checks are
performed by the ADALOD utility.

UWCODE: User Encoding for Input Wide-Character Fields

UWCODE defines the user encoding of the sequential input of wide-character fields. If you
specify UWCODE, you must also specify FWCODE.

For user input, all wide-character fields are encoded in the same code page. It is not possible to
select different encodings for different fields in the same ADACMP run.

Essential Data Definition Syntax
The field definitions provided as input to ADACMP are used to

provide the length and format of each field contained in the input record. This enables ADACMP to
determine the correct field length and format during editing and compression;

create the field definition table (FDT) for the file. This table is used by Adabas during the execution
of Adabas commands to determine the logical structure and characteristics of any given field (or
group) in the file.

63

COMPRESS: Create an Adabas FileAdabas Utilities

The following syntax must be followed when entering field definitions. A minimum of one and a
maximum of 926 definitions may be specified.

Field FNDEF=’level , name[, length , format][{, option }...]’

Group FNDEF=’level , name[,PE [(n)]]’

Collation
descriptor

COLDE=’number , name[,UQ [,XI]]= parentfield ’

Hyperdescriptor HYPDE=’number , name, length , format [{, option }...]={ parentfield },...’

Phonetic
descriptor

PHONDE=’name(field)’

Subdescriptor SUBDE=’name[,UQ [,XI]]= parentfield (begin , end)’

Subfield SUBFN=’name=parentfield(begin , end)’

Superdescriptor SUPDE=’name[,UQ [,XI]]= parentfield (begin , end)},...’

Superfield SUPFN=’name={ parentfield (begin , end)} ,...’

User comments may be entered to the right of each definition. At least one blank must be present between
a definition and any user comments.

FNDEF: Field/Group Definition

This parameter is used to specify an Adabas field (data) definition. The syntax used in
constructing field definition entries is

Level number and name are required. Any number of spaces may be inserted between definition
entries.

level

The level number is a one- or two-digit number in the range 01-07 (the leading zero is optional)
used in conjunction with field grouping. Fields assigned a level number of 02 or greater are
considered to be a part of the immediately preceding group which has been assigned a lower
level number.

The definition of a group enables reference to a series of fields (may also be only 1 field) by
using the group name. This provides a convenient and efficient method of referencing a series of
consecutive fields.

Level numbers 01-06 may be used to define a group. A group may consist of other groups.
When assigning the level numbers for nested groups, no level numbers may be skipped.

64

Adabas UtilitiesCOMPRESS: Create an Adabas File

FNDEF=’01,GA’ group

FNDEF=’02,A1,...’ elementary or multiple-value field

FNDEF=’02,A2,...’ elementary or multiple-value field

FNDEF=’01,GB’ group

FNDEF=’02,B1,...’ elementary or multiple-value field

FNDEF=’02,GC’ group (nested)

FNDEF=’03,C1,...’ elementary or multiple-value field

FNDEF=’03,C2,...’ elementary or multiple-value field

Fields A1 and A2 are in group GA. Field B1 and group GC (consisting of fields C1 and C2) are
in group GB.

name

The name to be assigned to the field (or group).

Names must be unique within a file. The name must be two characters long: the first character
must be alphabetic; the second character can be either alphabetic or numeric. No special
characters are permitted.

The values E0-E9 are reserved as edit masks and may not be used.

Valid Names Invalid Names

AA A (not two characters)

B4 E3 (edit mask)

S3 F* (special character)

WM 6M (first character not alphabetic)

length

The length of the field (expressed in bytes). The length value is used to

indicate to ADACMP the length of the field as it appears in each input record; and

define the standard (default) length to be used by Adabas during command processing.

The standard length specified is entered in the FDT and is used when the field is read/updated
unless the user specifies a length override.

The maximum field lengths that may be specified depend on the "format" value:

65

COMPRESS: Create an Adabas FileAdabas Utilities

Format Maximum Length

Alphanumeric (A) 253 bytes

Binary (B) 126 bytes

Fixed Point (F) 4 bytes (always exactly 2 or 4 bytes)

Floating Point (G) 8 bytes (always exactly 4 or 8 bytes)

Packed Decimal (P) 15 bytes

Unpacked Decimal
(U)

29 bytes

Wide-character (W) 253 bytes*

* Depending on the FWCODE attribute value, the maximum byte length of the W field may be
less than 253. For example, if the default value of FWCODE is used (that is, Unicode), the
maximum length is 252 (2 bytes per character).

Standard length may not be specified with a group name.

Standard length does not limit the size of any given field value unless the FI option is used - see
FI: Fixed Storage . A read or update command may override the standard field length, up to the
maximum length permitted for that format.

If standard length is zero for a field, the field is assumed to be a variable-length field.
Variable-length fields have no standard (default) length. A length override for fixed-point (F)
fields can specify a length of two or four bytes only; for floating-point (G) fields, the override
can specify four or eight bytes only.

If a variable-length field is referenced without a length override during an Adabas command, the
value in the field will be returned preceded by a one-byte binary length field (including the
length byte itself). This length value must be specified when the field is updated, and also in the
input records that are to be processed by ADACMP. If the field is defined with the long alpha
(LA) option, the value is preceded by a two-byte binary length field (including the two length
bytes).

format

The standard format of the field (expressed as a one-character code):

A Alphanumeric (left-justified)

B Binary (right-justified, unsigned/positive)

F Fixed point (right-justified, signed, two’s complement notation)

G Floating point (normalized form, signed)

P Packed decimal (right-justified, signed)

U Unpacked decimal (right-justified, signed)

W Wide character (left-justified)

66

Adabas UtilitiesCOMPRESS: Create an Adabas File

The standard format is used to

indicate to ADACMP the format of the field as it appears in each input record; and

define the standard (default) format to be used by Adabas during command processing. The
standard format specified is entered in the FDT and is used when the field is read/updated
unless the user specifies a format override.

Standard format must be specified for a field. It may not be specified with a group name. When
the group is read (written), the fields within the group are always returned (must be provided)
according to the standard format of each individual field. The format specified determines the
type of compression to be performed on the field.

A fixed-point field is either two or four bytes long. A positive value is in normal form, and a
negative value in two’s complement form.

A field defined with floating-point format may be either four bytes (single precision) or eight
bytes (double precision) long. Conversion of a value of a field defined as floating point to
another format is supported.

If a binary field is to be defined as a descriptor, and the field may contain both positive and
negative numbers, "F" format should be used instead of "B" format because "B" format assumes
that all values are unsigned (positive).

Like an alphanumeric field, a wide-character field may be a standard length in bytes defined in
the FDT, or variable length. Any non-variable format override for a wide-character field must be
compatible with the user encoding; for example, a user encoding in Unicode requires an even
length. Format conversion from numbers (U, P, B, F, G) to wide-character format is not
allowed.

Data Definition Field/Group Options

Options are specified by the two-character codes. These codes may be specified in any order,
separated by a comma.

67

COMPRESS: Create an Adabas FileAdabas Utilities

Code Option

DE (Descriptor) Field is to be a descriptor (key).

FI (Fixed Storage) Field is to have a fixed storage length; values are
stored without an internal length byte, are not
compressed, and cannot be longer than the defined
field length.

LA (Long Alpha
Option)

This A or W format variable-length field may
contain a value up to 16,381 bytes long.

MU (Multiple-Value
Field)

Field may contain up to 191 values in a single
record.

NC (SQL Null Value
Option)

Field may contain a null value that satisfies the
SQL interpretation of a field having no value; that
is, the field’s value is not defined (not counted).

NU (Null Value
Suppression)

Null values occurring in the field are to be
suppressed.

NV (No Conversion) This A or W format field is to be processed in the
record buffer without being converted.

PE (Periodic Group) Group field is to be followed by a periodic group
definition that may occur up to 191 times in a given
record.

NN (SQL Not Null
Option)

Field defined with NC option must always have a
value defined; it cannot contain an SQL null (not
null).

UQ (Unique Descriptor) Field is to be a unique descriptor; that is, for each
record in the file, the descriptor must have a
different value.

XI (Exclude Instance
Number)

For this field, the index (occurrence) number is
excluded from the UQ option set for a PE.

DE: Descriptor

DE indicates that the field is to be a descriptor (key). Entries will be made in the Associator
inverted list for the field, enabling the field to be used in a search expression, as a sort key in a
FIND command, to control logical sequential reading, or as the basis for file coupling.

The descriptor option should be used judiciously, particularly if the file is large and the field that
is being considered as a descriptor is updated frequently.

Although the definition of a descriptor field is independent of the record structure, note that if a
descriptor field is not ordered first in a record and logically falls past the end of the physical
record, the inverted list entry for that record is not generated for performance reasons. To
generate the inverted list entry in this case, it is necessary to unload short, decompress, and
reload the file; or use an application program to reorder the field first for each record of the file.

68

Adabas UtilitiesCOMPRESS: Create an Adabas File

FI: Fixed Storage

FI indicates that the field is to have a fixed storage length. Values in the field are stored without
an internal length byte, are not compressed, and cannot be longer than the defined field length.

The FI option is recommended for fields with a length of one or two bytes that have a low
probability of containing a null value (personnel number, gender, etc.) and for fields containing values that
cannot be compressed.

The FI option is not recommended for multiple-value fields, or for fields within a periodic
group. Any null values for such fields are not suppressed (or compressed), which can waste disk storage
space and increase processing time.

The FI option cannot be specified for

U-format fields;

NC, NN, or NU option fields;

variable-length fields defined with a length of zero (0) in the FNDEF statement;

a descriptor within a periodic (PE) group.

A field defined with the FI option cannot be updated with a value that exceeds the standard
length of the field.

Example of FI usage:

 Definition User Data Internal Representation

Without FI
Option

FNDEF=’01,AA,3,P’ 33104C
00003C

0433104F (4 bytes) 023F
(2 bytes)

With FI
Option

FNDEF=’01,AA,3,P,FI’ 33104C
00003C

33104F (3 bytes) 00003F
(3 bytes)

LA: Long Alpha Option

The LA (long alphanumeric) option can be specified for variable-length alphanumeric and wide
format fields; i.e., A or W format fields having a length of zero in the field definition (FNDEF).
With the LA option, such a field can contain a value up to 16,381 bytes long.

An alpha or wide field with the LA option is compressed in the same way as an alpha or wide
field without the option. The maximum length that a field with LA option can actually have is
restricted by the block size where the compressed record is stored.

When a field with LA option is updated or read, its value is either specified or returned in the
record buffer, preceded by a two-byte length value that is inclusive (field length, plus two).

A field with LA option

can also have the NU, NC/NN, or MU option;

69

COMPRESS: Create an Adabas FileAdabas Utilities

can be a member of a PE group;

cannot have the FI option;

cannot be a descriptor field;

cannot be a parent of a sub-/superfield, sub-/superdescriptor, hyperdescriptor, or phonetic
descriptor; and

cannot be specified in the search buffer, or response code 61 occurs.

For more information, see the Adabas Command Reference Documentaton section Specifying a
Field with LA (Long Alpha) Option in the section 2 discussion of the record buffer.

Example of LA usage:

 Definition User Data Internal Representation

Without LA
Option

FNDEF=’01,BA,0,A’ X’06’,C’HELLO’
--

X’06C8C5D3D3D6’
(1-byte length) --

With LA Option FNDEF=’01,BA,0,A,LA’ X’0007’,C’HELLO’
X’07D2’,C’ ...
(2000 data bytes) ...’

X’06C8C5D3D3D6’
(1-byte length) X’87D2
...
(2000 data bytes) ... ’

MU: Multiple-Value Field

MU indicates that the field may contain more than one value in a single record. The actual
number of values present in each record may vary from 0 to 191, although at least one value
(even if null) must be present in each record input to ADACMP.

The values are stored according to the other options specified for the field. The first value is
preceded by a count field that indicates the number of values currently present for the field. The
number of values that are stored is equal to the number of values provided in the ADACMP
input record, plus any values added during later updating of the field, less any values suppressed
(this applies only if the field is defined with the NU option).

If the number of values contained in each record input to ADACMP is constant, the number can
be specified in the MU definition statement in the form MU(n), where "n" equals the number of
values present in each input record. For example:

FNDEF=’01,AA,5,A,MU(3)’

indicates that three values of the multiple-value field AA are present in each input record.
Specifying a value of zero (0) indicates that no values are present for the multiple-value field in
the input record.

If the number of values is not constant for all input records, a one-byte binary count field must
precede the first value in each input record to indicate the number of values present in that
record (see also the section Input Data Requirements).

70

Adabas UtilitiesCOMPRESS: Create an Adabas File

If the FDT is provided (see the FDT parameter description in the COMPRESS Optional
Parameters and Subparameters section), the field count must be contained as a one-byte binary
value in each input record.

If the input records were created using the DECOMPRESS function, all required count fields
are already contained in the input record. In this case, the count must not be specified in the field
definition statement.

All values provided during input or updating will be compressed (unless the FI option has also
been specified). Care should be taken when using the FI and MU options together since a large amount of
disk storage may be wasted if a large number of compressible values are present.

If the NU option is specified with the MU option, null values are both logically and physically
suppressed. The positional relationship of all values (including null values) is maintained in MU
occurrences, unless the occurrences are defined with the NU option. If a large number of null values are
present in an MU field group, the NU option can reduce the disk storage requirements for the field but
should not be used if the relative positions of the values must be maintained.

The NC (or NC/NN) option cannot be specified for an MU field.

Example of MU usage with NU:

FNDEF=’01,AA,5,A,MU,NU’

The original content where "L" is the length of the "value" is

after file loading:

3 L value A L value B L value C

count AA1 AA2 AA3

after update of value B to null value:

2 L value A L value C

count AA1 AA2

Example of MU usage without NU:

FNDEF=’01,AA,5,A,MU’

The original content where "L" is the length of the "value" is

after file loading:

3 L value A L value B L value C

count AA1 AA2 AA3

after update of value B to null value:

71

COMPRESS: Create an Adabas FileAdabas Utilities

3 L value A L value B L value C

count AA1 AA2 AA3

NU: Null Value Suppression

NU suppresses null values occurring in the field.

Normal compression (NU or FI not specified) represents a null value with two bytes (the first
for the value length, and the second for the value itself, in this case a null). Null value
suppression represents an empty field with a one-byte "empty field" indicator. The null value
itself is not stored.

A series of consecutive fields containing null values and specifying the NU option is represented
by a one-byte "empty field" (binary 11nnnnnn) indicator, where "nnnnnn" is the number of the
fields’ successive bytes containing null values, up to a total of 63. For this reason, fields defined
with the NU option should be grouped together whenever possible.

If the NU option is specified for a descriptor, any null values for the descriptor are not stored in
the inverted list. Therefore, a find command in which this descriptor is used and for which a null
value is used as the search value will always result in no records selected, even though there
may be records in Data Storage that contain a null value for the descriptor. If a descriptor
defined with the NU option is used to control a logical sequence in a read logical sequence
(L3/L6) command, those records that contain a null value for the descriptor will not be read.

Descriptors to be used as a basis for file coupling and for which a large number of null values
exist should be specified with the NU option to reduce the total size of the coupling lists.

The NU option cannot be specified for fields defined with the combined NC/NN options or with
the FI option.

Example of NU usage:

 Definition User
Data

Internal
Representation

Normal
Compression

FNDEF=’01,AA,2,B’ 0000 0200 (2 bytes)

With FI Option FNDEF=’01,AA,2,B,FI’ 0000 0000 (2 bytes)

With NU Option FNDEF=’01,AA,2,B,NU’ 0000 C1 (1 byte)*

* C1 indicates 1 empty field.

NV: No Conversion

The "do not convert" option for alphanumeric (A) or wide-character (W) format fields specifies
that the field is to be processed in the record buffer without being converted.

Fields with the NV option are not converted to or from the user: the field has the characteristics
of the file encoding; that is, the default blank

72

Adabas UtilitiesCOMPRESS: Create an Adabas File

for A fields, is always the EBCDIC blank (X’40’); and

for W fields, is always the blank in the file encoding for W format.

The NV option is used for fields containing data that cannot be converted meaningfully or
should not be converted because the application expects the data exactly as it is stored.

The field length for NV fields is byte-swapped if the user architecture is byte-swapped.

For NV fields, "A" format cannot be converted to "W" format and vice versa.

PE: Periodic Group

PE indicates that a periodic group is to be defined. A periodic group

may comprise one or more fields. A maximum of 254 elementary fields may be specified.
Descriptors and/or multiple value fields and other groups may be specified, but a periodic
group may not contain another periodic group.

may occur from 0 to 99 (or 191, if the ADACMP MAXPE191 parameter is specified) times
within a given record, although at least one occurrence (even if it contains all null values)
must be present in each ADACMP input record.

must be defined at the 01 level. All fields in the periodic group must immediately follow
and must be defined at level 02 or higher (in increments of 1 to a maximum of 7). The next
01 level definition indicates the end of the current periodic group.

may only be specified with a group name. Length and format parameters may not be
specified with the group name.

Following are two examples of period group definition:

Periodic Group "GA":

FNDEF=’01,GA,PE’
FNDEF=’02,A1,6,A,NU’
FNDEF=’02,A2,2,B,NU’
FNDEF=’02,A3,4,P,NU’

Periodic Group "GB":

FNDEF=’01,GB,PE(3)’
FNDEF=’02,B1,4,A,DE,NU’
FNDEF=’02,B2,5,A,MU(2),NU’
FNDEF=’02,B3’
FNDEF=’03,B4,20,A,NU’
FNDEF=’03,B5,7,U,NU’

UQ: Unique Descriptor

UQ indicates that the field is to be a unique descriptor. A unique descriptor must contain a
different value for each record in the file. In FNDEF statements, the UQ option can only be
specified if the DE option is also specified. The UQ option can also be used in SUBDE,
SUPDE, and HYPDE statements.

73

COMPRESS: Create an Adabas FileAdabas Utilities

The UQ option must be specified if the field is to be used as an ADAM descriptor (see the
ADAMER utility).

ADACMP does not check for unique values; this is done by the ADALOD utility, or by the
ADAINV utility when executing the INVERT function. If a non-unique value is detected during file
loading, ADALOD terminates with an error message.

Because ADAINV and ADALOD must execute separately for each file in an expanded file
chain, they cannot check for uniqueness across the chain.

However, Adabas does checks the value of unique descriptors across an expanded file chain. If
the value being added (N1/N2) or updated (A1) is not unique across all files within the chain, response
code 198 is returned.

XI: Exclude Instance Number

By default, the occurrence number of fields within periodic groups (PE) defined as unique
descriptors (UQ) is included as part of the descriptor value. This means that the same field value can occur
in different periodic group occurrences in different records.

The XI option is used to exclude the occurrence number from the descriptor value for the
purpose of determining the the value’s uniqueness. If the XI option is set, any field value can occur at
most once over all occurrences of the PE field in all records.

Representing SQL Null Values

Adabas includes two data definition options, NC and NN, to provide SQL-compatible null
representation for Software AG’s mainframe Adabas SQL Server (ESQ) and other Structured
Query Language (SQL) database query languages.

The NC and NN options cannot be applied to fields defined

with Adabas null suppression (NU)

with fixed-point data type (FI)

with multiple-values (MU)

within a periodic group (PE)

as group fields

In addition, the NN option can only be specified for a field that specifies the NC option.

A parent field for sub-/superfields or sub-/superdescriptors can specify the NC option. However,
parent fields for a single superfield or descriptor cannot use a mix of NU and NC fields. If any
parent field is NC, no other parent field can be an NU field, and vice versa.

Examples:

A correct ADACMP COMPRESS FNDEF statement for defining the field AA and assigning the
NC and NN option:

74

Adabas UtilitiesCOMPRESS: Create an Adabas File

ADACMP FNDEF=’01,AA,4,A,NN,NC,DE’

Incorrect uses of the NC/NN option that would result in an ADACMP utility ERROR-127:

Incorrect Example Reason

ADACMP
FNDEF=’01,AA,4,A,NC,NU’

NU and NC options are not compatible

ADACMP
FNDEF=’01,AB,4,A,NC,FI’

NC and FI options are not compatible

ADACMP FNDEF=’01,PG,PE’
ADACMP FNDEF=’02,P1,4,A,NC’

NC option within a PE group is not
allowed

NC: SQL Null Value Option

Without the NC (not counted) option, a null value is either zero or blank depending on the
field’s format.

With the NC option, zeros or blanks specified in the record buffer are interpreted according to
the "null indicator" value: either as true zeros or blanks (that is, as "significant" nulls) or as
undefined values (that is, as true SQL or "insignificant" nulls).

If the field defined with the NC option has no value specified in the record buffer, the field
value is always treated as an SQL null.

When interpreted as a true SQL null, the null value satisfies the SQL interpretation of a field
having no value. This means that no field value has been entered; that is, the field’s value is not
defined.

The null indicator value is thus responsible for the internal Adabas representation of the null.
For more information, see the following section Null Indicator Value and the section Search
Buffer Syntax in the Adabas Command Reference documentation.

The following rules apply when compressing or decompressing records containing NC fields:

1. If the FORMAT parameter is specified, ADACMP behaves in the same way the nucleus
does for update-type commands. See the Adabas Command Reference documentation.

2. If the FORMAT parameter is not specified

for compression

Only the value of the NC field is placed in the input record; the two null value
indicator bytes must be omitted. The value is compressed as if the null value indicator
bytes were set to zero. It is not possible to assign a null value to an NC field using this
method.

Example:

75

COMPRESS: Create an Adabas FileAdabas Utilities

Field Definition Table
(FDT) definition

FNDEF=’01,AA,4,A,NC’

Input record contents: MIKE

for decompression

If the value of an NC field is not significant, the record is written to DDFEHL (or
FEHL) with response code 55.

If the value of an NC field is significant, the value is decompressed as usual. There are
no null indicator bytes.

Example:

Field Definition Table
(FDT) definition

FNDEF=’01,AA,4,A,NC’

Output record contents MIKE

Null Indicator Value

The null indicator value is always two bytes long and has fixed-point format, regardless of the
data format. It is specified in the record buffer when a field value is added or changed; it is
returned in the record buffer when the field value is read.

For an update (Ax) or add (Nx) command, the null indicator value must be set in the record
buffer position that corresponds to the field’s designation in the format buffer. The setting must
be one of the following:

Hex Value Indicates that . . .

FFFF the field’s value is set to "undefined", an insignificant null; the
differences between no value, binary zeros, or blanks for the
field in the record buffer are ignored; all are interpreted
equally as "no value".

0000 no value, binary zeros, or blanks for the field in the record
buffer are interpreted as significant null values.

For a read (Lx) or find with read (Sx with format buffer entry) command, your program must
examine the null indicator value (if any) returned in the record buffer position corresponding to
the field’s position in the format buffer. The null indicator value is one of the following values,
indicating the meaning of the actual value that the selected field contains:

76

Adabas UtilitiesCOMPRESS: Create an Adabas File

Hex Value Indicates that . . .

FFFF a zero or blank in the field is not significant.

0000 a zero or blank in the field is a significant value; that is, a true
zero or blank.

xxxx the field is truncated. The null indicator value contains the
length (xxxx) of the entire value as stored in the database
record.

Example:

The field definition of a null represented in a two-byte Adabas binary field AA defined with the
NC option is

01,AA,2,B,NC

For a . . . Null Indicator
Value
(Record Buffer)

Data Adabas Internal
Representation

non-zero value 0 (binary value is
significant)

0005 0205

blank 0 (binary null is
significant)

0000 (zero) 0200

null FFFF (binary null
is not significant)

(not
relevant)

C1

NN: SQL Not Null Option

The NN ("not null" or "null value not allowed") option may only be specified when the NC
option is also specified for a data field. The NN option indicates that an NC field must always
have a value (including zero or blank) defined; it cannot contain "no value".

The NN option ensures that the field will not be left undefined when a record is added or
updated; a significant value must always be set in the field. Otherwise, Adabas returns a
response code 52.

The following example shows how an insignificant null would be handled in a two-byte Adabas
alphanumeric field AA when defined with and without the NN option:

Example:

An insignificant null handled in a two-byte Adabas alphanumeric field AA when defined with
and without the NN option is as following:

77

COMPRESS: Create an Adabas FileAdabas Utilities

Option Field
Definition

Null Indicator
Value

Adabas Internal
Representation

With NN 01,AA,2,A,NC,NN FFFF (insignificant
null)

none; response code 52
occurs

Without
NN

01,AA,2,A,NC FFFF (insignificant
null)

C1

Optional Field Definition Statements
COLDE: Collation Descriptor Definition

The collation descriptor option enables descriptor values to be sorted (collated) based on a
user-supplied algorithm.

The values are based on algorithms coded in special collation descriptor user exits (CDX01
through CDX08). Each collation descriptor must be assigned to a user exit, and a single user exit
may handle multiple collation descriptors.

Example:

The Collation Exit functions are called on the following events:

INITIALIZE function

nucleus session start

utility initialization when collation exits have been defined (ADARUN parameters)

ENCODE function

update/insert/delete of the parent’s value (Nucleus)

Search specifying the collation descriptor with the search value (Nucleus)

compression of a record (ADACMP)

DECODE function

Read Index (L9) by Collation DE, only if the exit supports the DECODE function
(Nucleus)

Input parameters supplied to the user exit are described in the Adabas DBA Reference
documentation, section User Exits. They include

78

Adabas UtilitiesCOMPRESS: Create an Adabas File

address and length of input string

address and size of output area

address of fullword for the returned output string length

The user exit sets the length of the returned output string.

See the ADARUN parameter CDXnn in the Adabas Operations documentation for more
information.

Notes:

1. A collation descriptor can be defined for an alphanumeric (A) or wide alphanumeric (W)
parent field. The format, length, and options (except UQ and XI) are taken from the parent
field defined in the COLDE parameter. The unique descriptor (UQ) and exclude index (XI)
options are separately defined for the collation descriptor itself.

2. A search using a collation descriptor value is performed in the same manner as for standard
descriptors.

3. The user is responsible for creating correct collation descriptor values. There is no standard
way to check the values of a collation descriptor for completeness against the Data Storage.
The maintenance utility ADAICK only checks the structure of an index, not the contents.
The user must set the rules for each value definition and check the value for correctness.

4. If a file contains more than one collation descriptor, the assigned exits are called in the
alphabetical order of the collation descriptor names.

Collation Descriptor Syntax

A collation descriptor is defined using the following syntax:

where

number is the user exit number to be assigned to the collation descriptor.
The Adabas nucleus uses this number to determine the collation
descriptor user exit to be called.

name is the name to be used for the collation descriptor. The naming
conventions for collation descriptors are identical to those for
Adabas field names.

UQ indicates that the unique descriptor option is to be assigned to the
collation descriptor.

XI indicates that the uniqueness of the collation descriptor is to be
determined with the index (occurrence) number excluded.

parent-field is the name of an elementary A or W field. A collation descriptor
can have one parent field. The field name and address is passed to
the user exit.

79

COMPRESS: Create an Adabas FileAdabas Utilities

MU, NU, and PE options are taken from the parent field and are implicitly set in the collation
descriptor.

If a parent field with the NU option is specified, no entries are made in the collation descriptor’s
inverted list for those records containing a null value for the field. This is true regardless of the presence
or absence of values for other collation descriptor elements.

If a parent field is not initialized and logically falls past the end of the physical record, the
inverted list entry for that record is not generated, for performance reasons. To generate the inverted list
entry in this case, it is necessary to unload short, decompress, and reload the file; or use an application
program to initialize the field for each record of the file.

Collation Descriptor Definition Example:

Field definition:

FNDEF=’01,LN,20,A,DE,NU’ Last-Name

Collation descriptor definition:

COLDE=’1,Y2=LN’

Collation descriptor user exit 1 (CDX01) is assigned to this collation descriptor, and the
name is Y2.

The collation descriptor length and format are taken from the parentfield: 20 and
alphanumeric, respectively. The collation descriptor is a multiple value (MU) field with
null suppression (NU).

The values for the collation descriptor are to be derived from the parentfield LN.

HYPDE: Hyperdescriptor Definition

The hyperdescriptor option enables descriptor values to be generated, based on a user-supplied
algorithm.

The values are based on algorithms coded in special hyperdescriptor user exits (HEX01 through
HEX31). Each hyperdescriptor must be assigned to a user exit, and a single user exit may handle
multiple hyperdescriptors.

Example:

The exit is called whenever a hyperdescriptor value is to be generated by the Adabas nucleus or
by the ADACMP utility.

80

Adabas UtilitiesCOMPRESS: Create an Adabas File

Input parameters supplied to the user exit are

hyperdescriptor name

file number

addresses of fields taken from the Data Storage record, together with field name and PE
index (if applicable). These addresses point to the compressed values of the fields. The
names of these fields must be defined using the HYPDE parameter of ADACMP or
ADAINV.

The user exit must return the descriptor value(s) (DVT) in compressed format. No value, or one
or more values may be returned depending on the options (PE, MU) assigned to the
hyperdescriptor.

The original ISN assigned to the input value(s) may be changed.

See the Adabas DBA Reference documentation, section User Exits, for more information about
the hyperdescriptor user exit.

Notes:

1. The format, the length, and the options of a hyperdescriptor are user-defined. They are not
taken from the parent fields defined in the HYPDE parameter.

2. A search using a hyperdescriptor value is performed in the same manner as for standard
descriptors.

3. The user is responsible for creating correct hyperdescriptor values. There is no standard
way to check the values of a hyperdescriptor for completeness against the Data Storage.
The maintenance utility ADAICK only checks the structure of an index, not the contents.
The user must set the rules for each value definition and check the value for correctness.

4. If a hyperdescriptor is defined as packed or unpacked format, Adabas checks the returned
values for validity. The sign half-byte for packed values can contain A, C, E, F (positive) or
B, D (negative). Adabas converts the sign to F or D.

5. If a file contains more than one hyperdescriptor, the assigned exits are called in the
alphabetical order of the hyperdescriptor names.

Hyperdescriptor Syntax

A hyperdescriptor is defined using the following syntax:

where

81

COMPRESS: Create an Adabas FileAdabas Utilities

number is the user exit number to be assigned to the hyperdescriptor. The
Adabas nucleus uses this number to determine the hyperdescriptor
user exit to be called.

name is the name to be used for the hyperdescriptor. The naming
conventions for hyperdescriptors are identical to those for Adabas
field names.

length is the default length of the hyperdescriptor.

format is the format of the hyperdescriptor:

Format Maximum Length

Alphanumeric (A) 253 bytes

Binary (B) 126 bytes

Fixed Point (F) 4 bytes (always 4 bytes)

Floating Point (G) 8 bytes (always 4 or 8 bytes)

Packed Decimal (P) 15 bytes

Unpacked Decimal
(U)

29 bytes

Note:
Wide-character (W) format is not valid for a hyperdescriptor.

option is an option to be assigned to the hyperdescriptor. The
following options may be used together with a hyperdescriptor:

MU multiple-value field

NU null-value suppression

PE field of a periodic group

UQ unique descriptor

parent-field is the name of an elementary field. A hyperdescriptor can have
1-20 parent fields. The field names and addresses are passed to the
user exit.

Note:
A hyperdescriptor parent-field may not have W (wide-character)
format.

If a parent field with the NU option is specified, no entries are made in the hyperdescriptor’s
inverted list for those records containing a null value for the field. This is true regardless of the
presence or absence of values for other hyperdescriptor elements.

82

Adabas UtilitiesCOMPRESS: Create an Adabas File

If a parent field is not initialized and logically falls past the end of the physical record, the
inverted list entry for that record is not generated, for performance reasons. To generate the inverted list
entry in this case, it is necessary to unload short, decompress, and reload the file; or use an application
program to initialize the field for each record of the file.

Hyperdescriptor Definition Example:

Field definitions:

FNDEF=’01,LN,20,A,DE,NU’ Last-Name
FNDEF=’01,FN,20,A,MU,NU’ First-Name
FNDEF=’01,ID,4,B,NU’ Identification
FNDEF=’01,AG,3,U’ Age
FNDEF=’01,AD,PE’ Address
FNDEF=’02,CI,20,A,NU’ City
FNDEF=’02,ST,20,A,NU’ Street
FNDEF=’01,FA,PE’ Relatives
FNDEF=’02,NR,20,A,NU’ R-Last-Name
FNDEF=’02,FR,20,A,MU,NU’ R-First-Name

Hyperdescriptor definition:

HYPDE=’2,HN,60,A,MU,NU=LN,FN,FR’

Hyperdescriptor user exit 2 is assigned to this hyperdescriptor, and the name is HN.

The hyperdescriptor length is 60, the format is alphanumeric, and is a multiple-value (MU)
field with null suppression (NU).

The values for the hyperdescriptor are to be derived from fields LN, FN and FR.

The ADACMP HYPDE= statement may be continued on another line, as shown in the
following example. To do so, first specify a minus (-) after a whole argument and before the
closing apostrophe on the first line. Then enter the remaining positional arguments, beginning
after the statement name (ADACMP) enclosed in apostrophes on the following line:

ADACMP HYPDE=’1,HY,20,A=AA,BB,CC,-’
ADACMP ’DD,EE,FF’

PHONDE: Phonetic Descriptor

The use of a phonetic descriptor in a FIND command results in the return of all the records that
contain similar phonetic values. The phonetic value of a descriptor is based on the first 20 bytes
of the field value. Only alphabetic values are considered; numeric values, special characters, and
blanks are ignored. Lower- and uppercase alphanumeric characters are internally identical.

A phonetic descriptor is defined using the following syntax:

where

83

COMPRESS: Create an Adabas FileAdabas Utilities

name is the name to be used for the phonetic descriptor. The naming
conventions for phonetic descriptors are identical to those for
Adabas field names.

field is the name of the field to be phoneticized.

The field must be

an elementary or a multiple value field; and

defined with alphanumeric format.

The field can be a descriptor.

The field cannot be

a subdescriptor, superdescriptor, or hyperdescriptor;

contained within a periodic group;

used as the source field for more than one phonetic descriptor.

format W (wide-character)

If the field is defined with the NU option, no entries are made in the phonetic descriptor’s
inverted list for those records that contain a null value (within the byte positions specified) for
the field. The format is the same as for the field.

If the field is not initialized and logically falls past the end of the physical record, the inverted
list entry for that record is not generated for performance reasons. To generate the inverted list
entry in this case, it is necessary to unload short, decompress, and reload the file; or use an
application program to initialize the field for each record of the file.

Phonetic Descriptor Definition Example:

Field definition:

FNDEF=’01,AA,20,A,DE,NU’

Phonetic definition:

PHONDE=’PA(AA)’

SUBDE: Subdescriptor Definition

A subdescriptor is a descriptor created from a portion of an elementary field. The elementary
field may or may not be a descriptor itself. A subdescriptor can also be used as a subfield; that
is, it can be specified in the format buffer to control the record’ss output format.

A subdescriptor definition is entered using the following syntax:

84

Adabas UtilitiesCOMPRESS: Create an Adabas File

where

name is the subdescriptor name. The naming conventions for a
subdescriptor are identical to those for Adabas field names.

UQ indicates that the subdescriptor is to be defined as unique (see the
definition of option UQ).

XI indicates that the uniqueness of the subdescriptor is to be
determined with the index (occurrence) number excluded.

parent-field is the name of the field from which the subdescriptor is to be
derived.

begin is the relative byte position within the parent field where the
subdescriptor definition is to begin.

end is the relative byte position within the parent field where the
subdescriptor definition is to end.

* Counting is from left to right beginning with 1 for alphanumeric or wide-character fields, and
from right to left beginning with 1 for numeric or binary fields. If the parent field is defined with P format,
the sign of the resulting subdescriptor value is taken from the 4 low-order bits of the low-order byte (that
is, byte 1).

A parent field of a subdescriptor can be

a descriptor

an elementary field

a multiple-value field (but not a particular occurrence of a multiple-value field)

contained within a periodic group (but not a particular occurrence of a periodic group)

A parent field or a subdescriptor cannot be

a sub/super field, subdescriptor, superdescriptor, or phonetic descriptor

format G (floating point)

If the parent field is defined with the NU option, no entries are made in the subdescriptor’s
inverted list for those records that contain a null value (within the byte positions specified) for
the field. The format is the same as for the parent field.

If a parent field is not initialized and logically falls past the end of the physical record, the
inverted list entry for that record is not generated for performance reasons. To generate the
inverted list entry in this case, it is necessary to unload short, decompress, and reload the file; or
use an application program to initialize the field for each record of the file.

85

COMPRESS: Create an Adabas FileAdabas Utilities

Subdescriptor Definition Example 1:

Parent-field definition:

FNDEF=’01,AR,10,A,NU’

Subdescriptor definition:

SUBDE=’SB=AR(1,5)’

The values for subdescriptor SB are derived from the first five bytes (counting from left to right)
of all the values for the parent field AR. All values are shown in character format.

AR Values SB Values

DAVENPORT DAVEN

FORD FORD

WILSON WILSO

Subdescriptor Definition Example 2:

Parent-field definition:

FNDEF=’02,PF,6,P’

Subdescriptor definition:

SUBDE=’PS=PF(4,6)’

The values for subdescriptor PS are derived from bytes 4 to 6 (counting from right to left) of all
the values for the parent field PF. All values are shown in hexadecimal.

PF Values PS Values

00243182655F 02431F

00000000186F 0F (see note)

78426281448D 0784262D

Note:
If the NU option had been specified for parent field PF, no value would have been created for
PS for this value.

Subdescriptor Definition Example 3:

Source-field definition:

FNDEF=’02,PF,6,P’

Subdescriptor definition:

86

Adabas UtilitiesCOMPRESS: Create an Adabas File

SUBDE=’PT=PF(1,3)’

The values for PT are derived from bytes 1 to 3 (counting from right to left) of all the values for
PF. All values are shown in hexadecimal.

PF Values PT Values

00243182655F 82655F

00000000186F 186F

78426281448D 81448D

SUBFN: Subfield Definition

A subfield

is a portion of an elementary field that can be read using an Adabas read command;

cannot be updated;

can be changed to a subdescriptor using ADAINV INVERT SUBDE=... .

A subfield definition is entered using the following syntax:

where

name is the subfield name. The naming conventions for a
subfield are identical to those for Adabas field names.

parent-field is the name of the field from which the subfield is to be
derived.

begin* is the relative byte position within the parent field where
the subfield definition is to begin.

end* is the relative byte position within the parent field where
the subfield definition is to end.

* Counting is from left to right beginning with 1 for alphanumeric or wide-character fields, and
from right to left beginning with 1 for numeric or binary fields. If the parent field is defined with
"P" format, the sign of the resulting subfield value is taken from the 4 low-order bits of the
low-order byte (that is, byte 1).

The parent field for a subfield can be

a multiple-value field

within a periodic group

87

COMPRESS: Create an Adabas FileAdabas Utilities

The parent field for a subfield cannot have format "G" (floating point).

Subfield Definition Example:

SUBFN=’X1=AA(1,2)’

SUPDE: Superdescriptor Definition

A superdescriptor is a descriptor created from several fields, portions of fields, or a combination
thereof.

Each source field (or portion of a field) used to define a superdescriptor is called a parent . From
2 to 20 parent fields or field portions may be used to define a superdiscriptor.

A superdescriptor may be defined as a unique descriptor.

A superdescriptor can be used as a superfield; that is, it can be specified in the format buffer to
determine the record’s output format.

A superdescriptor description has the following syntax:

where

name is the superdescriptor name. The naming conventions for
superdescriptors are identical to those for Adabas names.

UQ indicates that the superdescriptor is to be defined as unique (see the
definition option UQ).

XI indicates that the uniqueness of the superdescriptor is to be
determined with the index (occurrence) number excluded.

parent-field is the name of a parent field from which a superdescriptor element
is to be derived; up to 20 parent fields can be specified.

begin* is the relative byte position within the field where the
superdescriptor element begins.

end* is the relative byte position within the field where the
superdescriptor element is to end.

* Counting is from left to right beginning with 1 for fields defined with alphanumeric or
wide-character format, and from right to left beginning with 1 for fields defined with numeric or
binary format. For any parent field except those defined as "FI", any begin and end values
within the range permitted for the parent field’s data type are valid.

A parent field of a superdescriptor can be

an elementary field; or

88

Adabas UtilitiesCOMPRESS: Create an Adabas File

a maximum of one multiple-value field (but not a specific multiple-value field value);

within a periodic group (but not a specific occurrence);

a descriptor.

A parent field of a superdescriptor cannot be

a super-, sub-, or phonetic descriptor;

format G (floating point);

an NC option field if another parent field is an NU option field;

a long alphanumeric (LA) field.

If a parent field with the NU option is specified, no entries are made in the superdescriptor’s
inverted list for those records containing a null value for the field. This is true regardless of the
presence or absence of values for other superdescriptor elements.

If a parent field is not initialized and logically falls past the end of the physical record, the
inverted list entry for that record is not generated for performance reasons. To generate the
inverted list entry in this case, it is necessary to unload short, decompress, and reload the file; or
use an application program to initialize the field for each record of the file.

The total length of any superdescriptor value may not exceed 253 bytes (alphanumeric) or 126
bytes (binary).

The superdescriptor format is B (binary) if no element of the superdescriptor is derived from an
A (alphanumeric) or W (wide-character) parent field; if any element of the superdescriptor is
derived from an A or W parent field, the format of the superdescriptor reflects the last occurring
A or W element; for example, if the last occurring A or W element is W, the format of the
superdescriptor is W.

All binary format superdescriptor values are treated as unsigned numbers.

The ADACMP SUPDE= statement may be continued on another line by specifying a minus (-)
after an argument just before the closing apostrophe on the first line. Then enter the remaining
positional arguments enclosed in apostrophes on the following line beginning after the statement
name (ADACMP). For example:

ADACMP SUPDE=’SI=AA(10,20),BB(20,21),-’
ADACMP ’CC(12,13),DD(14,15)’

Superdescriptor Definition Example 1:

Field definitions:

89

COMPRESS: Create an Adabas FileAdabas Utilities

FNDEF=’01,LN,20,A,DE,NU’ Last-Name
FNDEF=’01,FN,20,A,MU,NU’ First-Name
FNDEF=’01,ID,4,B,NU’ Identification
FNDEF=’01,AG,3,U’ Age
FNDEF=’01,AD,PE’ Address
FNDEF=’02,CI,20,A,NU’ City
FNDEF=’02,ST,20,A,NU’ Street
FNDEF=’01,FA,PE’ Relatives
FNDEF=’02,NR,20,A,NU’ R-Last-Name
FNDEF=’02,FR,20,A,MU,NU’ R-First-Name

Superdescriptor definition:

SUPDE=’SD=LN(1,4),ID(3,4),AG(2,3)’

Superdescriptor SD is to be created. The values for the superdescriptor are to be derived from
bytes 1 to 4 of field LN (counting from left to right), bytes 3 to 4 of field ID (counting from
right to left), and bytes 2 to 3 of field AG (counting from right to left). All values are shown in
hexadecimal.

LN ID AG SD

C6D3C5D4C9D5C7 00862143 F0F4F3 C6D3C5D40086F0F4

D4D6D9D9C9E2 02461866 F0F3F8 D4D6D9D90246F0F3

D7C1D9D2C5D9 00000000 F0F3F6 No value is stored (because of ID)

404040404040 00432144 F0F0F0 No value is stored (because of LN)

C1C1C1C1C1C1 00000144 F1F1F1 C1C1C1C10000F1F1

C1C1C1C1C1C1 00860000 F0F0F0 C1C1C1C10086F0F0

The format for SD is alphanumeric since at least one element is derived from a parent field
defined with alphanumeric format.

Superdescriptor Definition Example 2:

Field definitions:

FNDEF=’01,LN,20,A,DE,NU’ Last-Name
FNDEF=’01,FN,20,A,MU,NU’ First-Name
FNDEF=’01,ID,4,B,NU’ Identification
FNDEF=’01,AG,3,U’ Age
FNDEF=’01,AD,PE’ Address
FNDEF=’02,CI,20,A,NU’ City
FNDEF=’02,ST,20,A,NU’ Street
FNDEF=’01,FA,PE’ Relatives
FNDEF=’02,NR,20,A,NU’ R-Last-Name
FNDEF=’02,FR,20,A,MU,NU’ R-First-Name

Superdescriptor definition:

SUPDE=’SY=LN(1,4),FN(1,1)’

Superdescriptor SY is to be created from fields LN and FN (which is a multiple-value field). All
values are shown in character format.

90

Adabas UtilitiesCOMPRESS: Create an Adabas File

LN FN SY

FLEMING DAVID FLEMD

MORRIS RONALD RON MORRR MORRR

WILSON JOHN SONNY WILSJ WILSS

The format of SY is alphanumeric since at least one element is derived from a parent field
defined with alphanumeric format.

Superdescriptor Definition Example 3:

Field definitions:

FNDEF=’01,PN,6,U,NU’
FNDEF=’01,NA,20,A,DE,NU’
FNDEF=’01,DP,1,B,FI ’

Superdescriptor definition:

SUPDE=’SZ=PN(3,6),DP(1,1)’

Superdescriptor SZ is to be created. The values for the superdescriptor are to be derived from
bytes 3 to 6 of field PN (counting from right to left), and byte 1 of field DP. All values are
shown in hexadecimal.

PN DP SZ

F0F2F4F6F7F2 04 F0F2F4F604

F8F4F0F3F9F8 00 F8F4F0F300

F0F0F0F0F1F1 06 F0F0F0F006

F0F0F0F0F0F1 00 F0F0F0F000

F0F0F0F0F0F0 00 no value is stored (because of
PN)

F0F0F0F0F0F0 01 no value is stored (because of
PN)

The format of SZ is binary since no element is derived from a parent field defined with
alphanumeric format. A null value is not stored for the last two values shown because the
superdescriptor option is NU (from the PN field) and the PN field value contains unpacked
zeros (X’F0’), the null value.

Superdescriptor Definition Example 4:

Field definitions:

FNDEF=’01,PF,4,P,NU’
FNDEF=’01,PN,2,P,NU’

91

COMPRESS: Create an Adabas FileAdabas Utilities

Superdescriptor definition:

SUPDE=’SP=PF(3,4),PN(1,2)’

Superdescriptor SP is to be created. The values for the superdescriptor are to be derived from
bytes 3 to 4 of field PF (counting from right to left), and bytes 1 to 2 of field PN (counting from
right to left). All values are shown in hexadecimal.

PF PN SP

0002463F 003F 0002003F

0000045F 043F 0000043F

0032464F 000F No value is stored (because of
PN)

0038000F 044F 0038044F

The format of SP is binary since no element is derived from a parent field defined with
alphanumeric format.

Superdescriptor Definition Example 5:

Field definitions:

FNDEF=’01,AD,PE’
FNDEF=’02,CI,4,A,NU’
FNDEF=’02,ST,5,A,NU’

Superdescriptor definition:

SUPDE=’XY=CI(1,4),ST(1,5)’

Superdescriptor XY is to be created from fields CI and ST. All values are shown in character
format.

CI ST XY

(1st occ.) BALT (1st occ.) MAIN BALTMAIN

(2nd occ.) CHI (2nd occ.) SPRUCE CHI SPRUC

(3rd occ.) WASH (3rd occ.) 11TH WASH11TH

(4th occ.) DENV (4th occ.) bbbbb No value stored (because of ST)

The format of XY is alphanumeric since at least 1 element is derived from a parent field which
is defined with alphanumeric format.

SUPFN: Superfield Definition

A superfield is a field composed of several fields, portions of fields, or combinations thereof,
which may be read using an Adabas read command. A superfield cannot

92

Adabas UtilitiesCOMPRESS: Create an Adabas File

be updated;

comprise fields defined with the NC option if another parent field has the NU option;

be used as a descriptor.

A superfield can be changed to a superdescriptor using the ADAINV utility function INVERT
SUPDE=....

A superfield is defined using the following syntax:

where

name superfield name. The naming conventions for superfields are
identical to those for Adabas names.

parent-field name of the field from which a superfield element is to be derived.

begin* relative byte position within the field where the superfield element
is to begin.

end* relative byte position within the field where the superfield element
is to end.

* Counting is from left to right beginning with 1 for fields defined with alphanumeric or
wide-character format, and from right to left beginning with 1 for fields defined with numeric or
binary format.

A parent field of a superfield can be

a multiple-value field

contained within a periodic group

A parent field of a superfield cannot be format G (floating point).

The total length of any superfield value may not exceed 253 bytes (alphanumeric) or 126 bytes
(binary).

The superfield format is B (binary) if no element of the superfield is derived from an A
(alphanumeric) or W (wide-character) parent field; if any element of the superfield is derived
from an A or W parent field, the format of the superfield reflects the last occurring A or W
element; for example, if the last occurring A or W element is W, the format of the superfield is
W.

93

COMPRESS: Create an Adabas FileAdabas Utilities

Superfield Definition Example:

SUPFN=’X2=AA(1,2),AB(1,4),AC(1,1)’

ADACMP COMPRESS Examples
Example 1:

ADACMP COMPRESS
ADACMP FNDEF=’01,AA,7,A,DE,FI’ Field AA
ADACMP FNDEF=’01,AB,15,A,DE,MU,NU’ Field AB
ADACMP FNDEF=’01,GA’ Group GA
ADACMP FNDEF=’02,AC,15,A,NU’ Field AC
ADACMP FNDEF=’02,AD,2,P,FI’ Field AD
ADACMP FNDEF=’02,AE,5,P,NU’ Field AE
ADACMP FNDEF=’02,AF,6,W’ Field AF
ADACMP COLDE=’7,Y1=AF’ Collation descriptor Y1
ADACMP SUBDE=’BB=AA(1,4)’ Subdescriptor BB
ADACMP SUPDE=’CC=AA(1,4),AD(1,1)’ Superdescriptor CC
ADACMP HYPDE=’1,DD,4,A,MU=AB,AC,AD’ Hyperdescriptor DD
ADACMP PHONDE=’EE(AA)’ Phonetic descriptor EE
ADACMP SUBFN=’FF=AA(1,2)’ Subfield FF
ADACMP SUPFN=’GG=AA(1,4),AD(1,1)’ Superfield GG

Field AA is defined as level 1, 7 bytes alphanumeric, descriptor, fixed storage option.

Field AB is defined as level 1, 15 bytes alphanumeric, descriptor, multiple value field, null
value suppression.

GA is a group containing fields AC, AD, AE, and AF.

BB is a subdescriptor (positions 1-4 of field AA).

CC is a superdescriptor (positions 1-4 of field AA and position 1 of field AD).

DD is a hyperdescriptor consisting of fields AB, AC and AD. DD is assigned
hyperexit 1.

EE is a phonetic descriptor derived from field AA.

FF is a subfield (positions 1-2 of field AA).

GG is a superfield (positions 1-4 of AA and position 1 of AD).

Y1 is a collation descriptor for AF and is assigned to collation descriptor user exit 7
(CDX07).

Example 2:

ADACMP COMPRESS
ADACMP FORMAT=’AG,6,U,AF,4X,AA,’ input record format
ADACMP FORMAT=’AB,AC’ continuation of FORMAT statement
ADACMP FNDEF=’01,AA,10,A,NU’ field definitions
ADACMP FNDEF=’01,AB,7,U,NU’
ADACMP FNDEF=’01,AF,5,P,NU’
ADACMP FNDEF=’01,AG,12,P,NU,DE’
ADACMP FNDEF=’01,AC,3,A,NU,DE’

94

Adabas UtilitiesCOMPRESS: Create an Adabas File

The input record format is provided explicitly using the FORMAT parameter. ADACMP uses this format
as the basis for processing fields from the input record. The FDT for the file corresponds to the structure
specified in the FNDEF statements.

Example 3:

ADACMP COMPRESS
ADACMP FORMAT=’AG,AF,4X,AA,AB,AC’ input record format
ADACMP FDT=8 FDT same as file 8

The input record format is provided explicitly using the FORMAT parameter. The FDT to be used is the
same as that currently defined for Adabas file 8.

Example 4:

ADACMP COMPRESS NUMREC=2000,USERISN
ADACMP FNDEF=’01,AA,7,A,DE,FI’ Field AA
ADACMP FNDEF=’01,AB,15,A,DE,MU,NU’ Field AB

The number of input records to be processed is limited to 2,000. The ISN for each record is to be provided
by the user.

Example 5:

ADACMP COMPRESS RECFM=FB,LRECL=100
ADACMP FNDEF=’01,AA,7,A,DE,FI’ Field AA
ADACMP FNDEF=’01,AB,15,A,DE,MU,NU’ Field AB

A VSE input file contains fixed length (blocked) records. The record length is 100 bytes.

95

COMPRESS: Create an Adabas FileAdabas Utilities

DECOMPRESS: Decompress File(s)
The DECOMPRESS function decompresses data either

from output unloaded by the ADAULD UNLOAD utility function; or

directly from a single compressed Adabas file when the file number is specified with the INFILE
parameter.

When decompressing data directly from the INFILE file, DECOMPRESS first performs an ADAULD
UNLOAD/MODE=SHORT function. This can save time over separate ADAULD and ADACMP
DECOMPRESS operations.

This chapter covers the following topics:

Optional Parameters and Subparameters

Decompressing Multiclient Files

ADACMP DECOMPRESS Examples

Optional Parameters and Subparameters
CODE: Cipher Code

If the file to be decompressed is ciphered, the cipher code that was used when the file was
compressed must be specified with this parameter. See the Adabas Security documentation for
additional information on the use of ciphering.

ETID: Multiclient File Owner ID

96

Adabas UtilitiesDECOMPRESS: Decompress File(s)

ETID specifies an owner ID for a multiclient file specified by INFILE. ADACMP
DECOMPRESS selectively decompresses only those records in the multiclient file assigned to the owner
ID specified by ETID. The ETID value must be the same as that assigned to the records when they were
loaded into the multiclient file.

FORMAT: Output Record Format Definition

FORMAT allows decompression to a format other than that specified by the FDT. It can be used
to change the FDT of an existing file and, in particular, the structure of a periodic (PE) group.

The FORMAT parameter syntax is the same as the format buffer syntax used for read
commands except that text cannot be inserted (text is not compressible/decompressible); see the
Adabas Command Reference documentation for more information.

Note:
The FORMAT parameter does not check whether all related data fields have been processed
during decompression.

For example, if a multiple-value (MU) field defined as:

01,AA,8,A,MU

has five occurrences, and the ADACMP DECOMPRESS FORMAT parameter specifies:

AA1-4

then only the first four AA field values are decompressed; no indication is given regarding the
fifth field value. This also applies to PE field occurrences and length overrides.

INFILE: Number of File to Be Decompressed

The INFILE parameter allows you to decompress a file without first unloading it with the
ADAULD utility. If the INFILE parameter is not specified, the input is read from a sequential
(DD/EBAND) file. With the ETID parameter, INFILE permits selectively decompressing
records from a multiclient file. When decompressing multiclient files, refer to the section
Decompressing Multiclient Files .

ISN: Include ISN in Decompressed Output

The ISN of each record is to be included with each decompressed record output. If this
parameter is omitted, the ISN will not be included with each record.

LPB: Prefetch Buffer Size

LPB specifies the size, in bytes, of the internal prefetch buffer for the ADACMP
DECOMPRESS INFILE function. The maximum value is 32,760 bytes. The default is
calculated by Adabas, depending on the ADARUN LU value in effect for the nucleus.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

97

DECOMPRESS: Decompress File(s)Adabas Utilities

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and the utility
terminates with condition code 20.

NUMREC: Number of Records to Be Processed

NUMREC specifies the number of input records to be processed. If this parameter is omitted, all
input records contained on the input dataset are processed.

Use of NUMREC is recommended for the initial ADACMP execution if a large number of
records are contained on the input dataset. This avoids unneeded processing of all records when
a field definition error or invalid input data causes a large number of rejected records.
NUMREC is also useful for creating small files for test purposes.

PASSWORD: Password for INFILE

The PASSWORD parameter must specify the correct password if the file is to be decompressed
directly from a password-protected Adabas file.

SORTSEQ: Processing Sequence for INFILE File

SORTSEQ determines the sequence in which the file is processed. If this parameter is omitted,
the records are processed in physical sequence. SORTSEQ can be specified only when INFILE
is also specified.

If a descriptor is specified, the file is processed in the logical sequence of the descriptor values.
Do not use a null-suppressed descriptor field, a hyperdescriptor, a phonetic descriptor, a
multiple-value descriptor field, or a descriptor contained in a periodic group.

Note:
Even when the descriptor field is not null-suppressed, the record is not represented in the
inverted list if the descriptor field or a field following it has never been initialized (held a value).
Therefore, the record will be dropped when the utility is executed.

If ISN is specified, the file is processed in ascending ISN sequence. For the Adabas checkpoint
or security file, only SORTSEQ=ISN is allowed.

TRUNCATE: Truncate Excess Alphanumeric Characters

The TRUNCATE parameter enables truncation of compressed alphanumeric data during
decompression. When TRUNCATE is specified and ADACMP DECOMPRESS operation finds
an alphanumeric field containing more characters than the FDT description allows for the field,
the extra characters are truncated. If TRUNCATE is not specified, alphanumeric records with
extra characters are written to the DD/FEHL dataset. Non-alphanumeric fields cannot be
truncated.

UACODE: Encoding Protocol for Output Alphanumeric Fields

UACODE defines the encoding of the sequential output of alphanumeric fields. This parameter
allows you to override the user encoding for alphanumeric fields passed in the header of the
compressed sequential input.

98

Adabas UtilitiesDECOMPRESS: Decompress File(s)

UARC: Architecture for Output Uncompressed User Data

The UARC parameter specifies the architecture of the sequential output of the uncompressed
user data. This parameter allows you to override the user encoding passed in the header of the
compressed sequential input.

The ’userdata-architecture-key’ is an integer which is the sum of the following numbers:

byte order b=0 high-order byte first

 b=1 low-order byte first

encoding family e=0 ASCII encoding family

 e=2 EBCDIC encoding family (default)

floating-point
format

f=0 IBM370 floating-point format

 f=4 VAX floating-point format

 f=8 IEEE floating-point format

The default is ARC = b + e + f = 2; that is, high-order byte first; EBCDIC encoding family; and
IBM370 floating-point format (b=0; e=2; f=0).

User data from an Intel386 PC provides the example: b=1; e=0; f=8; or ARC=9.

UTYPE: User Type

The user type to be in effect when unloading the file specified by INFILE. Allowed values are

EXF no access/update allowed for other users of the file.

EXU access only is allowed for other users of the file. EXU is
the default.

UWCODE: Encoding Protocol for Output Wide-Character Fields

UWCODE defines the encoding of the sequential output of wide-character fields. This
parameter allows you to override the user encoding for wide-character fields passed in the
header of the compressed sequential input.

Decompressing Multiclient Files
ADACMP decompresses Adabas data to a sequential user file. The DECOMPRESS function can
decompress records selectively if the INFILE parameter specifies a multiclient file and a valid ETID value
is specified.

The DECOMPRESS function skips the owner ID, if present. The output of a DECOMPRESS operation
on a multiclient file contains neither owner ID nor any ETID information.

99

DECOMPRESS: Decompress File(s)Adabas Utilities

If the INFILE parameter specifies a multiclient file for the DECOMPRESS function, you can use the
ETID parameter to limit decompression to records for a specific user only. ADACMP then reads and
decompresses records only for the specified user. If the ETID parameter is not specified when
decompressing a multiclient file, all records in the file are decompressed.

Example:

Only records owned by USER1 from file 20 are decompressed to a sequential output file:

ADACMP DECOMPRESS INFILE=20,ETID=USER1

ADACMP DECOMPRESS Examples
Example 1:

The DECOMPRESS function is to be executed. The input dataset to be used is the output of a previous
execution of the ADAULD utility:

ADACMP DECOMPRESS

Example 2:

Adabas file 23 is to be decompressed. The ISN of each record is to be included in the decompressed
output:

ADACMP DECOMPRESS INFILE=23,ISN

100

Adabas UtilitiesDECOMPRESS: Decompress File(s)

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADACMP with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

Note:
When the recovery log is active, sequential datasets used by the utilities whose runs are logged on the
RLOG must be kept and made available for any recovery operation; for example, the DD/EBAND input
to an ADALOD LOAD operation.

This chapter covers the following topics:

User Exits with ADACMP

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

User Exits with ADACMP

Compression with User Exit

User exit 6 can be used to perform user processing on a record before it is processed by the ADACMP
COMPRESS utility. See the Adabas DBA Reference documentation for more information.

If user exit 6 is to be used during ADACMP execution, the specified user exit routine must be loadable at
execution time; that is, it must be assembled and linked into the Adabas

load library (or any library concatenated with it) for BS2000, OS/390, VM/ESA.

core image library or any library contained in the core image library search chain for VSE/ESA.

The ADACMP COMPRESS utility job must specify:

where

exit-name is the name of a user routine that gets control at the user exit; the name can be up
to 8 characters long.

101

JCL/JCS Requirements and ExamplesAdabas Utilities

Collation with User Exit

If a collation user exit is to be used during ADACMP execution, the ADARUN CDXnn parameter must
be specified for the utility run.

Used in conjunction with the universal encoding support (UES), the format of the collation descriptor user
exit parameter is:

where

nn is the number of the collation descriptor exit, a two-digit decimal integer in the
range 01-08 inclusive.

exit-name is the name of the user routine that gets control at the collation descriptor exit; the
name can be up to 8 characters long.

Only one program may be specified for each collation descriptor exit. Up to 8 collation descriptor exits
may be specified (in any order). See the Adabas DBA Reference documentation for more information.

BS2000

Dataset Link Name Storage More Information

User input data
(COMPRESS function)

DDEBAND tape/ disk

Compressed data
(DECOMPRESS
function)

DDEBAND tape/ disk Not used if the
parameter INFILE is
used

Compressed data
(COMPRESS function)

DDAUSBA tape/ disk

Decompressed data
(DECOMPRESS
function)

DDAUSBA tape/ disk

Rejected data DDFEHL tape/ disk

ECS encoding objects DDECSOJ tape/ disk Required for
universal encoding
support (UES)

ADARUN parameters SYSDTA/ DDCARD Operations

ADACMP parameters
and data definitions

SYSDTA/ DDKARTE Utilities

ADARUN messages SYSOUT/ DDPRINT printer/ disk Messages and Codes

ADACMP report SYSLST/ DDDRUCK printer/ disk Messages and Codes

102

Adabas UtilitiesJCL/JCS Requirements and Examples

JCL Examples (BS2000)

ADACMP COMPRESS

In SDF Format:

/.ADACMP LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK * A D A C M P COMPRESS
/REMARK *
/DELETE-FILE CMP.AUS
/SET-JOB-STEP
/DELETE-FILE CMP.FEHL
/SET-JOB-STEP
/CREATE-FILE CMP.AUS,PUB(SPACE=(48,48)
/SET-JOB-STEP
/CREATE-FILE CMP.FEHL,PUB(SPACE=(48,48))
/SET-JOB-STEP

/ASS-SYSLST L.CMP
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDEBAND,CMP.EIN
/SET-FILE-LINK DDAUSBA,CMP.AUS
/SET-FILE-LINK DDFEHL,CMP.FEHL
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADACMP,DB=yyyyy,IDTNAME=ADABAS5B
ADACMP COMPRESS NUMREC=1000,FDT=1,USERISN,DEVICE=dddd,eeee
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADACMP LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK * A D A C M P COMPRESS
/REMARK *
/ER CMP.AUS
/STEP
/ER CMP.FEHL
/STEP
/SYSFILE SYSLST=L.CMP
/FILE ADA.MOD,LINK=DDLIB
/FILE CMP.EIN,LINK=DDEBAND
/FILE CMP.AUS,LINK=DDAUSBA,SPACE=(48,48)
/FILE CMP.FEHL,LINK=DDFEHL,SPACE=(48,48)
/EXEC (ADARUN,ADA.MOD)
ADARUN PROG=ADACMP,DB=yyyyy,IDTNAME=ADABAS5B
ADACMP COMPRESS NUMREC=1000,FDT=1,USERISN,DEVICE=dddd,eeee
/LOGOFF NOSPOOL

ADACMP DECOMPRESS

In SDF Format:

/.ADACMP LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK * A D A C M P DECOMPRESS
/REMARK *

103

JCL/JCS Requirements and ExamplesAdabas Utilities

/DELETE-FILE CMP.AUS
/SET-JOB-STEP
/DELETE-FILE CMP.FEHL
/SET-JOB-STEP
/CREATE-FILE CMP.AUS,PUB(SPACE=(48,48))
/SET-JOB-STEP
/CREATE-FILE CMP.FEHL,PUB(SPACE=(48,48))
/SET-JOB-STEP
/ASS-SYSLST L.DEC
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDEBAND,CMP.EIN
/SET-FILE-LINK DDAUSBA,CMP.AUS
/SET-FILE-LINK DDFEHL,CMP.FEHL
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADACMP,DB=yyyyy,IDTNAME=ADABAS5B
ADACMP DECOMPRESS
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADACMP LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK * A D A C M P DECOMPRESS
/REMARK *
/ER CMP.AUS
/STEP
/ER CMP.FEHL
/STEP
/SYSFILE SYSLST=L.CMP.DEC

/FILE ADA.MOD,LINK=DDLIB
/FILE CMP.EIN,LINK=DDEBAND
/FILE CMP.AUS,LINK=DDAUSBA,SPACE=(48,48)
/FILE CMP.FEHL,LINK=DDFEHL,SPACE=(48,48)
/EXEC (ADARUN,ADA.MOD)
ADARUN PROG=ADACMP,DB=yyyyy,IDTNAME=ADABAS5B
ADACMP DECOMPRESS
/LOGOFF NOSPOOL

OS/390 or z/OS

104

Adabas UtilitiesJCL/JCS Requirements and Examples

Dataset DD Name Storage More Information

User input data
(COMPRESS function)

DDEBAND tape/ disk

Compressed data
(DECOMPRESS
function)

DDEBAND tape/ disk Not used if the
parameter
INFILE is specified

Compressed data
(COMPRESS function)

DDAUSBA tape/ disk

Decompressed data
(DECOMPRESS
function)

DDAUSBA tape/ disk

Rejected data DDFEHL tape/ disk

ECS encoding objects DDECSOJ tape/ disk Required for
universal encoding
support (UES)

ADACMP report DDDRUCK printer

ADARUN messages DDPRINT printer

ADARUN parameters DDCARD reader

ADACMP parameters
and data definitions

DDKARTE reader

JCL Examples (OS/390 or z/OS)

In the MVSJOBS dataset, refer to ADACMP for the COMPRESS example and ADACMPD for the
DECOMPRESS example.

ADACMP COMPRESS

//ADACMP JOB
//*
//* ADACMP COMPRESS
//* COMPRESS A FILE
//*
//CMP EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*

//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDEBAND DD DISP=OLD,DSN=EXAMPLE.DByyyyy.INPUT,UNIT=TAPE, <===
// VOL=SER=TAPE01 <===
//DDAUSBA DD DISP=(NEW,KEEP),DSN=EXAMPLE.DByyyyy.COMP01,UNIT=DISK, <==
// VOL=SER=DISK01,SPACE=(TRK,(200,10),RLSE)
//DDFEHL DD DISP=(NEW,KEEP),DSN=EXAMPLE.DByyyyy.FEHL,UNIT=DISK, <===
// VOL=SER=DISK01,SPACE=(TRK,1)
//DDCARD DD *
ADARUN PROG=ADACMP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *

105

JCL/JCS Requirements and ExamplesAdabas Utilities

ADACMP COMPRESS FILE=1
ADACMP FNDEF=’01,AA,008,B,DE’
ADACMP FNDEF=’01,BA,020,A,NU,DE’
ADACMP FNDEF=’01,BB,015,A,NU,DE’
ADACMP FNDEF=’01,BC,001,A,FI’
ADACMP FNDEF=’01,CA,001,A,NU,DE’
ADACMP FNDEF=’01,CB,002,U,NU,DE’
ADACMP FNDEF=’01,CC,010,A,NU,DE’
ADACMP FNDEF=’01,CD,002,U,NU,DE’
ADACMP FNDEF=’01,DA,005,U,NU’
ADACMP FNDEF=’01,DB,020,A,NU,DE’
ADACMP FNDEF=’01,DC,015,A,NU,DE’
ADACMP FNDEF=’01,DD,002,A,NU,DE’
ADACMP FNDEF=’01,DE,005,U,NU,DE’
ADACMP FNDEF=’01,DF,008,A,NU,DE’
ADACMP FNDEF=’01,FA,020,A,NU,DE’
ADACMP FNDEF=’01,FB,006,U,NU,DE’
ADACMP FNDEF=’01,FC,006,U,NU’
ADACMP FNDEF=’01,GA,002,U,NU’
ADACMP FNDEF=’01,HA,002,U,NU’
ADACMP FNDEF=’01,IA,002,U,NU’

ADACMP FNDEF=’01,KA,002,U,NU’
ADACMP FNDEF=’01,LA,030,A,NU,DE’
ADACMP SUBDE=’SB=DE(3,5)’
ADACMP SUPDE=’SP=CA(1,1),CB(1,2),CD(1,2)’
ADACMP PHONDE=’PA(BA)’
/*

ADACMP DECOMPRESS

//ADACMP JOB
//*
//* ADACMP COMPRESS
//* DECOMPRESS A FILE
//*
//DECMP EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <===DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <===WORK
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDEBAND DD DISP=OLD,DSN=EXAMPLE.DByyyyy.COMP01,UNIT=TAPE,
// VOL=SER=TAPE01
//DDAUSBA DD
DISP=(NEW,KEEP),DSN=EXAMPLE.DByyyyy.DECOMP01,UNIT=DISK,==
// VOL=SER=DISK01,SPACE=(TRK,(200,10),RLSE)
//DDFEHL DD DISP=(NEW,KEEP),DSN=EXAMPLE.DByyyyy.FEHL,UNIT=DISK,
=
// VOL=SER=DISK01,SPACE=(TRK,1)
//DDCARD DD *
ADARUN PROG=ADACMP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADACMP DECOMPRESS INFILE=1
00000100
/*

106

Adabas UtilitiesJCL/JCS Requirements and Examples

VM/ESA or z/VM

Dataset DD Name Storage More Information

User input data
(COMPRESS function)

DDEBAND tape/ disk

Compressed data
(DECOMPRESS
function)

DDEBAND tape/ disk Not used if the
parameter INFILE is
specified

Compressed data
(COMPRESS function)

DDAUSBA tape/ disk

Decompressed data
(DECOMPRESS
function)

DDAUSBA tape/ disk

Rejected data DDFEHL tape/ disk

ECS encoding objects DDECSOJ tape/ disk Required for
universal encoding
support

ADACMP report DDDRUCK disk/ terminal/ printer

ADARUN messages DDPRINT disk/ terminal/ printer

ADARUN parameters DDCARD disk/ terminal/ reader

ADACMP control cards
and data definitions

DDKARTE disk/ terminal/ reader

JCL Example (VM/ESA or z/VM)

ADACMP COMPRESS

DATADEF DDEBAND,DSN=FILE015.CMPD015,MODE=A
DATADEF DDAUSBA,DSN=FILE015.LODD015,MODE=A
DATADEF DDFEHL,DSN=FILE015.CMPERROR,MODE=A
DATADEF DDDRUCK,DSN=ADACMP.DDDRUCK,MODE=A
DATADEF DDPRINT,DSN=ADACMP.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDCARD,DSN=RUNCMP.CONTROL,MODE=A
DATADEF DDKARTE,DSN=FILE001.CMPC015,MODE=A
ADARUN

Contents of RUNCMP CONTROL A1:

ADARUN PROG=ADACMP,DEVICE=dddd,DB=yyyyy

Contents of FILE001 CMPC015 A1:

ADACMP COMPRESS
NUMREC=1000,FDT=1,USERISN,DEVICE=dddd,eeee

107

JCL/JCS Requirements and ExamplesAdabas Utilities

VSE/ESA

File File Name Storage Logical Unit More
Information

User input data
(COMPRESS
function)

EBAND tape
disk

SYS010
*

Compressed data
(DECOMPRESS
function)

EBAND tape
disk

SYS010
*

Not used if
parameter INFILE
is specified

Compressed data
(COMPRESS
function)

AUSBA tape
disk

SYS016
*

Decompressed
data
(DECOMPRESS
function)

AUSBA tape
disk

SYS016
*

Rejected data FEHL tape
disk

SYS017
*

ECS encoding
objects

ECSOJ tape
disk

SYS020
*

Required for
universal encoding
support

ADACMP report - printer SYS009

ADARUN
messages

- printer SYSLST

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
*

ADACMP control
cards and data
definitions

- reader SYSIPT

* Any programmer logical unit may be used.

JCS Examples (VSE/ESA)

See Procedures for VSE/ESA Examples for descriptions of the VSE procedures.

Refer to member ADACMP.X for the COMPRESS example and member ADACMPD.X for the
DECOMPRESS example.

108

Adabas UtilitiesJCL/JCS Requirements and Examples

ADACMP COMPRESS

* $$ JOB JNM=ADACMP,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
* COMPRESS A FILE
// JOB ADACMP
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS010,TAPE
// PAUSE MOUNT LOAD INPUT FILE ON TAPE cuu
// TLBL EBAND,’EXAMPLE.DByyyyy.UNCOMP01’
// MTC REW,SYS010
// DLBL AUSBA,’EXAMPLE.DByyyyy.COMP01’,,SD
// EXTENT SYS016,,,,sssss,nnnnn
// ASSGN SYS016,DISK,VOL=DISK01,SHR
// DLBL FEHL,’EXAMPLE.DByyy.FEHL’,,SD
// EXTENT SYS017,,,,sssss,nnnnn
// ASSGN SYS017,DISK,VOL=DISK02,SHR
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADACMP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADACMP COMPRESS FILE=1
ADACMP FNDEF=’01,AA,008,B,DE’
ADACMP FNDEF=’01,BA,020,A,NU,DE’
ADACMP FNDEF=’01,BB,015,A,NU,DE’
ADACMP FNDEF=’01,BC,001,A,FI’
ADACMP FNDEF=’01,CA,001,A,NU,DE’
ADACMP FNDEF=’01,CB,002,U,NU,DE’
ADACMP FNDEF=’01,CC,010,A,NU,DE’
ADACMP FNDEF=’01,CD,002,U,NU,DE’
ADACMP FNDEF=’01,DA,005,U,NU’
ADACMP FNDEF=’01,DB,020,A,NU,DE’
ADACMP FNDEF=’01,DC,015,A,NU,DE’
ADACMP FNDEF=’01,DD,002,A,NU,DE’
ADACMP FNDEF=’01,DE,005,U,NU,DE’
ADACMP FNDEF=’01,DF,008,A,NU,DE’
ADACMP FNDEF=’01,FA,020,A,NU,DE’
ADACMP FNDEF=’01,FB,006,U,NU,DE’
ADACMP FNDEF=’01,FC,006,U,NU’

ADACMP FNDEF=’01,GA,002,U,NU’
ADACMP FNDEF=’01,HA,002,U,NU’
ADACMP FNDEF=’01,IA,002,U,NU’
ADACMP FNDEF=’01,KA,002,U,NU’
ADACMP FNDEF=’01,LA,030,A,NU,DE’
ADACMP SUBDE=’SB=DE(3,5)’
ADACMP SUPDE=’SP=CA(1,1),CB(1,2),CD(1,2)’
ADACMP PHONDE=’PA(BA)’
/*
/&
* $$ EOJ

ADACMP DECOMPRESS

* $$ JOB JNM=ADACMPD,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
* DECOMPRESS A FILE
// JOB ADACMPD
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS010,TAPE
// PAUSE MOUNT LOAD INPUT FILE ON TAPE cuu

109

JCL/JCS Requirements and ExamplesAdabas Utilities

// TLBL EBAND,’EXAMPLE.DByyyyy.COMP01’
// MTC REW,SYS010
// DLBL AUSBA,’EXAMPLE.DByyyyy.DECOMP01’,,SD
// EXTENT SYS016,,,,sssss,nnnnn
// ASSGN SYS016,DISK,VOL=DISK01,SHR
// DLBL FEHL,’EXAMPLE.DByyy.FEHL’,,SD
// EXTENT SYS017,,,,sssss,nnnnn
// ASSGN SYS017,DISK,VOL=DISK02,SHR
*
* **
* REMEMBER TO CUSTOMIZE PARAMETERS OF ADABAS UTILITY
* **
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADACMP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADACMP DECOMPRESS INFILE=1
/*
/&
* $$ EOJ

110

Adabas UtilitiesJCL/JCS Requirements and Examples

ADACNV: Database Conversion
This chapter covers the following topics:

Functional Overview

CONVERT: Convert Database to Higher Version

REVERT: Revert Database to Lower Version

JCL/JCS Requirements and Examples

111

ADACNV: Database ConversionAdabas Utilities

Functional Overview
The ADACNV utility converts (CONVERT) an Adabas database from version 5.2 or above to a higher
version, and the reverse (REVERT).

Warning:
Before you convert a database, you must terminate all active nucleus
or utility jobs normally.

To ensure database integrity, ADACNV writes changed blocks first to intermediate storage; that is, to the
sequential dataset DD/FILEA. After all changed blocks have been written out to DD/FILEA, a "point of
no return" is reached and the changed blocks are written to the database. If ADACNV terminates
abnormally after the "point of no return", the RESTART parameter can be used to begin the ADACNV
run by reading the contents of DD/FILEA and writing them out to the database.

The TEST parameter is provided to check the feasibility of a conversion or reversion without writing any
changes to the database. It is therefore not necessary to terminate all activity on the database before
running ADACNV when you use the TEST parameter.

Database Status
Internally, the utility converts or reverts one version at a time until the target version is attained. It is
therefore important to ensure that all requirements for conversion or reversion between the current and
target database levels have been met before you execute ADACNV without the TEST parameter.

Before a conversion or reversion begins, ADACNV checks the status of the database:

The DIB must be empty; that is, no Adabas nucleus or utility may be active or have been terminated
abnormally. If RESTART is specified, the DIB must contain the entry of ADACNV, which includes
a time stamp.

For conversion from version 5.2, the checkpoint block 8 must have enough free space to
accommodate the expanded 24-byte header used for version 5.3 and above. For reversion to version
5.2, the checkpoint blocks 20-24 must be empty.

The Work dataset must not have a pending autorestart.

If this check is successful, ADACNV locks the database and creates a DIB entry.

For reversions, ADACNV checks whether any features are used that do not exist in the target version and
returns a message if any are found.

Procedure
The procedure for converting or reverting an Adabas database is as follows:

112

Adabas UtilitiesFunctional Overview

1. If the nucleus is active, use ADAEND to stop it.

2. Use ADARES PLCOPY/CLCOPY to copy all protection and command logs.

For your installation, this may be done automatically with user exit 2.

Wait until the logs have been copied.

3. Optionally, back up the database (full or delta).

4. Execute the ADACNV utility.

5. Start the nucleus of the version to which you have converted or reverted.

Important:
To ensure database integrity, DD/FILEA must be defined permanently and be deleted only after
ADACNV has completed successfully. The DD/FILEA dataset must not be defined as a temporary dataset
that is automatically deleted at the end of the job.

113

Functional OverviewAdabas Utilities

CONVERT: Convert Database to Higher
Version
The CONVERT function starts from the Adabas version of the last nucleus session.

This chapter covers the following topics:

Optional Parameters

Conversion Considerations

Example

Optional Parameters
IGNPPT: Ignore Parallel Participant Table PLOG Entries

When converting from a version of Adabas that uses the parallel participant table (PPT)
structure to a higher version of Adabas, an error is printed and conversion fails if the system
detects one or more protection logs (PLOGs) from the current version that have not been
copied/merged.

Use IGNPPT=YES to continue processing in spite of the uncopied/unmerged PLOGs.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PLOGDEV: Multiple PLOG Device Type

PLOGDEV specifies the physical device type on which the multiple protection log datasets to
be converted are contained. If PLOGDEV is not specified, the device type specified by the
ADARUN DEVICE parameter is used.

114

Adabas UtilitiesCONVERT: Convert Database to Higher Version

RESTART: Rerun after Point of No Return

If ADACNV terminates abnormally after the "point of no return", that is, after all changed
blocks have been written to DD/FILEA, the RESTART parameter instructs ADACNV to begin
its run by reading the contents of DD/FILEA and continue by writing them to the database.

TEST: Test Conversion

The TEST parameter tests the feasibility of the conversion operation without actually writing
any changes to the database.

TOVERS: Target Version

The version of Adabas database (version and revision level) to achieve at the end of the
ADACNV run. If the TOVERS parameter is

specified, it must be a version higher than the source version.

not specified, ADACNV uses its own version as the target version.

The version format is vr indicating the version and revision level; for example, 74.

Conversion Considerations
The following is an overview of the conversion steps performed by ADACNV.

All Versions

The data protection area on the Work dataset and the multiple PLOG datasets (if supplied)
are cleared to binary zeros.

From Version 5.2 to 5.3

The new checkpoint file FDT is installed.

For a security file, any search-by-value criteria are adjusted to the new internal search
structure.

From Version 5.3 to 6.1

The free space table (FST) is converted from 3- to 4-byte RABN. If an FST RABN
overflow occurs, the smallest FST extent is removed. This is repeated until the FST fits
into the ASSO block. An appropriate message is printed.

Unused RABN chains are converted from 3- to 4-byte RABNs for each loaded file.

If a block of unreadable blocks (BUB) exists, it is converted from 3- to 4-byte RABN
structure.

The new security file FDT is installed.

115

CONVERT: Convert Database to Higher VersionAdabas Utilities

Any Delta Save Facility DLOG area header is set to the correct version. If the Delta Save
Facility logging status is "enabled", it is set to "disabled" and an appropriate message is printed.

From Version 6.1 to 6.2

Any Delta Save Facility DLOG area header is set to the correct version.

From Version 6.2 to 7.1

Any Delta Save Facility DLOG area header is set to the correct version.

Example
ADACNV CONVERT TOVERS=71

The version of Adabas selected in the last nucleus session is to be converted to a version 7.1 database.

116

Adabas UtilitiesCONVERT: Convert Database to Higher Version

REVERT: Revert Database to Lower Version
The REVERT function starts from the Adabas version of the last nucleus session.

This chapter covers the following topics:

Essential Parameter and Subparameter

Optional Parameter

Reversion Considerations

Example

Essential Parameter and Subparameter
TOVERS: Target Version

The version of Adabas database (version and revision level) to achieve at the end of the
ADACNV run. The TOVERS parameter value must be a version lower than the source version.

The version format is vr indicating the version and revision level; for example, 61.

Optional Parameter
IGNPPT: Ignore Parallel Participant Table PLOG Entries

When reverting from a version of Adabas that uses the parallel participant table (PPT) structure
to a lower version of Adabas, an error is printed and conversion fails if the system detects one or
more protection logs (PLOGs) from the current version that have not been copied/merged.

If IGNPPT is specified, the utility will continue processing in spite of the uncopied/unmerged
PLOGs.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

117

REVERT: Revert Database to Lower VersionAdabas Utilities

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and the utility
terminates with condition code 20.

PLOGDEV: Multiple PLOG Device Type

PLOGDEV specifies the physical device type on which the multiple protection log datasets to
be reverted is contained. If PLOGDEV is not specified, the device type specified by the
ADARUN DEVICE parameter is used.

RESTART: Rerun after Point of No Return

If ADACNV terminates abnormally after the "point of no return", that is, after all changed
blocks have been written to DD/FILEA, the RESTART parameter instructs ADACNV to begin
its run by reading the contents of DD/FILEA and continue by writing them to the database.

TEST: Test Conversion

The TEST parameter tests the feasibility of the reversion operation without actually writing any
changes to the database.

Reversion Considerations
The following is an overview of the reversion steps performed by ADACNV.

All Versions

Reversion is not possible if any Adabas feature is used in the current version that is not
supported in the target version. This statement applies to all Adabas features that affect the
structure of the database.

From Version 7.4 to 7.2 or 7.1

From Version 7.1 to 6.2

Version 7.1 extends the free space table (FST) from one RABN (RABN 10) to five RABNs
(RABNs 10-14). ADACNV checks whether all FST entries fit into one RABN. If not, the
smallest FST extent is removed. This is repeated until the FST fits into one ASSO block.
An appropriate message is printed.

Any Delta Save Facility DLOG area header is set to the correct version.

From Version 6.2 to 6.1

Any Delta Save Facility DLOG area header is set to the correct version.

From Version 6.1 to 5.3

The free space table (FST) is reverted from 4- to 3-byte RABNs.

118

Adabas UtilitiesREVERT: Revert Database to Lower Version

Unused RABN chains are reverted from 4- to 3-byte RABNs for each loaded file.

Any Delta Save Facility DLOG area header is set to the correct version. If the Delta Save
Facility logging status is "enabled", it is set to "disabled" and an appropriate message is printed.

If a block of unreadable blocks (BUB) exists, it is reverted from 4- to 3-byte RABN
structure.

The older security file FDT is installed.

From Version 5.3 to 5.2

The older checkpoint file FDT is installed.

Any security-by-value criteria will not revert . This means that a security file with
security-by-value criteria must be deleted before the reversion and defined again with
version 5.2.

Example
ADACNV REVERT TOVERS=53

The Adabas version of the last run of the nucleus is to be converted back (reverted) to a version 5.3
Adabas database.

119

REVERT: Revert Database to Lower VersionAdabas Utilities

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADACNV with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems, and shows examples of each of the job streams.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/MV

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Work DDWORKR1 disk

Multiple protection logs DDPLOGRn disk

Intermediate storage DDFILEA tape/ disk see Note

ADARUN parameters SYSDTA/ DDCARD Operations

ADACNV parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT/ DDPRINT Messages and Codes

ADACNV messages SYSLST/ DDDRUCK Messages and Codes

Note:
The intermediate storage is read an undefined number of times. If this storage is on tape/cassette, it is
necessary to use the ADARUN parameter TAPEREL=NO to prevent the tape from being released.
Software AG then recommends that you put a tape release command in the job to free the tape/cassette
unit when the job has finished. See the example following.

ADACNV JCL Example (BS2000)

With Intermediate Disk File Storage

In SDF Format:

/.ADACNV LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK * A D A C N V CONVERT THE DATABASE TO NEW VERSION
/REMARK *
/DELETE-FILE ADAyyyyy.FILEA

120

Adabas UtilitiesJCL/JCS Requirements and Examples

/SET-JOB-STEP
/CREATE-FILE ADAyyyyy.FILEA,PUB(SPACE=(4800,480))
/SET-JOB-STEP
/ASS-SYSLST L.CNV.DATA
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
/SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK,SHARE-UPD=YES
/SET-FILE-LINK DDPLOGR1,ADAyyyyy.PLOGR1,SHARE-UPD=YES
/SET-FILE-LINK DDPLOGR2,ADAyyyyy.PLOGR2,SHARE-UPD=YES
/SET-FILE-LINK DDFILEA,ADAyyyyy.FILEA
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADACNV,DB=yyyyy,IDTNAME=ADABAS5B
ADACNV CONVERT TOVERS=vr
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADACNV LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK * A D A C N V CONVERT THE DATABASE TO NEW VERSION
/REMARK *
/SYSFILE SYSLST=L.CNV.DATA
/FILE ADA.MOD,LINK=DDLIB
/FILE ADAyyyyy.ASSO,LINK=DDASSOR1,SHARUPD=YES
/FILE ADAyyyyy.DATA,LINK=DDDATAR1,SHARUPD=YES
/FILE ADAyyyyy.WORK,LINK=DDWORKR1,SHARUPD=YES
/FILE ADAyyyyy.PLOGR1,LINK=DDPLOGR1,SHARUPD=YES
/FILE ADAyyyyy.PLOGR2,LINK=DDPLOGR2,SHARUPD=YES
/FILE ADAyyyyy.FILEA,LINK=DDFILEA,SPACE=(4800,480)
/EXEC (ADARUN,ADA.MOD)
ADARUN PROG=ADACNV,DB=yyyyy,IDTNAME=ADABAS5B
ADACNV CONVERT TOVERS=vr
/LOGOFF NOSPOOL

With Intermediate Tape/Cassette File Storage

In SDF Format:

/.ADACNV LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK * A D A C N V CONVERT THE DATABASE TO NEW VERSION
/REMARK * INTERMEDIATE TAPE/CASSETTE STORAGE
/REMARK *
/DELETE-FILE ADAyyyyy.FILEA
/SET-JOB-STEP
/CREATE-FILE ADAyyyyy.FILEA,TAPE(DEV-TYPE=T-C1,VOL=ADA001)
/SET-JOB-STEP
/ASS-SYSLST L.CNV.DATA
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
/SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK,SHARE-UPD=YES
/SET-FILE-LINK DDPLOGR1,ADAyyyyy.PLOGR1,SHARE-UPD=YES
/SET-FILE-LINK DDPLOGR2,ADAyyyyy.PLOGR2,SHARE-UPD=YES
/SET-FILE-LINK DDFILEA,ADAyyyyy.FILEA,TAPE(FILE-SEQ=1),OPEN-MODE=OUTIN
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADACNV,DB=yyyyy,IDTNAME=ADABAS5B,TAPEREL=NO

121

JCL/JCS Requirements and ExamplesAdabas Utilities

ADACNV CONVERT TOVERS=vr
/SET-JOB-STEP
/REMARK * NOW RELEASE THE TAPE
/REM-FILE-LINK DDFILEA,UNL-REL-TAPE=YES
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADACNV LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK * A D A C N V CONVERT THE DATABASE TO NEW VERSION
/REMARK * INTERMEDIATE TAPE/CASSETTE STORAGE
/REMARK *
/SYSFILE SYSLST=L.CNV.DATA
/FILE ADA.MOD,LINK=DDLIB
/FILE ADAyyyyy.ASSO,LINK=DDASSOR1,SHARUPD=YES
/FILE ADAyyyyy.DATA,LINK=DDDATAR1,SHARUPD=YES
/FILE ADAyyyyy.WORK,LINK=DDWORKR1,SHARUPD=YES
/FILE ADAyyyyy.PLOGR1,LINK=DDPLOGR1,SHARUPD=YES
/FILE ADAyyyyy.PLOGR2,LINK=DDPLOGR2,SHARUPD=YES
/FILE ADAyyyyy.FILEA,LINK=DDFILEA,DEVICE=T C1,VOLUME=ADA001

/EXEC (ADARUN,ADA.MOD)
ADARUN PROG=ADACNV,DB=yyyyy,IDTNAME=ADABAS5B,TAPEREL=NO
ADACNV CONVERT TOVERS=vr
/STEP
/REMARK * NOW RELEASE THE TAPE
/REL DDFILEA,UNLOAD
/LOGOFF NOSPOOL

OS/390 or z/OS

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Work DDWORKR1 disk

Multiple protection logs DDPLOGRn disk

Intermediate storage DDFILEA tape/ disk

ADARUN parameters DDCARD reader Operations

ADACNV parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADACNV messages DDDRUCK printer Messages and Codes

ADACNV JCL Example (OS/390 or z/OS)

Refer to ADACNV in the MVSJOBS dataset for this example.

122

Adabas UtilitiesJCL/JCS Requirements and Examples

//ADACNV JOB
//*
//* ADACNV:
//* EXAMPLE HOW TO USE ADACNV TO CONVERT DATABASE
//* TO A DIFFERENT VERSION
//*
//CNV EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDPLOGR1 DD DSN=EXAMPLE.DByyyyy.PLOGR1,DISP=SHR <=== PLOG 1
//DDPLOGR2 DD DSN=EXAMPLE.DByyyyy.PLOGR2,DISP=SHR <=== PLOG 2

//DDFILEA DD DSN=EXAMPLE.DByyyyy.FILEA, <=== INTERMEDIATE FILE
// UNIT=SYSDA,SPACE=(TRK,(150,150),RLSE),
// DISP=(NEW,CATLG)
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADACNV,SVC=xxx,DE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADACNV CONVERT TOVERS=vr
/*

VM/ESA or z/MV

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Work DDWORKRn disk

Multiple protection logs DDPLOGRn disk

Intermediate storage DDFILEA tape/ disk

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADACNV parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADACNV messages DDDRUCK disk/ terminal/ printer Messages and Codes

ADACNV JCL Example (VM/ESA or z/VM)
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDWORKR1,DSN=ADABASVv.WORK,VOL=WORKV1
DATADEF DDPLOGR1,DSN=ADABASVv.PLOGR1,VOL=PLOGV
DATADEF DDPLOGR2,DSN=ADABASVv.PLOGR2,VOL=PLOGV
DATADEF DDFILEA,DSN=ADACNV.FILEA,MODE=A
DATADEF DDPRINT,DSN=ADACNV,DDPRINT,MODE=A
DATADEF DUMP,DUMMY

123

JCL/JCS Requirements and ExamplesAdabas Utilities

DATADEF DDDRUCK,DSN=ADACNV.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNCNV.CONTROL,MODE=A
DATADEF DDKARTE,DSN=CONVERT.CONTROL,MODE=A
ADARUN

Contents of RUNCNV CONTROL A1:

ADARUN PROG=ADACNV,DEVICE=dddd,DB=yyyyy

Contents of CONVERT CONTROL A1:

ADACNV CONVERT TOVERS=vr

VSE/ESA

File File Name Storage Logical Unit More
Information

Associator ASSORn disk *

Data Storage DATARn disk *

Work WORKRn disk *

Multiple
protection logs

PLOGRn disk *

Intermediate
storage

FILEA tape
disk

SYS015
*

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
*

Operations

ADACNV
parameters

- reader SYSIPT

ADARUN
messages

- printer SYSLST Messages and
Codes

ADACNV
messages

- printer SYS009 Messages and
Codes

* Any programmer logical unit may be used.

ADACNV JCS Example (VSE/ESA)

See Procedures for VSE/ESA Examples for a description of the VSE procedures.

Refer to member ADACNV.X for this example.

* $$ JOB JNM=ADACNV,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
* CONVERT DATABASE TO NEW VERSION
// JOB ADACNV
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// DLBL FILEA,’ADACNV.WORK.FILE’,0,SD

124

Adabas UtilitiesJCL/JCS Requirements and Examples

// EXTENT SYS015,,,,ssss,nnnn
// ASSGN SYS015,DISK,VOL=vvvvvv,SHR
// EXEC ADARUN,SIZE=ADARUN
ADARUN DBID=yyyyy,DEVICE=dddd,PROG=ADACNV,SVC=xxx
/*
ADACNV CONVERT TOVERS=vr
/*
/&
* $$ EOJ

125

JCL/JCS Requirements and ExamplesAdabas Utilities

ADADBS: Database Services
This chapter covers the following topics:

126

Adabas UtilitiesADADBS: Database Services

Functional Overview

ADD: Add Dataset

ALLOCATE: Allocate File Extent

CHANGE: Change Standard Length of a Field

CVOLSER: Print Adabas Extents on Given Volume

DEALLOCATE: Deallocate File Extent

DECREASE: Decrease Associator Data Storage

DELCP: Delete Checkpoint Records

DELETE: Delete File

DSREUSE: Reuse Data Storage Blocks

ENCODEF: Change File Encoding

INCREASE: Increase Associator Data Storage

ISNREUSE: Reuse ISNs

MODFCB: Modify File Parameters

NEWFIELD: Add New Field

ONLINVERT: Start Online Invert

ONLREORFASSO: Start Online Reorder Associator for Files

ONLREORFDATA: Start Online Reorder Data for Files

ONLREORFILE: Start Online Reorder Associator and Data for Files

OPERCOM: Adabas Operator Commands

PRIORITY: Change User Priority

RECOVER: Recover Space

REFRESH: Set File to Empty Status

REFRESHSTATS: Refresh Statistical Values

RELEASE: Release Descriptor

RENAME: Rename File Database

RENUMBER: Change File Number

RESETDIB: Reset Entries in Active Utility List

TRANSACTIONS: Suspend and Resume Transactions

UNCOUPLE: Uncouple Files

JCL/JCS Requirements and Examples

127

ADADBS: Database ServicesAdabas Utilities

Functional Overview
Note:
All ADADBS functions can also be performed using Adabas Online System (AOS). When using the
Adabas Recovery Aid, using AOS is preferable for file change operations because it writes checkpoints
that are necessary for recovery operation.

Any number of functions may be performed during a single execution of ADADBS.

Syntax Checking with the TEST Parameter
The ADADBS functions now include a syntax-checking-only mode. When the TEST parameter is
specified, the actual ADADBS function is checked, but not performed.

The ADADBS utility can perform multiple functions. As a result, ADADBS reads the parameters up to
the next specified ADADBS function, and then executes the function/parameters just read. Then,
ADADBS reads the function and parameters up to the following function, and so on. Therefore, to ensure
that no functions are executed, the TEST parameter must be specified either before or within the first
function/parameter group, as the following example shows:

ADADBS TEST
ADADBS DELETE FILE=1
ADADBS DELETE FILE=2

128

Adabas UtilitiesFunctional Overview

ADD: Add Dataset
The ADD function adds a new dataset to the Associator or Data Storage.

This chapter covers the following topics:

Associator or Data Storage Dataset

Essential Parameter and Subparameter

Optional Parameters

Examples

Associator or Data Storage Dataset
For the Associator or for Data Storage, the dataset to be added may be on the same device type as that
currently being used or on a different one. A maximum of five datasets each may be assigned to the
Associator and Data Storage.

Note:
The Associator and Data Storage dataset sizes must be added separately. It is not possible to add both with
a single operation.

After an ADD operation is completed for an Associator or Data Storage dataset, the ADD function
automatically ends the current nucleus session. This allows for the necessary Associator or Data Storage
formatting with ADAFRM before a new session is started. A message tells you that the nucleus has been
stopped.

Procedure

 To add an additional dataset to the Associator or Data Storage

1. Execute the ADD function.

2. Allocate the dataset with the operating system, then format the additional space using the ADAFRM
utility.

3. Add necessary JCL/JCS to all Adabas nucleus and Adabas utility execution procedures.

129

ADD: Add DatasetAdabas Utilities

Essential Parameter and Subparameter
ASSODEV | DATADEV: Device Type

The device type to be used for the new dataset. These parameters are required only if a different
device type from the device type specified by the ADARUN DEVICE parameter is to be used.

For VSAM datasets, use dynamic device types; that is, DDxxxxR1=9999, DDxxxxR2=8888, ...
DDxxxxR5=5555. For example, if DDDATAR3 is added, DATADEV=7777.

ASSOSIZE | DATASIZE: Size of Dataset to be Added

The number of cylinders to be contained in the new dataset.

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Note
that the validity of values and variables cannot be tested: only the syntax of the specified
parameters can be tested. See Syntax Checking with the TEST Parameter for more information
about using the TEST parameter in ADADBS functions.

Examples
A new dataset containing 800 cylinders on 3350 disks is to be added to Data Storage.

ADADBS ADD DATASIZE=800, DATADEV=3350

A new dataset containing 100 cylinders is to be added to the Associator on the Associator’s existing
device type.

ADADBS ADD ASSOSIZE=100

The current nucleus session has NPLOG=4 and NCLOG=8. The PPT contains 13 entries: one for Work; 4
for PLOGs; and 8 for CLOGs. The session startup JCL already contains an entry for a fifth PLOG dataset
and that dataset has been formatted. Another PLOG dataset can now be added:

ADADBS ADD PLOG

130

Adabas UtilitiesADD: Add Dataset

ALLOCATE: Allocate File Extent
The ALLOCATE function may be used to allocate an address converter, Data Storage, normal or upper
index extent of a specific size. Only one extent may be allocated per ADADBS execution.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Example

Essential Parameters
FILE: File for Which an Extent Is Allocated

FILE specifies the number of the file for which the extent is to be allocated.

ACSIZE | DSSIZE | NISIZE | UISIZE: Extent Type and Size

These parameters are used to indicate the type and size of the extent to be allocated. One and
only one extent type and size can be specified in a single ADADBS ALLOCATE statement. The
specified value can be either cylinders or blocks; a size in blocks must be followed by "B" (for
example, 2000B).

Optional Parameters
DEVICE: Device Type

The device type to be used for file allocation. This parameter is required only if a different
device type from the device type specified by the ADARUN DEVICE parameter is to be used.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

131

ALLOCATE: Allocate File ExtentAdabas Utilities

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and the utility
terminates with condition code 20.

PASSWORD: File Password

The password of the file. This parameter is required if the file is password-protected.

STARTRABN: Starting RABN for Extent

The beginning RABN of the extent to be allocated. If this parameter is omitted, ADADBS will
assign the starting RABN.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

Example
An address converter extent of 30 blocks is to be allocated for file 15.

ADADBS ALLOCATE FILE=15,ACSIZE=30B

132

Adabas UtilitiesALLOCATE: Allocate File Extent

CHANGE: Change Standard Length of a
Field
The CHANGE function can be used to change

the standard length of an Adabas field;

a normal alphanumeric (A) field to a long-alpha (LA) field; or

the default field format from unpacked (U) to packed (P).

Only one of these changes may be performed per function execution.

No modifications to records in Data Storage are made by this function. The user is, therefore, responsible
for preventing references to the field that would cause invalid results because of an inconsistency between
the new standard length as defined to Adabas and the actual number of bytes contained in the record.

When changing the length of an Adabas expanded file field, the change must be made to each individual
component file of the expanded file. Each CHANGE operation on a component file causes a message that
confirms the change, and returns condition code 4.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Example

Essential Parameters
FILE: File Containing the Field

The file in which the field whose length is to be changed is contained. An Adabas system file
may not be specified.

FIELD: Field to be Changed

133

CHANGE: Change Standard Length of a FieldAdabas Utilities

The field whose standard length is to be changed. The field cannot be one that was defined with
the FI option, or a field with a defined length of zero (variable-length field). Specify the field name
between apostrophes (’).

FORMAT=P: New Field Format

The new standard field format. The only field format change supported is from ’U’ (unpacked)
to ’P’ (packed). The field cannot be parent of a sub-/super-/hyperdescriptor.

One of the parameters FORMAT, LENGTH, or OPTION must be specified; but only one of the
three may be specified.

LENGTH: New Field Length

The new standard length for the field. A length of 0 is not permitted, nor can a field with an
existing defined length of zero (such as a variable-length field) be redefined to a standard length.

One of the parameters FORMAT, LENGTH, or OPTION must be specified; but only one of the
three may be specified.

OPTION=LA: New Field Option

The new field option. The only field option change supported is from normal alphanumeric (A)
to long-alpha (LA).

One of the parameters FORMAT, LENGTH, or OPTION must be specified; but only one of the
three may be specified.

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

The password of the file containing the field to be changed. This parameter is required if the file
is password-protected.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

134

Adabas UtilitiesCHANGE: Change Standard Length of a Field

Example
The standard length of field AB in file 5 is to be changed to 11 bytes.

ADADBS CHANGE FILE=5,FIELD=’AB’,LENGTH=11

135

CHANGE: Change Standard Length of a FieldAdabas Utilities

CVOLSER: Print Adabas Extents on Given
Volume
The CVOLSER function is used to print the Adabas file extents contained on a disk volume.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Example

Essential Parameter
VOLSER: Volume Serial Number

VOLSER is the volume serial number of the disk volume to be used.

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

136

Adabas UtilitiesCVOLSER: Print Adabas Extents on Given Volume

Example
The Adabas file extents contained on disk volume DISK02 are to be printed.

ADADBS CVOLSER VOLSER=DISK02

137

CVOLSER: Print Adabas Extents on Given VolumeAdabas Utilities

DEALLOCATE: Deallocate File Extent
The DEALLOCATE function may be used to deallocate an address converter, Data Storage, normal index
or upper index extent. Only one extent may be deallocated per ADADBS execution.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Example

Essential Parameters
ACSIZE | DSSIZE | NISIZE | UISIZE: Extent Type and Size

These parameters specify the type and size of extent to be deallocated. One and only one extent
type and size may be specified. The size must be in number of RABN blocks followed by "B"
(for example, DSSIZE=20B), and cannot exceed the number of unused RABNs at the end of an
extent.

FILE: File for Which an Extent Is Deallocated

FILE specifies the file for which the extent is to be deallocated. Specify a decimal value.

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

138

Adabas UtilitiesDEALLOCATE: Deallocate File Extent

The password of the file for which space is to be deallocated. This parameter is required if the
file is password-protected. Specify the password between apostrophes (’).

STARTRABN: Starting RABN for Extent

The first RABN of the extent in which deallocation is to take place. If this parameter is omitted,
the last extent for the file will be deallocated. In the address converter, only the last extent may
be deallocated.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

Example
An address converter extent of 30 blocks is to be deallocated for file 15.

ADADBS DEALLOCATE FILE=15,ACSIZE=30B

139

DEALLOCATE: Deallocate File ExtentAdabas Utilities

DECREASE: Decrease Associator Data
Storage
The DECREASE function decreases the size of the last dataset currently being used for Associator or Data
Storage. The space to be released must be available in the free space table (FST).

The DECREASE function does not deallocate any of the specified physical extent space.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Example

Procedure

Essential Parameter
ASSOSIZE | DATASIZE: Blocks to Be Decreased

ASSOSIZE/DATASIZE define the number of blocks by which the Associator or Data Storage
dataset is to be decreased, specified as a decimal value followed by "B". Either ASSOSIZE or
DATASIZE can be specified, but not both. If both ASSOSIZE and DATASIZE are to be
specified, each must be entered on a separate ADADBS DECREASE statement.

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

140

Adabas UtilitiesDECREASE: Decrease Associator Data Storage

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

Example
The Associator is to be decreased by 100 blocks and Data Storage is to be decreased by 200 blocks.

ADADBS DECREASE ASSOSIZE=100B
ADADBS DECREASE DATASIZE=200B

Procedure

 To deallocate space, perform the following steps:

1. Decrease the database with the DECREASE function;

2. Save the database with ADASAV SAVE;

3. Reformat the datasets with ADAFRM;

4. Restore the database with ADASAV.

141

DECREASE: Decrease Associator Data StorageAdabas Utilities

DELCP: Delete Checkpoint Records
The DELCP function deletes checkpoint records.

After running ADADBS DELCP, the remaining records are reassigned ISNs to include those ISNs made
available when the checkpoint records were deleted. The lower ISNs are assigned but the chronological
order of checkpoints is maintained.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Example

Essential Parameter
TODATE: Last Date for Deleted Records

TODATE specifies the latest date for which checkpoint information is deleted. Checkpoint
information dated after the date specified by TODATE= is not deleted. TODATE= must be
specified; there is no default date. Specify the date as a four-digit decimal value for year
followed by two-digit decimal values for month and day, in that order.

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

142

Adabas UtilitiesDELCP: Delete Checkpoint Records

Example
All checkpoint records up to and including February 1, 1996 are to be deleted.

ADADBS DELCP TODATE=19960201

143

DELCP: Delete Checkpoint RecordsAdabas Utilities

DELETE: Delete File
The DELETE function deletes an Adabas file from the database.

When an Adabas file is deleted from the database, all logical extents assigned to the file are deallocated.
The released space may be used for a new file or for a new extent of an existing file.

The file to be deleted may not be coupled. If an Adabas expanded file is specified, the complete expanded
file (the anchor and all component files) is deleted.

When the DELETE function completes successfully, any locks previously set with the operator commands
LOCKU or LOCKF are reset.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Examples

Essential Parameter
FILE: File to Be Deleted

FILE specifies the number of the Adabas file to be deleted. An Adabas system file may be
specified only if ADADBS DELETE is the only Adabas user; deleting a system file
automatically causes Adabas to terminate when finished. Adabas system files are checkpoint,
security, triggers, and any other files loaded with the ADALOD utility’s SYSFILE option. To
delete an Adabas expanded file, specify the file number (also the anchor file).

PLOG | CLOG: Type of Log Dataset to be Deleted

Whether one of several protection log (PLOG) or command log (CLOG) datasets is to be
deleted. Two or more log datasets must remain after the deletion; if this is not the case, an error
is returned and the dataset is not deleted.

Optional Parameters
KEEPFDT: Retain the Field Definition Table

144

Adabas UtilitiesDELETE: Delete File

The KEEPFDT parameter, if specified, instructs ADADBS DELETE to keep the deleted file’s
field definition table (FDT) for later use by ADACMP. If this parameter is specified, a file with the same
number as the one now being deleted can only be later loaded if either the new file’s FDT is the same as
that of the deleted file, or the load operation specifies the IGNFDT parameter to accept the new file’s
FDT.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

PASSWORD specifies the password of the file to be deleted. This parameter is required if the
file is password-protected.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

Examples
File 6 is to be deleted.

ADADBS DELETE FILE=6

Password-protected file 10 is to be deleted. The field definition table is to be retained. File number 10
cannot be used again until another ADALOD LOAD command is issued with the IGNFDT option.

ADADBS DELETE
FILE=10,KEEPFDT,PASSWORD=’FILE10’

The current number of PLOG datasets for the session is 5. Delete one of these datasets.

ADADBS DELETE PLOG

145

DELETE: Delete FileAdabas Utilities

DSREUSE: Reuse Data Storage Blocks
The DSREUSE function controls the assignment of Data Storage blocks.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Example

Essential Parameters
FILE: File Number

FILE is the number of the file for which the DSREUSE setting is to apply.

Block reuse is originally determined when the file is loaded into the database with the
ADALOD FILE function, or when the system file is defined with the ADADEF DEFINE
function. In both cases, block reuse defaults to "YES" unless specified otherwise in those
functions.

MODE: Reuse Mode

The Data Storage block assignment mode to be in effect. MODE=OFF indicates that Data
Storage blocks which become free as a result of record deletion may not be reused, in effect
cancelling the ADADBS DSREUSE function. MODE=ON indicates that Data Storage blocks
may be reused. The MODE= parameter has no default, and must be specified.

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

146

Adabas UtilitiesDSREUSE: Reuse Data Storage Blocks

PASSWORD: File Password

PASSWORD specifies the file’s security password, and is required if the file is
password-protected.

RESET: Reset Space Pointer

The RESET parameter causes searches for new Data Storage space to start at the beginning of
the file.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

Example
Data Storage blocks for file 6 are not to be reused.

ADADBS DSREUSE FILE=6,MODE=OFF

147

DSREUSE: Reuse Data Storage BlocksAdabas Utilities

ENCODEF: Change File Encoding

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Example

Essential Parameter
FILE: File Number

FILE is the number of the file for which encoding is to be changed.

Optional Parameters
FACODE: Encoding for Alphanumeric Fields in File

The FACODE parameter defines the encoding for alphanumeric fields stored in the file. It can
be applied to files already loaded. The encoding must be derived from EBCDIC encoding; that
is, X’40’ is the space character. Double-byte character set (DBCS) type encodings are supported
with the exception of DBCS-only. See Supplied UES Encodings for a list of supplied code
pages.

FACODE and/or UWCODE must be specified.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information about using the TEST

148

Adabas UtilitiesENCODEF: Change File Encoding

parameter in ADADBS functions.

UWCODE: User Encoding for Wide-Character Fields in File

The UWCODE parameter defines the user encoding for wide-character fields stored in the file.
It can be applied to files already loaded. Note that the wide file encoding is not changed.

To change the encoding of wide-character fields, the file must be unloaded, decompressed,
compressed, and reloaded.

FACODE and/or UWCODE must be specified. See Supplied UES Encodings for a list of
supplied code pages.

Example
In file 1425, change the encoding of alphanumeric fields to use code page 285 (CECP: United Kingdom,
EBCDIC-compatible with X’40’ fill character) and change the encoding of wide fields to use code page
3396 (IBM, CCSID 4396, Japanese host double byte including 1880 user-defined characters). Note that
because UWCODE is changing, the file must be unloaded, decompressed, compressed, and reloaded.

ADADBS ENCODEF FILE=1425,FACODE=285,UWCODE=3396

149

ENCODEF: Change File EncodingAdabas Utilities

INCREASE: Increase AssociatorData
Storage
The INCREASE function increases the size of the last dataset currently being used for the Associator or
Data Storage. This function may be executed any number of times for the Associator. The maximum of
five Data Storage space tables (DSSTs) limits Data Storage increases to four before all five Data Storage
extents must be combined into a single extent with either the REORASSO or REORDB function of the
ADAORD utility.

Notes:

1. The Associator and Data Storage dataset sizes must be increased separately. It is not possible to
increase both with a single operation.

2. After an INCREASE operation is completed, the INCREASE function automatically ends the current
nucleus session. This allows for the necessary Associator or Data Storage formatting with ADAFRM
before a new session is started. An informational message occurs to tell you that the nucleus has been
stopped.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Example

General Procedure

Operating-System-Specific Procedures

Essential Parameter
ASSOSIZE | DATASIZE: Size to Be Increased

The additional number of blocks or cylinders needed by the Associator or Data Storage dataset.
To specify blocks, add "B" after the value; for example, DATASIZE=50B.

Optional Parameters
NOUSERABEND: Termination Without ABEND

150

Adabas UtilitiesINCREASE: Increase AssociatorData Storage

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and the utility
terminates with condition code 20.

TEST: Test Syntax

Use the TEST parameter to test the operation syntax without actually performing the operation.
Only the syntax of the specified parameters can be tested; not the validity of values and
variables. See Syntax Checking with the TEST Parameter for more information about using this
parameter.

Example
The Associator is to be increased by 400 cylinders.

ADADBS INCREASE ASSOSIZE=400

General Procedure

 The general procedure for increasing the size of the Associator or Data Storage is as follows:

1. Back up the database using the ADASAV utility. This step is optional but recommended.

2. Execute the ADADBS INCREASE function.

3. Format the additional space being added to the dataset with the ADAFRM utility.

Operating-System-Specific Procedures

OS/390 or z/OS Systems

Under OS/390 or z/OS, the same dataset may be formatted by specifying the DISP=MOD parameter in the
JCL. The SPACE parameter for the dataset being increased should be set to

SPACE=(CYL,(0, n))

where n is the amount of space (in cylinders) being added. The ADAFRM control statement should also
specify the number of cylinders being added. If the increased part of the dataset to be formatted is
contained on a new volume, the VOL parameter of the JCL must include references to all volumes
containing the dataset.

Example 1: OS Single-Volume INCREASE

400 cylinders are to be added to an Associator dataset which currently contains 300 cylinders. The control
statement for the INCREASE function would be:

151

INCREASE: Increase AssociatorData StorageAdabas Utilities

ADADBS INCREASE ASSOSIZE=400

The following JCL example increases the Associator dataset using ADAFRM:

//DDASSOR1 DD
DSN=....,DISP=MOD,SPACE=(CYL,(0,400))

and the actual ADAFRM control statement would be

ADAFRM ASSOFRM SIZE=400

Example 2: OS Multivolume INCREASE

To provide the increase in example 1 for multiple volumes, specify the volumes in the JCS:

//DDASSOR1 DD DSN=...
//
DISP=(MOD,CATLG),VOL=SER=(V1,V2,...),SPACE=(CYL,(0,400))...

Include the following step after the INCREASE step but before the FORMAT step to ensure a correct
catalog entry:

//UNCATLG EXEC PGM=IEFBR14
//DDASSOR1 DD DSN=...,DISP=(SHR,UNCATLG)

VSE/ESA Systems

 The following procedures are recommended for increasing Associator or Data storage:

1. Save the current database.

2. End the Adabas session normally with the ADAEND operator command.

3. Update the JCS defining the database to add the new extent on the same volume.

Before a new Associator or Data extent on either a different or the same VSE volume can be
increased with ADADBS INCREASE and formatted with ADAFRM, that volume’s table of contents
(VTOC) must be updated to contain the new extent.

Use a job similar to the following example to update the VTOC for a single volume extent:

* $$ JOB JNM=jobname
* $$ LST ...
* $$ PCH ...
// ASSGN SYS001,DISK,VOL=volume,SHR
// DLBL ASSOEXT,’dsname’,99/365,DA
// EXTENT SYS001,volume1,1,0,starttrack1,trackcount1
// EXTENT SYS001,volume1,1,1,starttrack2,trackcount2

// EXEC ASSEMBLY,GO
MODVTOC CSECT
 BALR 9,0
 BCTR 9,0
 BCTR 9,0
 USING MODVTOC,9
 OPEN ASSOEXT
 CLOSE ASSOEXT
 EOJ RC=0

152

Adabas UtilitiesINCREASE: Increase AssociatorData Storage

ASSOEXT DTFPH TYPEFLE=OUTPUT,DEVADDR=SYS001,DEVICE=DISK,MOUNTED=ALL
 END
/*
/&
* $$ EOJ

For a two-volume extent, use a job similar to the following example:

* $$ JOB JNM=jobname
* $$ LST ...
* $$ PCH ...
// ASSGN SYS001,DISK,VOL=volume1,SHR
// ASSGN SYS002,DISK,VOL=volume2,SHR
// DLBL ASSOEXT,’dsname’,99/365,DA
// EXTENT SYS001,volume1,1,0,starttrack1,trackcount1
// EXTENT SYS002,volume2,1,1,starttrack2,trackcount2
// EXEC ASSEMBLY,GO
MODVTOC CSECT
 BALR 9,0
 BCTR 9,0
 BCTR 9,0
 USING MODVTOC,9
 OPEN ASSOEXT
 CLOSE ASSOEXT
 EOJ RC=0
ASSOEXT DTFPH TYPEFLE=OUTPUT,DEVADDR=SYS001,DEVICE=DISK,MOUNTED=ALL
 END
/*
/&
* $$ EOJ

Note:
This job causes VSE error message 4733D to be sent to the console, and the operator is asked for a
response. After the JCS has been validated, the operator response should be "DELETE".

4. Perform the ADADBS INCREASE operation.

5. Run the new ADAFRM job to format the new extent. The ADAFRM job must specify the
FROMRABN parameter, as shown in the following example:

ADAFRM ASSOFRM SIZE=size ,FROMRABN=rabn-number

where size is the number of cylinders or blocks by which the dataset is to be increased, and
rabn-number is the first RABN in the new extent.

6. Start the Adabas nucleus.

Note:
In a VM environment, certain restrictions apply to multivolume, multiextent files. If these restrictions
are violated, VSE error 4n83I (invalid logical unit) may occur. Refer to the appropriate IBM
documentation for more information about these restrictions.

VM/ESA or z/VM Systems

Under VM/ESA or z/VM, there are two procedures for increasing the database. The first uses the
ADAMAINT and INCREASE EXECs; the second is a step-by-step manual procedure.

153

INCREASE: Increase AssociatorData StorageAdabas Utilities

 EXEC Procedure

1. Call the ADAMAINT EXEC to modify your CMS environment:

ADFnnnnn EXEC, DB nnnnn VOLUMES volume =vol-id , ...

ADAMAINT lets you add a new minidisk to an existing ASSO/DATA/WORKRx, or define a new
ASSO/DATA/WORKRx.

2. Call the INCREASE EXEC. This EXEC automatically does a LINK, an ADADBS ADD, or an
ADADBS INCREASE (depending on what you specify in ADAMAINT), followed by an ADAFRM
to format the new area.

 Manual Procedure

1. Define a new minidisk that is one cylinder (or pseudo-cylinder) larger than the required size.

2. Issue the FORMAT command:

FORMATcuu T nnn

where cuu is the virtual unit address of the new minidisk and nnn is "1" for a CKD device or "20" for
an FBA device. When prompted for a volume label, you must specify a unique name of up to six
alphanumeric characters.

3. Reserve the minidisk with the following command:

RESERVE file-name file-type T

where file-name and file-type match the file name and file type used for the file on the primary
minidisk.

4. Execute the ADADBS INCREASE utility as described in this document.

5. End the Adabas session with ADAEND.

6. Produce an ADAREP report, and find the first RABN in the new extent. This may be located in the
physical layout of the database. The RABN range on this extent indicates VOLSER NUMBER
"xxxxxx".

7. Add CP LINK statements for the new minidisk to the directory or PROFILE EXEC, as required.
Update any PROFILE EXECs or CP directory entries for any other virtual machines with multiwrite
access to this database (for example, the DBA machine).

8. For any EXECs that require it, modify the DATADEF statements for the file. If the standard
Software AG EXECs are being used, these DATADEF statements are found in the ADFnnnnn
EXEC, where "nnnnn" is the five-digit database ID.

To modify the DATADEF statement, locate the line:

volx = vol-id

154

Adabas UtilitiesINCREASE: Increase AssociatorData Storage

where volx is "a" for the Associator or "d" for DATA, and vol-id is the previous volume list. Change
this line to:

volx =(vol-id , vo-label)

where vo-label is the volume label specified while entering the FORMAT command in step 2.

9. Execute the ADAFRM utility for the file as:

ADAFRM xxxx FRM SIZE= size ,FROMRABN=rabn-number

where

xxxx is either ASSO or DATA

size is the size of the minidisk minus one cylinder (or psuedo-cylinder)

rabn-number is the first RABN on the new extent as shown in the report created
in step 6.

BS2000 Systems

 Use the following procedure to increase the database on BS2000 systems:

1. Execute ADADBS INCREASE as described in section General Procedure.

2. End the Adabas session with "ADAEND".

3. Produce a database report by running the ADAREP utility. Use the report to find the first RABN for
the new extent in the "Physical Layout of the Database" portion of the report. The RABN range is
indicated in the "VOLSER NUMBER" column.

4. Increase the dataset with the BS2000 "MODIFY-FILE-ATTRIBUTE" command. For example:

/MODIFY-FILE-ATTRIBUTE ADA99.ASSO,PUB(SPACE=REL(400))

Note:
In the old ISP format, this was performed by the FILE command; for example, /FILE
ADA99.ASSO, SPACE=400 .

5. Format the new space by running the ADAFRM utility. An example for the space added in step 4 is:

ADAFRM ASSOFRM SIZE=400B,FROMRABN=rabn-number

where rabn-number specifies the first RABN shown on the new extent, as shown in the report.

155

INCREASE: Increase AssociatorData StorageAdabas Utilities

ISNREUSE: Reuse ISNs
The ISNREUSE function controls whether ISNs of deleted records may be reassigned to new records.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Example

Essential Parameters
FILE: File Number

FILE is the number of the file for which the ISNREUSE setting is to be changed. The
checkpoint file cannot be specified.

MODE: Reuse Mode

MODE causes the ISN reuse mode to be in effect. MODE=OFF causes Adabas not to reuse the
ISN of a deleted record for a new record. Each new record will be assigned the next higher
unused ISN. MODE=ON indicates that Adabas may reuse the ISN of a deleted record. The
MODE parameter has no default; it must be specified.

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

156

Adabas UtilitiesISNREUSE: Reuse ISNs

PASSWORD specifies the file’s security password, and is required if the file is
password-protected.

RESET: Reset ISN Pointer

The RESET parameter causes searches for an unused ISN to start at the beginning of the file.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Note
that the validity of values and variables cannot be tested: only the syntax of the specified
parameters can be tested. See Syntax Checking with the TEST Parameter for more information
on using the TEST parameter in ADADBS functions.

Example
ISNs of deleted records in file 7 may be reassigned to new records.

ADADBS ISNREUSE FILE=7,MODE=ON

157

ISNREUSE: Reuse ISNsAdabas Utilities

MODFCB: Modify File Parameters
The MODFCB function modifies various parameters for a non-system Adabas file.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Example

Essential Parameter
FILE: File Number

FILE is the number of the Adabas file to be modified. An Adabas system file cannot be
specified.

Optional Parameters
ASSOPFAC/ DATAPFAC: File Padding Factors

ASSOPFAC/DATAPFAC specify the padding factor (1-90) to be in effect for Associator and
Data Storage, respectively. Existing blocks retain their original padding factor (see the
ADAORD utility).

MAXDS/ MAXNI/ MAXUI: Maximum Secondary Allocation

The maximum number of blocks per secondary extent allocation for the Data Storage
(MAXDS), the normal index (MAXNI), and the upper index (MAXUI).

The value specified must specify blocks, be followed by "B" (for example, MAXDS=8000B),
and cannot be more than 65535B.

158

Adabas UtilitiesMODFCB: Modify File Parameters

If one of the parameters is either not specified or specifies "0B", the maximum secondary extent
allocation for that component has no limit.

In all cases, however, Adabas enforces minimum secondary allocations for these parameters:

MAXDS=6B MAXNI=6B MAXUI=15B

If you specify a value lower than these minimum allocations, the minimum value is used.

MAXRECL: Maximum Compressed Record Length

The maximum compressed record length permitted for the file. The value specified should not
be less than the current maximum record size in the specified file.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

This parameter is required if the file is password-protected.

PGMREFRESH: Program-generated File Refresh

The PGMREFRESH option determines whether a user program is allowed to perform a file
refresh operation by issuing a special E1 command. If the parameter is not specified, the option
remains in its current status: either on (YES) or off (NO).

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

Example
The following modifications are to be made for file 203: the Associator padding factor is set to 5, the Data
Storage padding factor to 5, and the maximum Data Storage secondary extent allocation to 100 blocks.

ADADBS MODFCB
FILE=203,ASSOPFAC=5,DATAPFAC=5,MAXDS=100B

159

MODFCB: Modify File ParametersAdabas Utilities

NEWFIELD: Add New Field
The NEWFIELD function adds one or more fields to a file. The new field definition is added to the end of
the field definition table (FDT).

Note:
Although the definition of a descriptor field is independent of the record structure, note that if a descriptor
field is not ordered first in a record and logically falls past the end of the physical record, the inverted list
entry for that record is not generated for performance reasons. To generate the inverted list entry in this
case, it is necessary to unload short, decompress, and reload the file; or use an application program to
order the field first for each record of the file.

NEWFIELD cannot be used to specify actual Data Storage data for the new field; the data can be specified
later using Adabas aDD/update or Natural commands.

When adding a field to an Adabas expanded file, the field must be added to each individual component
file . Each NEWFIELD operation on a component file returns a message that confirms the change and
condition code 4.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Example

Essential Parameter
FILE: File Number

FILE specifies the file in which the field to be added is contained. The file may not be an
Adabas system file.

Optional Parameters
FNDEF: Adabas Field Definition

160

Adabas UtilitiesNEWFIELD: Add New Field

FNDEF specifies an Adabas field (data) definition. One FNDEF statement is required for each
field to be added. The syntax used in constructing field definition entries is

Each definition must adhere to the field definition syntax as described for the ADACMP utility
in section FNDEF: Field/Group Definition.

Note the following restrictions:

A subdescriptor, superdescriptor, hyperdescriptor, or phonetic descriptor definition cannot
be specified.

Text information or sequence numbers are not permitted.

If you specify an occurrence number when adding an MU or PE field, it is ignored.

The following rules apply when you set the level number in the first FNDEF statement:

1. A level number 01 is always allowed.

2. A level number of 02 or higher means that this field is to be added to an existing group. If
so, the following rules apply:

The field can be added if the group is a normal (not periodic) group;

If the group is a PE, the field can be added only if the file control block (FCB) for the
file does not exist; that is, either the file was deleted with the KEEPFDT option, or the
FDT was defined using the Adabas Online System "Define FDT" function but the
"Define File" function has not yet been run.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

File password. This parameter is required if the file is password-protected.

SUBFN/ SUPFN: Add Subfields or Superfields

These parameters may be used to add subfields and superfields. Each definition must adhere to
the definition syntax for sub/superfields as described for the ADACMP utility.

TEST: Test Syntax

161

NEWFIELD: Add New FieldAdabas Utilities

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

Example
Group AB (consisting of fields AC and AX) is to be added to file 24.

ADADBS NEWFIELD FILE=24
ADADBS FNDEF=’01,AB’
ADADBS FNDEF=’02,AC,3,A,DE,NU’
ADADBS FNDEF=’02,AX,5,P,NU’

162

Adabas UtilitiesNEWFIELD: Add New Field

ONLINVERT: Start Online Invert
The ONLINVERT function starts an online invert process.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Example

Essential Parameters
FILE: File Number

File is the number of the file for which the new descriptor is to be created. If a component file of
an expanded file chain is specified, the descriptor is added to all component files of that chain.

FIELD/ SUBDE/ SUPDE/ PHONDE/ HYPDE/ COLDE: Define Descriptor

Exactly one of these parameters must be used to define the type of descriptor to be inverted.
Only one descriptor per file can be inverted at a time using the online invert function.

Use the FIELD parameter to define a field as descriptor; use the COLDE parameter for a
collation descriptor; the HYPDE parameter for a hyperdescriptor; PHONDE for a phonetic
descriptor; SUBDE for a subdescriptor; and SUPERDE for a superdescriptor.

FIELD specifies an existing field to be inverted. The field may be an elementary or
multiple-value field and may be contained within a periodic group (unless the field is defined
with the FI option).

If the descriptor is to be unique, specify "UQ" following the field name. A field in a periodic
group cannot be defined as a unique descriptor. If the uniqueness of the descriptor is to be
determined with the index (occurrence number) excluded, specify "XI" as well.

163

ONLINVERT: Start Online InvertAdabas Utilities

When inverting a sub- or superfield, the respective SUBDE or SUPDE parameter must specify
the same parent fields that were specified when the field was created; otherwise, an error occurs. Begin
and end values are taken from the original field definitions.

If a parent field with the NU option is specified, no entries are made in the inverted list for those
records containing a null value for the field. For super- and hyperdescriptors, this is true regardless of the
presence or absence of values for other descriptor elements.

If a parent field is not initialized and logically falls past the end of the physical record, the
inverted list entry for that record is not generated for performance reasons. To generate the inverted list
entry in this case, it is necessary to unload short, decompress, and reload the file; or use an application
program to initialize the field for each record of the file.

See the ADACMP utility description for detailed information about the individual descriptor
syntax, subparameter values, and coding.

Optional Parameters
CODE: Cipher Code

If the file specified with the FILE parameter is ciphered, an appropriate cipher code must be
supplied using the CODE parameter.

PASSWORD: File Password

If the file specified with the FILE parameter is security-protected, the file’s password must be
supplied using the PASSWORD parameter.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

WAIT: Wait for End of Process

Specify WAIT if ADADBS is to wait for the end of the online process before proceeding either
with the next function or with termination.

If WAIT is not specified, ADADBS proceeds immediately after initiating the online process.

164

Adabas UtilitiesONLINVERT: Start Online Invert

Example
Initiate an online process to make field AA of file 10 a descriptor, without waiting for the end of this
process.

ADADBS ONLINVERT FILE=10,FIELD=AA

165

ONLINVERT: Start Online InvertAdabas Utilities

ONLREORFASSO: Start Online Reorder
Associator for Files
The ONLREORFASSO function starts an online process to reorder the Associator of the specified files.

Notes:

1. The online reorder process does not change the existing file extents but only reorganizes the file’s
index within these extents.

2. The online index reorder process dows not move index elements out of blocks that are full (according
to the Asso padding factor); it only moves elements into blocks that are not full.

3. Released index blocks are put into the unused RABN chain, which can be viewed using the ADAICK
ICHECK utility function.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Example

Essential Parameters
FILE: File Number

FILE specifies the file to which the parameters that follow in the statement sequence apply.

Several files and their related parameters may be specified within one ONLREORFASSO
operation. In this case, the files are reordered in the specified sequence.

If a component file of an Adabas expanded file is specified, only that file’s Associator is
reordered; this has no adverse effect on the other component files.

The Adabas checkpoint or security file number must not be specified.

166

Adabas UtilitiesONLREORFASSO: Start Online Reorder Associator for Files

Optional Parameters
ASSOPFAC: Associator Padding Factor

ASSOPFAC defines the Associator block padding factor, which is the percentage of each
Associator block not used during the reorder process. Specify a value in the range 1-90. The
number of bytes free after padding must be greater than the largest descriptor value plus 10.

If this parameter is omitted, the current padding factor in effect for the file is used.

PASSWORD: File Password

If the file is password-protected, use this parameter to specify the password.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility does not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

WAIT: Wait for End of Process

Specify WAIT if ADADBS is to wait for the end of the online process before proceeding either
with the next function or with termination.

If WAIT is not specified, ADADBS proceeds immediately after initiating the online process.

Example
Initiate an online process that reorders the Associator of file 10 first and then file 11. The Associator
padding factor of file 11 is to be 5 percent.

ADADBS ONLREORFASSO FILE=10
ADADBS FILE=11,ASSOPFAC=5

167

ONLREORFASSO: Start Online Reorder Associator for FilesAdabas Utilities

ONLREORFDATA: Start Online Reorder
Data for Files
The ONLREORFDATA function starts an online process to reorder the Data Storage of the specified files.

Note:
The online reorder process does not change the existing file extents but only reorganizes the file’s Data
Storage records within these extents.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Example

Essential Parameters
FILE: File Number

FILE specifies the file to which the parameters that follow in the statement sequence apply.

Several files and their related parameters may be specified within one ONLREORFDATA
operation. In this case, the files are reordered in the specified sequence.

If a component file of an Adabas expanded file is specified, only that file’s Data Storage is
reordered; this has no adverse effect on the other component files.

The Adabas checkpoint or security file number must not be specified.

Optional Parameters
DATAPFAC: Data Storage Padding Factor

DATAPFAC specifies the Data Storage padding factor. The number specified represents the
percentage of each Data Storage block that remains unused when the file is reordered. A value
in the range 1-90 may be specified (see ADALOD utility for additional information about
setting and using the Data Storage padding factor).

168

Adabas UtilitiesONLREORFDATA: Start Online Reorder Data for Files

If this parameter is omitted, the current padding factor in effect for the file is used.

SORTSEQ: File Reordering Sequence

SORTSEQ determines the sequence in which the file is processed. If this parameter is omitted,
the records are processed in physical sequence.

Note:
Records within a single Data Storage block are not sorted according to the specified sequence.

If a descriptor is specified, the file is processed in the logical sequence of the descriptor values.
Do not use a hyperdescriptor, a phonetic descriptor, a multiple-value field, or a descriptor
contained in a periodic group.

If ISN is specified, the file is processed in ascending ISN sequence.

PASSWORD: File Password

If the file is password-protected, use this parameter to specify the password.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility does not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

WAIT: Wait for End of Process

Specify WAIT if ADADBS is to wait for the end of the online process before proceeding either
with the next function or with termination.

If WAIT is not specified, ADADBS proceeds immediately after initiating the online process.

Example
Initiate an online process that reorders the Data Storage of file 10 first, and then file 11. The Data Storage
padding factor of file 11 is to be 5 percent.

ADADBS ONLREORFDATA FILE=10
ADADBS FILE=11,DATAPFAC=5

169

ONLREORFDATA: Start Online Reorder Data for FilesAdabas Utilities

ONLREORFILE: Start Online Reorder
Associator and Data for Files
The ONLREORFILE function starts an online process to reorder the Associator and Data Storage of the
specified files.

Note:
The online reorder process does not change the existing file extents but only reorganizes the file’s index
and Data Storage records within these extents.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Example

Essential Parameters
FILE: File Number

FILE specifies the file to which the parameters that follow in the statement sequence apply.

Several files and their related parameters may be specified within one ONLREORFILE
operation. In this case, the files are reordered in the specified sequence.

If a component file of an Adabas expanded file is specified, only that file’s Associator and Data
Storage is reordered; this has no adverse effect on the other component files.

The Adabas checkpoint or security file number must not be specified.

Optional Parameters
ASSOPFAC: Associator Padding Factor

170

Adabas UtilitiesONLREORFILE: Start Online Reorder Associator and Data for Files

ASSOPFAC defines the new Associator block padding factor, which is the percentage of each
Associator block not used during the reorder process. Specify a value in the range 1-90. The
number of bytes free after padding must be greater than the largest descriptor value plus 10.

If this parameter is omitted, the current padding factor in effect for the file is used.

DATAPFAC: Data Storage Padding Factor

DATAPFAC specifies the new Data Storage padding factor. The number specified represents
the percentage of each Data Storage block that remains unused when the file is reordered. A
value in the range 1-90 may be specified (see the ADALOD utility for additional information
about setting and using the Data Storage padding factor).

If this parameter is omitted, the current padding factor in effect for the file is used.

SORTSEQ: File Reordering Sequence

SORTSEQ determines the sequence in which the file is processed. If this parameter is omitted,
the records are processed in physical sequence.

Note:
Records within a single Data Storage block are not sorted according to the specified sequence.

If a descriptor is specified, the file is processed in the logical sequence of the descriptor values.
Do not use a hyperdescriptor, a phonetic descriptor, a multiple-value field, or a descriptor
contained in a periodic group.

If ISN is specified, the file is processed in ascending ISN sequence.

PASSWORD: File Password

If the file is password-protected, use this parameter to specify the password.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility does not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

WAIT: Wait for End of Process

Specify WAIT if ADADBS is to wait for the end of the online process before proceeding either
with the next function or with termination.

171

ONLREORFILE: Start Online Reorder Associator and Data for FilesAdabas Utilities

If WAIT is not specified, ADADBS proceeds immediately after initiating the online process.

Example
Initiate an online process that reorders the Associator and Data Storage of file 10 first, and then file 11.
The Associator padding factor of file 10 is to be 5 percent; the Data Storage padding factor of file 11 is to
be 10 percent.

ADADBS ONLREORFILE FILE=10,ASSOPFAC=5
ADADBS FILE=11,DATAPFAC=10

172

Adabas UtilitiesONLREORFILE: Start Online Reorder Associator and Data for Files

OPERCOM: Adabas Operator Commands
The OPERCOM function issues operator commands to the Adabas nucleus.

In an Adabas cluster environment, OPERCOM commands can be directed to a single cluster nucleus or to
all active nuclei in the cluster. If a particular nucleus is not specified, the command defaults to the local
nucleus.

Adabas issues a message to the operator, confirming command execution.

In this section, the discussion of the individual operator commands follows the discussion of the optional
parameters, since some of the operator commands behave differently when issued in an Adabas cluster
environment.

This chapter covers the following topics:

Using OPERCOM Commands in Cluster Environments

Optional Parameters

Operator Commands

Using OPERCOM Commands in Cluster Environments
Some ADARUN parameters are "global"; that is, they must have the same values for all nuclei in a
cluster. Of these, some are set at session initialization and cannot be changed. Others can be modified on a
running system. OPERCOM commands that change these modifiable global parameter values are handled
in a special way in cluster environments.

If an Adabas cluster nucleus changes one or more "global" parameters, that nucleus acquires a "parameter
change lock", makes the changes in its local parameter area, informs the other cluster nuclei of the
changes and waits for a reply. The other cluster nuclei make the changes in their own local parameter
areas and send an "acknowledge" message.

Optional Parameters
GLOBAL: Operate Across All Active Cluster Nuclei

Five OPERCOM commands use the GLOBAL option to operate across all active nuclei in a
cluster: ADAEND, CANCEL, FEOFCL, FEOFPL, and HALT. For example:

173

OPERCOM: Adabas Operator CommandsAdabas Utilities

ADADBS OPERCOM ADAEND, GLOBAL

All other OPERCOM commands use the NUCID=0 option to operate across all active nuclei in
a cluster.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

NUCID: Cluster Nucleus ID

Any nucleus running in an Adabas nucleus cluster is allowed to run Adabas utilities such as
ADADBS.

With certain exceptions, the NUCID parameter allows you to direct the ADADBS OPERCOM
commands to a particular nucleus in the cluster for execution, just as though the command had
been issued by a locally run ADADBS OPERCOM operation. You can route most OPERCOM
commands to all nuclei in a cluster by specifying NUCID=0.

If NUCID is not specified in a cluster environment, the command is routed to the local nucleus.

TEST: Test Syntax

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; nor the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

Operator Commands
ADAEND

This command terminates an Adabas session normally. No new users are accepted after this
command has been issued. ET logic updating is continued until the end of the current logical
transaction for each user. After all activity has been completed as described above, the Adabas
session is terminated.

In nucleus cluster environments, the GLOBAL option can be used to terminate the Adabas
session in all active cluster nuclei.

ALOCKF

174

Adabas UtilitiesOPERCOM: Adabas Operator Commands

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

Lock a file in advance to ensure that an EXU, EXF, or UTI user will have exclusive control of
the specified file. The advance-lock prevents new transactions from using the file. Once all current users
have stopped using the file, the exclusive-control user has the lock. Until then, the exclusive-control user
must wait.

To remove the advance lock without running the utility, see the RALOCKF command.

This command is not available

in single user mode; or

for a read-only nucleus.

CANCEL

Cancel the Adabas session immediately. All command processing is immediately suspended. A
pending autorestart is in effect which in turn causes the autorestart routine to be executed during
the initialization of the next Adabas session.

In nucleus cluster environments, the GLOBAL option can be used to cancel the Adabas session
in all active cluster nuclei.

CLOGMRG

Switches automatic command log merging (ADARUN CLOGMRG parameter value) on or off
in nucleus cluster environments.

The CLOGMRG command is global by definition and affects all nuclei in the cluster. If a
NUCID is specified, it is ignored.

CLUFREEUSER

175

OPERCOM: Adabas Operator CommandsAdabas Utilities

Note:
The CLUFREEUSER command is only valid in cluster environments. It can be issued against
the local nucleus only or, with the GLOBAL option, against all active and inactive nuclei in the cluster.

Delete leftover user table elements (UTEs) in common storage that are no longer associated with
user queue elements (UQEs) in a nucleus where

TNA is a decimal number specifying the timeout value in seconds. UTEs
that are not used during the time specified may be deleted if other
conditions are fulfilled. If TNA= is not specified, UTEs may be
deleted without regard to their recent use.

UID is a character string or hexadecimal byte string as follows:

cccccccc where the argument is 1-8
letters, digits, or embedded ’-’
signs without surrounding
apostrophes.

’ cccccccc ’ where the argument is 1-8
characters with surrounding
apostrophes.

X’ xxxxxxxxxxxxxxxx ’ where the argument is an even
number of 2-16 hexadecimal
digits preceded by an "X" and
enclosed in single quotation
marks.

A character string must be enclosed in apostrophes if it
contains characters other than letter, digits, or embedded ’-’
signs. If a specified character string is less than 8 characters
long, it is implicitly padded with blanks. If a specified
hexadecimal string is shorter than 16 hexadecimal digits, it
is implicitly padded with binary zeros. If the UID string
ends with a ’*’ (or X’5C’), the preceding characters are
treated as a user ID prefix: only the prefix is needed for an
argument match. If the last 8 bytes of a user’s 28-byte
communication ID match a specific user ID or user ID
prefix, that user’s UTE may be deleted if other conditions
are fulfilled. If UID= not specified, UTEs may be deleted
regardless of their user IDs.

FORCE Leftover UTEs are to be deleted even if the users are due a response
code 9, subcode 20. If FORCE is not specified, such UTEs are not
deleted. Before using the FORCE parameter, ensure that the users
owning the UTEs to be deleted will not expect any of their
transactions to remain open.

176

Adabas UtilitiesOPERCOM: Adabas Operator Commands

GLOBAL Leftover UTEs throughout the Adabas cluster are to be deleted if
they are no longer associated with UQEs and are eligible according
to the other specified parameters. Additionally and subject to the
other rules, leftover UTEs are deleted if their assigned nuclei have
terminated since their last use. If GLOBAL is not specified, only
UTEs assigned to the local nucleus and used since the nucleus start
are elibigle for deletion.

NUCID is used to indicate that the command is to be processed by a specific
nucleus in the cluster.

CT

Dynamically override the ADARUN CT parameter value; that is, the maximum number of
seconds that can elapse from the time an Adabas command has been completed until the results
are returned to the user through interregion communication (which depends on the particular
operating system being used). The minimum setting is 1; the maximum is 16777215.

In nucleus cluster environments, the CT command is global by definition and affects all nuclei
in the cluster. If a NUCID is specified, it is ignored.

DAUQ

Display the user queue element (UQE) of each user who has executed at least one Adabas
command within the last 15 minutes.

In nucleus cluster environments, the NUCID=0 option can be used to display information for all
active cluster nuclei. Information is displayed for each nucleus, one after the other.

DCQ

Display all posted command queue elements (CQEs). Each CQE’s user ID, job name, and buffer
length is displayed.

In nucleus cluster environments, the NUCID=0 option can be used to display information for all
active cluster nuclei. Information is displayed for each nucleus, one after the other.

DDIB

Display data integrity block (DIB). This block contains entries indicating which Adabas utilities
are active and the resources being used by each utility. The DDIB function can be performed
with either an active or an inactive nucleus.

In nucleus cluster environments, the information displayed by the DDIB command is global; the
command can be run on any nucleus.

DDSF

177

OPERCOM: Adabas Operator CommandsAdabas Utilities

Display Adabas Delta Save Facility (DSF) status. The Adabas nucleus displays the DSF status
on the operator console as well as in the ADADBS job protocol.

This function is only available if the nucleus is run with the parameter ADARUN DSF=YES.

In nucleus cluster environments, the information displayed by the DDSF command is global; the
command can be run on any nucleus.

DFILES

Displays the number of access, update, EXU, and UTI users for the specified files. User types
are totaled for each file, and are listed by file.

In nucleus cluster environments, the NUCID=0 option can be used to display information for all
active cluster nuclei. Information is displayed for each nucleus, one after the other.

DFILUSE

Displays the count of commands processed for the specified file so far during the current
session.

In nucleus cluster environments, the NUCID=0 option can be used to display information for all
active cluster nuclei. Information is displayed for each nucleus, one after the other.

DHQ

Display up to five hold queue elements.

DHQA

Display all hold queue elements (HQEs).

In nucleus cluster environments, the NUCID=0 option can be used to display information for all
active cluster nuclei. Information is displayed for each nucleus, one after the other.

DLOCKF

Display locked files.

In nucleus cluster environments, the NUCID=0 option can be used to display information for all
active cluster nuclei. Information is displayed for each nucleus, one after the other.

DNC

178

Adabas UtilitiesOPERCOM: Adabas Operator Commands

Display the number of posted command queue elements (CQEs).

In nucleus cluster environments, the NUCID=0 option can be used to display information for all
active cluster nuclei. Information is displayed for each nucleus, one after the other.

DNH

Display the number of ISNs currently in the hold queue.

In nucleus cluster environments, the NUCID=0 option can be used to display information for all
active cluster nuclei. Information is displayed for each nucleus, one after the other.

DNU

Display the number of current users.

In nucleus cluster environments, the NUCID=0 option can be used to display information for all
active cluster nuclei. Information is displayed for each nucleus, one after the other.

DONLSTAT

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

Display status of each active reorder or invert online process together with the process ID.

In nucleus cluster environments, the NUCID=0 option can be used to display information for all
active cluster nuclei. Information is displayed for each nucleus, one after the other.

DPARM

Display the Adabas session parameters currently in effect.

DRES

Display the allocated pool space and the highest use level (’high water mark’) reached so far
during the current session by record count and by percent for the following resources:

attached buffers (AB) - current allocation not supported

command queue (CQ)

format pool (FP)

hold queue (HQ)

pool for the table of ISNs (TBI)

pool for the table of sequential commands (TBQ or TBLES)

user queue (UQ)

179

OPERCOM: Adabas Operator CommandsAdabas Utilities

unique descriptor pool (DUQPOOL)

security pool

user queue file list pool

work pool (WP)

pool for global transaction IDs (XIDs; nonzero only with Adabas Transaction Manager)

cluster block update "redo" pool (nonzero only for a cluster nucleus with ADARUN LRDP
greater than zero)

The actual values are displayed in nucleus message ADAN28 described in the Adabas Messages
and Codes documentation.

DSTAT

Display the current Adabas nucleus operating status.

DTH

Display thread status.

DUQ

Display up to five active and inactive user queue elements.

DUQA

Display all user queue elements (UQEs).

In nucleus cluster environments, the NUCID=0 option can be used to display information for all
active cluster nuclei. Information is displayed for each nucleus, one after the other.

DUQE

Display a user queue element for the specified Adabas-assigned user ID as follows:

DUQE=X’A3CF2’

The user ID must be entered in hexadecimal format. Do not use a job name for the user ID.

In nucleus cluster environments, NUCID must always be specified because the user ID is not
unique to the cluster.

DUUQE

180

Adabas UtilitiesOPERCOM: Adabas Operator Commands

Display utility user queue elements (UQEs).

In nucleus cluster environments, the NUCID=0 option can be used to display information for all
active cluster nuclei. Information is displayed for each nucleus, one after the other.

FEOFCL

Close the current dual or multiple command log and switch to the other dual or another multiple
command log. This command is valid only if dual or multiple command logging is in effect.

In nucleus cluster environments, the GLOBAL option can be used to switch the dual or multiple
command log in all cluster nuclei at the same time.

FEOFPL

Close the current dual or multiple data protection log and switch to the other dual or another
mutliple protection log. This command is valid only if dual or multiple data protection logging
is in effect.

In nucleus cluster environments, the GLOBAL option can be used to switch the dual or multiple
protection log in all cluster nuclei at the same time.

HALT

Stop Adabas session. A BT (backout transaction) command is issued for each active ET logic
user. The Adabas session is then terminated; no dumps are produced.

In nucleus cluster environments, the GLOBAL option can be used to halt the Adabas session in
all active cluster nuclei.

LOCKF

Lock the specified file. The specified file will be locked at all security levels.

LOCKU

181

OPERCOM: Adabas Operator CommandsAdabas Utilities

Lock the specified file for all non-utility use. Adabas utilities can use the file normally.

LOCKX

Lock the specified file for all users except EXU or EXF users. EXU and EXF users can use the
file normally. The lock is released automatically when an EXU user issues an OP command.

LOGGING

Start command logging.

LOGxx

Begin logging as indicated by "xx" for each command logged where "xx" is one of the
following:

CB the Adabas control block

FB the Adabas format buffer

IB the Adabas ISN buffer

IO Adabas I/O activity

RB the Adabas record buffer

SB the Adabas search buffer

UX user data passed in the seventh parameter of the Adabas parameter
list

VB the Adabas value buffer

NOLOGGING

Stop or prevent command logging.

NOLOGxx

Stop or prevent logging of "xx" where "xx" is one of the following:

182

Adabas UtilitiesOPERCOM: Adabas Operator Commands

CB the Adabas control block

FB the Adabas format buffer

IB the Adabas ISN buffer

IO Adabas I/O activity

RB the Adabas record buffer

SB the Adabas search buffer

UX user data passed in the seventh parameter of the Adabas parameter
list

VB the Adabas value buffer

ONLRESUME

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

Resume a previously suspended online reorder or invert process.

In a cluster environment, NUCID must always be specified because the online process ID is not
unique to the cluster.

ONLSTOP

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

Stop an online reorder or invert process cleanly. The process continues up to its next interrupt
point in order to produce a consistent state, and then terminates after performing all necessary
cleanup.

In a cluster environment, NUCID must always be specified because the online process ID is not
unique to the cluster.

ONLSUSPEND

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

183

OPERCOM: Adabas Operator CommandsAdabas Utilities

Suspend an online reorder or invert process. The process continues up to its next interrupt point
in order to produce a consistent state, performs a command throwback, and enters a state where it cannot
be selected for processing. This command is useful if the online process is consuming too much of the
nucleus resources.

In a cluster environment, NUCID must always be specified because the online process ID is not
unique to the cluster.

RALOCKF

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

Remove the advance lock on the specified file (see ALOCKF command) without running the
utility.

RALOCKFA

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

Remove the advance lock on all files for which it has been set (see ALOCKF command) without
running the utility.

RDUMPST

Terminate online dump status. This command is normally used if online execution of the
ADASAV utility has terminated abnormally.

READONLY

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

Switches READONLY status on or off.

In nucleus cluster environments, the READONLY command is global by definition and affects
all nuclei in the cluster. If a NUCID is specified, it is ignored.

REVIEW

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

184

Adabas UtilitiesOPERCOM: Adabas Operator Commands

Deactivate Adabas Review; change from hub mode to local mode; specify or change the Adabas
Review hub with which a nucleus communicates.

STOPF

Stop users who are using the specified file. Only one file number can be specified. This
command does not stop EXF or UTI users.

The optional PURGE parameter removes stopped user queue elements from the user queue
when ADARUN OPENRQ=NO was specified. The following is an example of using the
PURGE parameter:

ADADBS OPERCOM STOPF=5,PURGE

STOPI

Stop users who have not executed a command during the past "time" (in seconds). This
command does not stop EXF or UTI users.

The optional PURGE parameter removes stopped user queue elements from the user queue
when ADARUN OPENRQ=NO was specified. The following is an example of using the
PURGE parameter:

ADADBS OPERCOM STOPI=3600,PURGE

STOPU

Note:
The STOPU=X’userid’ command is not allowed for online ADAORD or ADAINV processes.
See the ONLSTOP=X’identifier’ command instead.

Stop the user with the Adabas-assigned user ID (in the form shown in the display commands),
or stop all users with the job "job-name".

STOPU clears inactive or timed-out users, and deletes the user’s user queue element (UQE). If
the program/user is an ET logic user, is not in ET status, and has not been stopped before
STOPU is issued, Adabas backs out all updates made by the transaction to this point and

185

OPERCOM: Adabas Operator CommandsAdabas Utilities

releases all held records. If the transaction continues, only those changes following the STOPU
are completed.

The user ID must be specified in hexadecimal format; for example:

STOPU=X’A3CF2’

In a cluster environment, NUCID must always be specified because the user ID is not unique to
the cluster.

SYNCC

Force resynchronization of all ET users on the nucleus. The nucleus waits for all ET users to
reach ET status before continuing.

TNAu

Set non-activity time limit (in seconds) for users where u is one of the following:

A for access-only (ACC) users

E for ET logic users

X for exclusive control (EXF/EXU) users

If specified, time must be a value greater than zero; it overrides the ADARUN value.

In nucleus cluster environments, the TNAu commands are global by definition and affect all
nuclei in the cluster. If a NUCID is specified, it is ignored.

TT

<F2ei in the cluster. If a NUCID is specified, it is ignored.

UNLOCKF

Unlock the specified file and restore its usage to the prelocked status.

UNLOCKU

186

Adabas UtilitiesOPERCOM: Adabas Operator Commands

Unlock the specified file for utility use and restore it to its prelocked status for non-utility users.

UNLOCKX

Unlock the specified file and restore its usage to the prelocked status.

UTIONLY

Note:
Not currently available for use with Adabas Parallel Services cluster nuclei.

Switch UTIONLY status on or off.

In nucleus cluster environments, the UTIONLY command is global by definition and affects all
nuclei in the cluster. If a NUCID is specified, it is ignored.

187

OPERCOM: Adabas Operator CommandsAdabas Utilities

PRIORITY: Change User Priority
The PRIORITY function may be used to set or change the Adabas priority of a user. A user’s priority can
range from 0 (the lowest priority) to 255 (the highest priority).

The user is identified by the same user ID provided in the Adabas control block (OP command, additions
1 field).

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Example

Essential Parameter
USERID: User ID

The user ID in the checkpoint file of the user for which priority is to be changed. If a record for
this user does not exist, a new one is added to the checkpoint file.

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PRTY: User Priority

The priority to be in effect for the user. A value in the range 0 for lowest priority to 255 for the
highest priority may be specified. The default is 255. This value will be added to the operating
system priority by the interregion communications mechanism.

TEST: Test Syntax

188

Adabas UtilitiesPRIORITY: Change User Priority

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

Example
ADADBS PRIORITY USERID=’USER24’,PRTY=7

Set the priority assignment for the user with the user ID "USER24" to 7.

189

PRIORITY: Change User PriorityAdabas Utilities

RECOVER: Recover Space
The RECOVER function recovers space allocated by rebuilding the free space table (FST). RECOVER
subtracts file, DSST, and alternate RABN extents from the total available space.

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

190

Adabas UtilitiesRECOVER: Recover Space

REFRESH: Set File to Empty Status
The REFRESH function sets the file to 0 records loaded; sets the first extent for the address converter,
Data Storage, normal index, and upper index to "empty" status; and deallocates other extents.

When the REFRESH function completes successfully, any locks previously set with the operator
commands LOCKU or LOCKF are reset.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Example

Essential Parameter
FILE: File Number

FILE specifies the file that is to be set to "empty" status.

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

This parameter is required if the file is password-protected.

TEST: Test Syntax

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

191

REFRESH: Set File to Empty StatusAdabas Utilities

Example
File 116 is to be set to empty status.

ADADBS REFRESH FILE=116

192

Adabas UtilitiesREFRESH: Set File to Empty Status

REFRESHSTATS: Refresh Statistical Values
The REFRESHSTATS function resets statistical values maintained by the Adabas nucleus for its current
session. Parameters may be used to restrict the function to particular groups of statistical values.

When you invoke REFRESHSTATS, Adabas automatically writes the nucleus shutdown statistics to
DD/PRINT.

Important:
Refreshing Adabas statistical values affects the corresponding Adabas Statistics Facility (ASF) field
values. These values, which normally reflect the period from the start of the nucleus, will then refer to the
time after the last refresh. ASF users may therefore find it useful to store the nucleus records with the
appropriate ASF function before refreshing the values.

This chapter covers the following topics:

Optional Parameters

Example

Optional Parameters
ALL: All Statistical Values

The ALL keyword may be specified as an abbreviation for the combination of CMDUSAGE,
COUNTERS, FILEUSAGE, POOLUSAGE, and THREADUSAGE.

If none of the option keywords is specified, ALL is the default option.

CMDUSAGE: Command Usage Counters

The CMDUSAGE parameter is specified to reset the counters for Adabas direct call commands
such as Lx, Sx, or A1.

COUNTERS: Frequency Counters

The COUNTERS parameter is specified to reset the counter fields for local or remote calls,
format translations, format overwrites, Autorestarts, protection log switches, buffer flushes, and
command throw-backs.

193

REFRESHSTATS: Refresh Statistical ValuesAdabas Utilities

FILEUSAGE: Count of Commands Per File

The FILEUSAGE parameter is specified to reset the count of commands for each file.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

NUCID: Cluster Nucleus ID

Any nucleus running in an Adabas nucleus cluster is allowed to run Adabas utilities such as
ADADBS. The NUCID parameter allows you to direct the ADADBS REFRESHSTATS
function to a particular nucleus in the cluster for execution, just as though the command had
been issued by a locally run ADADBS REFRESHSTATS operation.

If you specify NUCID=0, the statistical values are refreshed for all active nuclei in the cluster.

POOLUSAGE: High-Water Marks for Nucleus Pools

The POOLUSAGE parameter is specified to reset the high-water marks for the nucleus pools
such as the work pool, the command queue, or the user queue.

THREADUSAGE: Count of Commands Per Thread

The THREADUSAGE parameter is specified to reset the count of commands for each Adabas
thread.

Example
File 116 is to be set to empty status.

ADADBS REFRESHSTATS
CMDUSAGE,POOLUSAGE,NUCID=3

After the shutdown statistics for the Adabas cluster nucleus with NUCID=3 are written to DD/PRINT, the
command counters and the pool high-water marks for the nucleus are reset.

194

Adabas UtilitiesREFRESHSTATS: Refresh Statistical Values

RELEASE: Release Descriptor
The RELEASE function releases a descriptor from descriptor status.

This function results in the release of all space currently occupied in the Associator inverted list for this
descriptor. This space can then be reused for this file by reordering or ADALOD UPDATE. No changes
are made to Data Storage.

When releasing descriptor space for an Adabas expanded file, perform the RELEASE function for each
individual component file of the expanded file. Each RELEASE operation on a component file causes a
message that confirms the change, and returns condition code 4.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Example

Essential Parameters
FILE: File Number

FILE specifies the file that contains the descriptor to be released. The file cannot be an Adabas
system file.

DESCRIPTOR: Descriptor to Be Released

DESCRIPTOR specifies the descriptor to be released. Any descriptor type can be specified. A
descriptor currently being used as the basis for file coupling cannot be specified. If the
descriptor being released is an ADAM descriptor, the file is no longer processed as an ADAM
file.

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

195

RELEASE: Release DescriptorAdabas Utilities

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and the utility
terminates with condition code 20.

PASSWORD: File Password

This parameter is required if the file is password-protected. Specify the password between
apostrophes (’).

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

Example
ADADBS RELEASE FILE=31,DESCRIPTOR=’AA’

Descriptor AA in file 31 is released from descriptor status.

196

Adabas UtilitiesRELEASE: Release Descriptor

RENAME: Rename FileDatabase
The RENAME function may be used to change the name assigned to a file or database.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Examples

Essential Parameter
NAME: New File Name

NAME is the new name to be assigned to the file. It is specified between apostrophes (for
example, ’RESERVATIONS’). A maximum of 16 characters can be used.

Optional Parameters
FILE: File Number

FILE is the number of the file to be renamed: if specified as zero or omitted, the database is
renamed.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

The password of the file. This parameter is required if the file is password-protected.

TEST: Test Syntax

197

RENAME: Rename FileDatabaseAdabas Utilities

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

Examples
The name of file 2 is to be changed to "INVENTORY".

ADADBS RENAME FILE=2,NAME=’INVENTORY’

The database is renamed to "RESERVATIONS".

ADADBS RENAME NAME=’RESERVATIONS’,FILE=0

198

Adabas UtilitiesRENAME: Rename FileDatabase

RENUMBER: Change File Number
The RENUMBER function changes the number of an Adabas file.

This chapter covers the following topics:

Essential Parameter

Optional Parameter

Example

Essential Parameter
FILES: Current File Number, New File Number

The number currently assigned to the file, and the new number to be assigned to the file. If the
new number is assigned to another file, the RENUMBER function will not be performed.

An Adabas system file cannot be used. The file may not be security-protected, may not be
coupled to another file, and may not be part of an expanded file.

Optional Parameter
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

199

RENUMBER: Change File NumberAdabas Utilities

Example
The file number for file 4 is to be changed to 40.

ADADBS RENUMBER FILES=4,40

200

Adabas UtilitiesRENUMBER: Change File Number

RESETDIB: Reset Entries in Active Utility
List
The RESETDIB function resets entries in the active utility list (that is, the data integrity block or DIB).

Adabas maintains a list of the files used by each Adabas utility in the DIB. The DDIB operator command
(or Adabas Online System) may be used to display this block to determine which jobs are using which
files. A utility removes its entry from the DIB when it terminates normally. If a utility terminates
abnormally (for example, the job is cancelled by the operator), the files used by that utility remain "in
use". The DBA may release any such files with the RESETDIB function.

Note:
The RESETDIB function can be executed either with or without an active nucleus. To remove a DIB from
an abended ADAORD REORDB, REORDATA, REORASSO, ADADBS RESETDIB has to run without
an active nucleus.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Examples

Essential Parameters
JOBNAME: Job Name

This parameter specifies the name of the job whose entry is to be reset. If it is not unique, the
IDENT parameter must also be specified.

IDENT: Utility Execution Identifier

A unique number that identifies a utility execution. It may be specified alone or to qualify a job
name when the same name has been used for various utility executions. The identifier may be
obtained using the operator command DDIB or Adabas Online System.

201

RESETDIB: Reset Entries in Active Utility ListAdabas Utilities

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

Examples
The entry in the DIB block for job "JOB1" is to be deleted.

ADADBS RESETDIB JOBNAME=’JOB1’

The entry in the DIB block for "JOB2" with IDENT=127 is to be deleted.

ADADBS RESETDIB
JOBNAME=’JOB2’,IDENT=127

202

Adabas UtilitiesRESETDIB: Reset Entries in Active Utility List

TRANSACTIONS: Suspend and Resume
Transactions
The TRANSACTIONS function may be used to suspend and resume update transaction processing; that
is, to reach a quiesed state that could be a recoverable starting point.

Once the SUSPEND function has been submitted, new update transactions are held in the user queue.
Executing transactions are allowed to finish if they can do so within the time alloted by the TTSYN
parameter. Any transactions that exceed this time are backed out. In a cluster environment, all cluster
nuclei are likewise quiesced.

Once the quiesce is successful, the buffers are flushed for all nuclei so that the DASD files are current
with the content of the buffers. A checkpoint SYNC-73 is written and ADADBS is notified.

At this point, the user may execute a non-Software AG fast backup product such as IBM’s FlashCopy or
StorageTek’s SnapShot to "COPY" off the database; that is, copy pointers to the data created by the fast
backup product in the electronic memory of the array storage device.

Warning:
Software AG does not recommend using such a database fastcopy as a
substitute for a regular Software AG database (or delta) save. Not
only does Software AG have no control over the datasets that are
included in the database fastcopy, but it also cannot vouch for the
success of the fastcopy. Moreover, delta saves cannot sensibly be run
on a copy of the database, as the DSF status change effected by the
delta save would occur on the database copy instead of the original.

If the COPY completes before the TRESUME timeout and the RESUME function is issued, the nucleus
writes a SYNS-74 checkpoint, leaves the suspended state and resumes update processing. The database
was in a valid state over the whole duration of the COPY process.

If the COPY does not complete before the TRESUME timeout, Adabas automatically leaves the
suspended state and resumes update processing. If the RESUME function is issued subsequently, Adabas
rejects it with a response code and ADADBS terminates abnormally with an error message. This means
that whatever COPY has been produced while update processing was suspended is invalid and must not be
used, because Adabas may have resumed updating the database while the COPY process was still in
progress.

203

TRANSACTIONS: Suspend and Resume TransactionsAdabas Utilities

If the so-created copy of the database is used for recovery, removing the need to restore the database as of
the time of the COPY, the subsequent regenerate should be started at the SYNC-73 checkpoint written at
the end of the SUSPEND function.

Important:
In a job where a SUSPEND function is followed by other job steps and then by a RESUME function, none
of the job steps in between should be update-type commands or functions; otherwise, job execution will
stall until the nucleus times out the suspended state.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Example

Essential Parameters
SUSPEND: Suspend Transactions and Quiesce the Database

Use this parameter to suspend update transaction processing and quiesce the database.

RESUME: Resume Transaction Processing that was Previously Suspended

Use this parameter to resume update transaction processing that was previously suspended. If
this parameter is used while Adabas is not in a suspended state or is no longer in a suspended
state, this function terminates with an error.

Optional Parameters
TRESUME

Use this parameter to specify the amount of time in seconds the system is to remain quiesced
after being suspended before the nucleus automatically resumes normal update transaction
processing. If this parameter is not specified, the default is 120 seconds and the maximum is
86400 seconds or about 24 hours. The count begins when the nucleus has been successfully
quiesced.

TTSYN

Use this parameter to specify the maximum amount of time the nucleus is to wait for all ET
users to reach ET status before it forcibly ends and backs out update transactions that are still
running in order to quiesce the system. If this parameter is not specified, the default is the
ADARUN TT value.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

204

Adabas UtilitiesTRANSACTIONS: Suspend and Resume Transactions

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and the utility
terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

Example
Quiesce a database allowing 300 seconds for the currently running update transactions to finish and 150
seconds thereafter for the suspension to last before Adabas automatically resumes normal processing:

ADADBS TRANSACTIONS SUSPEND
TTSYN=300,TRESUME=150

205

TRANSACTIONS: Suspend and Resume TransactionsAdabas Utilities

UNCOUPLE: Uncouple Files
The UNCOUPLE function is used to eliminate the coupling relationship between two files.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Example

Essential Parameter
FILES: Files to Be Uncoupled

FILES specifies the two files to be uncoupled.

Optional Parameters
NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

PASSWORD specifies the security password for one or both files, and is required if either of the
files is password-protected. If both files are password-protected, the password applies to both
files. The password must be enclosed in single quotation marks.

TEST: Test Syntax

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables. See
Syntax Checking with the TEST Parameter for more information on using the TEST parameter
in ADADBS functions.

206

Adabas UtilitiesUNCOUPLE: Uncouple Files

Example
Files 62 and 201 are to be uncoupled. One or both are protected with the password "PAIR05".

ADADBS UNCOUPLE
FILES=62,201,PASSWORD=’PAIR05’

207

UNCOUPLE: Uncouple FilesAdabas Utilities

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADADBS with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems, and shows examples of each of the job streams.

This chapter covers the following topics:

Collation with User Exit

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

Collation with User Exit
If a collation user exit is to be used during ADADBS ONLINVERT execution, the ADARUN CDXnn
parameter must be specified for the utility run.

Used in conjunction with the universal encoding support (UES), the format of the collation descriptor user
exit parameter is

where

nn is the number of the collation descriptor exit, a two-digit decimal integer
in the range 01-08 inclusive.

exit-name is the name of the user routine that gets control at the collation descriptor
exit; the name can be up to 8 characters long.

Only one program may be specified for each collation descriptor exit. Up to 8 collation descriptor exits
may be specified (in any order). See the Adabas DBA Reference documentation for more information.

BS2000

208

Adabas UtilitiesJCL/JCS Requirements and Examples

Dataset Link Name Storage More
Information

Associator DDASSORn Required for
OPERCOM
DDIB or
RESETDIB with
inactive nucleus

ADARUN
parameters

SYSDTA/
DDCARD

 Operations

ADADBS
parameters

SYSDTA/
DDKARTE

 Utilities

ADARUN messages SYSOUT/
DDPRINT

 Messages and
Codes

ADADBS messages SYSLST/
DDDRUCK

 Messages and
Codes

ADADBS JCL Example (BS2000)

In SDF Format:

/.ADADBS LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK * A D A D B S ALL FUNCTIONS
/REMARK *
/ASS-SYSLST L.DBS.DATA
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADADBS,DB=yyyyy,IDTNAME=ADABAS5B
ADADBS REFRESH FILE=1
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADADBS LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A D B S ALL FUNCTIONS
 /REMARK *
 /SYSFILE SYSLST=L.DBS
 /FILE ADA.MOD,LINK=DDLIB
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADADBS,DB=yyyyy,IDTNAME=ADABAS5B
 ADADBS REFRESH FILE=1
 /LOGOFF NOSPOOL

OS/390 or z/OS

209

JCL/JCS Requirements and ExamplesAdabas Utilities

Dataset DD Name Storage More
Information

Associator DDASSORn disk Required only
for OPERCOM
DDIB or
RESETDIB
functions with
inactive nucleus

ADADBS messages DDDRUCK printer Messages and
Codes

ADARUN messages DDPRINT printer Messages and
Codes

ADARUN
parameters

DDCARD reader Operations

ADADBS
parameters

DDKARTE reader

ADADBS JCL Example (OS/390 or z/OS)

Refer to ADADBS in the MVSJOBS dataset for this example.

//ADADBS JOB
//*
//* ADADBS:
//* DATA BASE SERVICES (BATCH)
//*
//DBS EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADADBS,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADADBS REFRESH FILE=1
/*

VM/ESA or z/VM

210

Adabas UtilitiesJCL/JCS Requirements and Examples

Dataset DD Name Storage More
Information

Associator DDASSORn disk/ terminal/
reader

Required only
for
OPERCOM
DDIB or
RESETDIB
functions with
inactive nucleus

ADARUN
parameters

DDCARD disk/ terminal/
reader

Operations

ADADBS
parameters

DDKARTE disk/ terminal/
reader

ADARUN messages DDPRINT disk/ terminal/
printer

Messages and
Codes

ADADBS messages DDDRUCK disk/ terminal/
printer

ADADBS JCL Example (VM/ESA or z/VM)

Refer to ADADBS in the MVSJOBS dataset for this example.

DATADEF DDPRINT,DSN=ADADBS,DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADADBS.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNDBS.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADADBS.CONTROL,MODE=A
ADARUN

Contents of RUNDBS CONTROL A1:

ADARUN PROG=ADADBS,DEVICE=dddd,DB=yyyyy

Contents of ADADBS CONTROL A1:

ADADBS REFRESH FILE=1

VSE/ESA

211

JCL/JCS Requirements and ExamplesAdabas Utilities

File File Name Storage Logical Unit More
Information

Associator ASSORn disk * Required for
OPERCOM DDIB
or RESETDIB
functions with
inactive nucleus

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
*

ADADBS
parameters

- reader SYSIPT Utilities

ADARUN
messages

- printer SYSLST Messages and
Codes

ADADBS
messages

- printer SYS009 Messages and
Codes

* Any programmer logical unit may be used.

ADADBS JCS Example (VSE/ESA)

See Procedures for VSE/ESA Examples for a description of the VSE/ESA procedures.

Refer to member ADADBS.X in the MVSJOBS dataset for this example.

* $$ JOB JNM=ADADBS,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
* DATABASE SERVICES (BATCH)
// JOB ADADBS
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADADBS,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADADBS REFRESH FILE=1
/*
/&
* $$ EOJ

212

Adabas UtilitiesJCL/JCS Requirements and Examples

ADADCK: Check Data Storage
This chapter covers the following topics:

Functional Overview

DSCHECK: Check Data Storage

JCL/JCS Requirements and Examples

213

ADADCK: Check Data StorageAdabas Utilities

Functional Overview
ADADCK checks the Data Storage and the Data Storage space table (DSST) of a specific file (or files) in
the database.

ADADCK reads each used Data Storage block (according to the Data Storage extents in the file control
block) and performs the following checks:

Block length within permitted range? (4 block length physical block size)

Sum of length of all records in the Data Storage block plus 4 = block length?

Is there any record with a record length greater than the maximum compressed record length for the
file or with a length 0?

Are there any duplicate ISNs within one block?

Does the associated DSST element contain the correct value? If not, a REPAIR of the DSST is
necessary (see REPAIR parameter).

Notes:

1. ADADCK does not require the Adabas nucleus to be active.
2. If the nucleus is active, ADADCK synchronizes its operation with the active nucleus unless the

NOOPEN parameter is specified.
3. Any pending autorestart condition is ignored.
4. This utility should be used only for diagnostic purposes.

ADADCK returns a condition code 4 or 8 if an error occurs.

214

Adabas UtilitiesFunctional Overview

DSCHECK: Check Data Storage

This chapter covers the following topics:

Optional Parameters and Subparameters

Examples

Optional Parameters and Subparameters
FILE: Files to Be Checked

The file (or a single range of files) to be checked. If omitted, all files in the database are
checked.

FROMRABN: Data Storage Block Number

The RABN of the Data Storage block where the check is to start. This parameter is applicable
only if a single file is to be checked.

If omitted, the check starts at the beginning of the first allocated Data Storage extent for the file.

NOOPEN: Prevent Open Synchronization

When starting, ADADCK normally performs a utility open call to the nucleus to assure that no
blocks of the affected file or files are still in the nucleus buffer pool. However, this also locks
the file for other users. Specifying NOOPEN prevents ADADCK from issuing the open call and
blocking file usage for other users.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

REPAIR: Repair the Data Storage Space Table

If ADADCK finds any invalid Data Storage space table elements, it automatically repairs the
table if this parameter is supplied.

215

DSCHECK: Check Data StorageAdabas Utilities

TORABN: Ending Data Storage Block Number

The RABN of the Data Storage block where the check is to end. This parameter is applicable
only if a single file is to be checked.

USAGE: Print Data Storage Block Usage

If USAGE is specified, ADADCK prints a bar graph that shows the number of bytes used in
each Data Storage block, the block size, and the percentage of blocks used.

Examples
Check Data Storage and its space table for file 20, print a bar graph of the Data Storage block utilization
and repair the space table if required.

ADADCK DSCHECK FILE=20, USAGE, REPAIR

Check Data Storage and its space table for the files 8 through 12.

ADADCK DSCHECK FILE=8-12

Check Data Storage and its space table for file 12 in the RABN range 878 through 912.

ADADCK DSCHECK FILE=12,
FROMRABN=878,TORABN=912

216

Adabas UtilitiesDSCHECK: Check Data Storage

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADADCK with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

ADARUN parameters SYSDTA/ DDCARD Operations

ADADCK parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT DDPRINT Messages and Codes

ADADCK messages SYSLST DDDRUCK Messages and Codes

ADADCK JCL Example (BS2000)

In SDF Format:

/.ADADCK LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK *A D A D C K DATA STORAGE CHECK
/REMARK *
/REMARK *
/ASS-SYSLST L.DCK.DATA
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADADCK,DB=yyyyy,IDTNAME=ADABAS5B
ADADCK DSCHECK FILE=27
/LOGOFF SYS-OUTPUT=DEL

217

JCL/JCS Requirements and ExamplesAdabas Utilities

In ISP Format:

/.ADADCK LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK *A D A D C K DATA STORAGE CHECK
/REMARK *
/REMARK *
/SYSFILE SYSLST=L.DCK.DATA
/FILE ADA.MOD,LINK=DDLIB

/FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
/FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
/EXEC (ADARUN,ADA.MOD)
ADARUN PROG=ADADCK,DB=yyyyy,IDTNAME=ADABAS5B
ADADCK DSCHECK FILE=27
/LOGOFF NOSPOOL

OS/390 or z/OS

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

ADARUN parameters DDCARD reader Operations

ADADCK parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADADCK messages DDDRUCK printer Messages and Codes

ADADCK JCL Example (OS/390 or z/OS)

Refer to ADADCK in the MVSJOBS dataset for this example.

//ADADCK JOB
//*
//* ADADCK:
//* DATA STORAGE CHECK
//*
//DCK EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADADCK,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADADCK DSCHECK FILE=27
/*

218

Adabas UtilitiesJCL/JCS Requirements and Examples

VM/ESA or z/VM

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADADCK parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADADCK messages DDDRUCK disk/ terminal/ printer Messages and Codes

ADADCK JCL Example (VM/ESA or z/VM)
DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDPRINT,DSN=ADADCK.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADADCK.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNDCK.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADADCK.CONTROL,MODE=A
ADARUN

Contents of RUNDCK CONTROL A1:

ADARUN PROG=ADADCK,DEVICE=dddd,DB=yyyyy

Contents of ADADCK CONTROL A1:

ADADCK DSCHECK FILE=27

VSE/ESA

File Symbolic Name Storage Logical Unit More
Information

Associator ASSORn disk *

Data Storage DATARn disk *

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
*

ADADCK
parameters

 reader SYSIPT

ADARUN
messages

 printer SYSLST Messages and
Codes

ADADCK
messages

 printer SYS009 Messages and
Codes

219

JCL/JCS Requirements and ExamplesAdabas Utilities

* Any programmer logical unit may be used.

ADADCK JCS Example (VSE/ESA)

See Procedures for VSE/ESA Examples for descriptions of the VSE/ESA procedures (PROCs).

Refer to member ADADCK.X for this example.

* $$ JOB JNM=ADADCK,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADADCK
* DATA STORAGE CHECK
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADADCK,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADADCK DSCHECK FILE=27
/*
/&
* $$ EOJ

220

Adabas UtilitiesJCL/JCS Requirements and Examples

ADADEF: Define a Database
This chapter covers the following topics:

Functional Overview

DEFINE: Defining a Database and Checkpoint File

MODIFY: Change Encodings

NEWWORK: Defining a Work File

JCL/JCS Requirements and Examples

221

ADADEF: Define a DatabaseAdabas Utilities

Functional Overview
The following database characteristics are defined with ADADEF:

database name and ID

database components (Associator, Data Storage, and Work)

device type

size

checkpoint system file

database default encodings

Database Components
Each database component (Associator, Data Storage, and Work) must be formatted by the ADAFRM
utility before it is defined with ADADEF. The ADADEF utility may also be used to define a new Work
dataset for an existing database.

Systems using the Recovery Aid feature require a recovery log (RLOG) dataset, which must first be
formatted with the ADAFRM utility, and then defined using the ADARAI utility.

Checkpoint File
Adabas uses the checkpoint system file to store checkpoint data and user data provided with the Adabas
CL and ET commands. It is required and must be specified using the ADADEF DEFINE (database)
function.

222

Adabas UtilitiesFunctional Overview

DEFINE: Defining a Database and
Checkpoint File
The database and the checkpoint file must be defined at the same time.

The database parameters include the required ASSOSIZE, DATASIZE, and WORKSIZE parameters and
the optional (non-indented) parameters ASSODEV through WORKDEV shown in the syntax diagram.

The FILE=...,CHECKPOINT,... statement is also required for database definition. The checkpoint file
parameters (indented under the FILE statement in the syntax diagram) should be specified immediately
following the FILE statement. See the examples.

223

DEFINE: Defining a Database and Checkpoint FileAdabas Utilities

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Examples

224

Adabas UtilitiesDEFINE: Defining a Database and Checkpoint File

Essential Parameters
ASSOSIZE/ DATASIZE/ WORKSIZE: Database Size

ASSO-/DATA-/WORKSIZE specifies the number of blocks or cylinders to be assigned to the
Associator, Data Storage, or Work. A block value must be followed by "B"; otherwise, the value
is assumed to be cylinders.

If the Associator or Data Storage is to be contained on more than one dataset, the size of each
dataset must be specified. If a companion ASSODEV or DATADEV parameter specifies two or
more extents, the equivalent ASSOSIZE or DATASIZE parameter must specify the extent sizes
as positional operands in the corresponding order (see the examples).

The minimum WORKSIZE allowed is 300 blocks.

Note:
If ASSOSIZE or DATASIZE is not specified, the ADADEF DEFINE function will not execute.
If WORKSIZE is not specified, the function will allocate three (3) cylinders to the Work
dataset. Because 3 cylinders are usually not enough to start the database, WORKSIZE is
considered to be a required parameter.

DSSIZE: Data Storage Size

DSSIZE specifies the number of blocks or cylinders to be assigned to checkpoint/Data Storage.
For blocks, the value specified must be followed by "B" (for example, DSSIZE=80B).

The size of the checkpoint file specified with the DSSIZE and MAXDS parameters depends on

the amount of ET data to be stored;

the number of utility runs for which checkpoint information is to be retained;

the number of user IDs.

FILE . . . CHECKPOINT Parameter

The FILE...CHECKPOINT parameter indicates the file number to be used for the checkpoint
system file. This parameter is required; the file number must be 255 or lower.

Adabas uses the checkpoint system file to store checkpoint data and user data provided with the
Adabas CL and ET commands.

MAXISN: Highest ISN to be Used

The highest ISN that may be assigned to the file. The value specified is used to determine the
space allocation for the address converter. When determining the MAXISN, consider the
importance of ET data and checkpoint data to your site.

Adabas considers ET data to be more important than checkpoint data. As soon as the ET data
ISN range in the checkpoint system file is exhausted, the first checkpoint ISN is deleted and
given to the ET data. This is an ongoing process. As soon as the MAXISN is reached, a new
address converter extent is allocated and given to the checkpoint data. You can delete
checkpoint data piece by piece using the Adabas Online System function DELCP.

225

DEFINE: Defining a Database and Checkpoint FileAdabas Utilities

Note:
The way the checkpoint handles data is subject to change in a future release of Adabas.

Optional Parameters
ACRABN/ DSRABN/ NIRABN/ UIRABN: Starting RABN

These parameters may be used to cause allocation for their respective areas to begin with the
specified RABN:

ACRABN for the address converter

DSRABN for Data Storage

NIRABN for the normal index

UIRABN for the upper index

ASSODEV/ DATADEV/ WORKDEV: Device Type

ASSO-/DATA-/WORKDEV specify the device type(s) to be assigned to the Associator, Data
Storage, and Work. These parameters are required only if the device type to be used is different
from that specified with the ADARUN DEVICE parameter.

WORKDEV, if specified, can only be one device type. If the Associator (ASSODEV) or Data
Storage (DATADEV) is to be contained on more than one dataset, the device type for each
dataset must be specified, even if both extents are on the ADARUN DEVICE type.

If multiple extents are used with VSAM datasets, ASSODEV and DATADEV must reflect the
dynamic device type; that is, DD/xxxxR1=9999; DD xxxxR2=8888; ... DD/xxxxR5=5555. For
example, when defining DDDATAR1 and DDDATAR2, DATADEV=9999,8888.

Space allocation for specified device types must be given in companion ASSOSIZE,
DATASIZE, and WORKSIZE parameters on this or another ADADEF statement in the same
job. If a ASSODEV or DATADEV parameter specifies more than one extent on the same or
different device types (DATADEV=3380,3350, for example), the companion ASSOSIZE or
DATASIZE parameter must specify the related extent sizes in corresponding order.

ASSOPFAC/ DATAPFAC: Padding Factor

ASSOPFAC defines the percentage of space in each Associator RABN block to be reserved for
later entries (padding space). This space is used for later descriptor extensions or ISN additions.
The percentage value specified, which can range 1-90, should be large enough to avoid the
overhead caused when block overflow forces splitting of an existing address block into two new
blocks. If ASSOPFAC is not specified, ADADEF assumes a padding factor of 10%.

DATAPFAC defines the percentage of space in each Data Storage RABN block to reserve for
later entries (padding space). This space is used when changes to an existing data record cause it
to need more space in the block; an updated record that no longer fits in the existing block must
be moved to another block. The percentage value specified, which can range 1-90, should be
large enough to avoid the overhead caused when block overflow forces splitting of an existing
address block into two new blocks. If DATAPFAC is not specified, ADADEF assumes a
padding factor of 10%.

226

Adabas UtilitiesDEFINE: Defining a Database and Checkpoint File

ASSOVOLUME/ DATAVOLUME: Extent Volume

Note:
Values for ASSOVOLUME and DATAVOLUME must be enclosed in apostrophes.

ASSOVOLUME specifies the volume on which the file’s Associator space (that is, the AC, NI,
and UI extents) is to be allocated.

DATAVOLUME specifies the volume on which the file’s Data Storage space (DS extents) are
allocated.

If the requested number of blocks cannot be found on the specified volume, ADADEF retries
the allocation while disregarding the ASSOVOLUME or DATAVOLUME parameter value.

If ACRABN, UIRABN, or NIRABN is specified, ADADEF ignores the ASSOVOLUME value
when allocating the corresponding extent type.

If DSRABN is specified, DATAVOLUME is ignored for the related file.

If ASSOVOLUME and/or DATAVOLUME are not specified, the file’s Associator and/or Data
Storage space, respectively, is allocated according to ADADEF’s default allocation rules.

DBIDENT: Database Identifier

DBIDENT specifies the identification number to be assigned to the database. A value in the
range 1-65535 may be specified. If this parameter is omitted, the value specified with the
ADARUN DBID parameter is used.

If multiple databases are to be established, the DBIDENT parameter is required in order to
uniquely identify each database.

DBNAME: Database Name

DBNAME is the name to be assigned to the database. This name appears in the title of the
Database Status Report produced by the ADAREP utility. A maximum of 16 characters may be
specified. Enclose the name in single quotation marks if the name includes any special
characters other than dashes, or if the name contains embedded blanks.

If this parameter is omitted, a default value of "GENERAL-DATABASE" is assigned.

DSDEV: Device Type for Data Storage

DSDEV specifies the device type to be used for the checkpoint file’s Data Storage. There is no
default value; if DSDEV is not specified, an arbitrary device type is used.

DSREUSE: Storage Reusage

DSREUSE indicates whether space which becomes available in the checkpoint file is to be
reused. The default is YES.

FACODE: Encoding for Alphanumeric Fields

227

DEFINE: Defining a Database and Checkpoint FileAdabas Utilities

The FACODE parameter specifies the default encoding for alphanumeric fields for all files in
the database. The encoding must be derived from EBCDIC encoding; that is, X’40’ is the space character.
Modal or "shift" type double-byte character set (DBCS) encodings are supported; fixed type DBCS
(DBCS-only) encodings are not supported. The default encoding key is 37.

The purpose of the database-wide setting is to serve as a default when loading files. Once
loaded, the encoding for a file is stored in its FCB.

You can change the default encoding set in this parameter using the ADADEF MODIFY
function. Changing the database-wide setting does not affect files already loaded.

FWCODE: Encoding for Wide-Character Fields

The FWCODE parameter specifies the default encoding for wide-character (W) format fields for
all files in the database. The default encoding is 4095; that is, Unicode.

The FWCODE parameter can be used to set a wide-character encoding that defines the superset
of code points of all user encodings. For example, Unicode encompasses about 50,000 code
points as opposed to Host-DBCS and Shift-JIS with about 10,000 code points each.

The purpose of the database-wide setting is to serve as a default when loading files. Once
loaded, the encoding for a file is stored in its FCB.

You can change the default encoding set in this parameter using the ADADEF MODIFY
function. Changing the database-wide setting does not affect files already loaded.

ISNSIZE: 3- or 4-Byte ISN

ISNSIZE indicates whether ISNs in the file are 3 or 4 bytes long. The default is 3 bytes.

MAXDS/ MAXNI/ MAXUI: Maximum Secondary Allocation

MAXDS/NI/UI specify the maximum number of blocks per secondary extent for Data Storage,
the normal index, and the upper index, respectively. The value specified must be followed by
"B" for blocks (for example, MAXDS=8000B) and cannot be more than 65535B.

MAXFILES: Highest File Number

MAXFILES specifies the maximum number of files that can be loaded into the database. The
minimum value for this parameter is 3. The highest value permitted is 5000 or one less than the
ASSOR1 blocksize, whichever is lower. For example, 2003 is the highest MAXFILES value for
a database whose ASSOR1 is stored on a 3380 DASD.

The value specified determines the number of file control blocks and field definition tables to be
allocated when the database is being established. Each file control block requires one Associator
block and each field definition table requires four Associator blocks.

If this parameter is omitted, a value of 255 is assigned.

Once the database has been established, the value for MAXFILES may be changed only by
executing the REORASSO or REORDB functions of the ADAORD utility.

228

Adabas UtilitiesDEFINE: Defining a Database and Checkpoint File

NAME: Name of the Checkpoint File

NAME specifies the name for the checkpoint file being defined. This name appears on the
Database Status Report produced by the ADAREP utility. The maximum number of characters
permitted is 16. The default file name is CHECKPOINT.

NISIZE: Normal Index Size

NISIZE specifies the number of blocks or cylinders to be assigned to the normal index. For
blocks, the value specified must be followed by "B" (for example, NISIZE=80B).

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

OVERWRITE: Overwrite Existing Database

Specify OVERWRITE to write over an existing database. OVERWRITE cannot be specified
when creating a database with newly formatted datasets.

RABNSIZE: 3- or 4-Byte RABN

RABNSIZE specifies the length of RABNs in the database. Specify 3 for 24-bit RABNs or 4 for
31-bit RABNs. The default is 3.

UACODE: User Encoding for Alphanumeric Fields

The parameter UACODE specifies the default encoding for alphanumeric fields for ASCII
users. The encoding must be derived from ASCII encoding; that is, X’20’ is the space character.
Encodings for multiple-byte character sets are supported. The default encoding is 437.

The UACODE value is not stored in the file being loaded.

You can override the default encoding set in this parameter for a user session using the OP
command. You can change it generally using the ADADEF MODIFY function.

UES: Universal Encoding Support

Setting the parameter UES activates universal encoding support for the database. Any valid
xxCODE parameter (FACODE, FWCODE, UACODE, UWCODE) implicitly sets UES=YES.

To deactivate UES, you must explicitly set UES=NO.

You can change the default setting of this parameter generally using the ADADEF MODIFY
function.

UISIZE: Upper Index Size

229

DEFINE: Defining a Database and Checkpoint FileAdabas Utilities

UISIZE specifies the number of blocks or cylinders to be assigned to the upper index. For
blocks, the value specified must be followed by "B" (for example, UISIZE=80B).

UWCODE: User Encoding for Wide-Character Fields

The UWCODE parameter specifies the user encoding for wide-character (W) format fields. If
the parameter is not specified, the default value is the current value of FWCODE.

The purpose of the database-wide setting is to serve as a default when loading files. Once
loaded, the encoding for a file is stored in its FCB.

You can override the default encoding set in this parameter for a user session using the OP
command. You can change the default setting generally using the ADADEF MODIFY function.
Changing the database-wide setting does not affect files already loaded.

Examples
Example 1:

ADADEF DEFINE
ADADEF ASSOSIZE=200,DATASIZE=600,WORKSIZE=50
ADADEF DBIDENT=1,DBNAME=DATABASE-1
ADADEF MAXFILES=150
ADADEF FILE=1,CHECKPOINT
ADADEF NAME=’DB1-CHECKPOINT’,MAXISN=5000
ADADEF DSSIZE=2,NISIZE=50B,UISIZE=10B

The Associator, Data Storage and Work sizes are equal to 200, 600 and 50 cylinders, respectively. The
numeric identifier for the database is 1 and the database name is DATABASE-1. The maximum number
of files (and the highest file number) that may be loaded into the database is 150. File 1 is to be reserved
for the Adabas checkpoint file. The name of the first system file is to be DB1-CHECKPOINT. The Data
Storage size for this file is to be 2 cylinders; the normal index size 50 blocks; the upper index size 10
blocks; and the MAXISN is to be 5000.

Example 2:

ADADEF DEFINE
ADADEF ASSODEV=3380,DATADEV=3380,3390,WORKDEV=3380
ADADEF ASSOSIZE=100,DATASIZE=200,300,WORKSIZE=25
ADADEF DBIDENT=2,DBNAME=’DATABASE_2’
ADADEF MAXFILES=255
ADADEF FILE=255,CHECKPOINT,MAXISN=5000
ADADEF DSSIZE=3,NISIZE=100B,UISIZE=20B

The Associator is to be contained on a 3380 device type, and occupies 100 cylinders. Data Storage
comprises two datasets: the first dataset is 200 cylinders contained on the first DATADEV (3380) device
type, and the second dataset is 300 cylinders contained on the second DATADEV (3390) device type. The
Work space is 25 cylinders on the WORKDEV device (3380).

The numeric identifier for the database is 2, and the database name is DATABASE_2. A maximum of 255
files may be loaded into the database. An Adabas checkpoint file is loaded during this step.

230

Adabas UtilitiesDEFINE: Defining a Database and Checkpoint File

MODIFY: Change Encodings
The MODIFY function is used to modify encodings set using ADADEF DEFINE. At least one of the
optional encoding parameters must be specified.

Changing the FACODE, FWCODE, or UWCODE parameters does not affect files already loaded since
the actual encoding of their fields is stored in the FCB. The purpose of the database-wide setting is to
serve as a default when loading files.

This chapter covers the following topics:

Optional Parameters

Examples

Optional Parameters
FACODE: Encoding for Alphanumeric Fields

The FACODE parameter specifies the default encoding for alphanumeric fields for all files in
the database. The encoding must be derived from EBCDIC encoding; that is, X’40’ is the space
character. Modal or "shift" type double-byte character set (DBCS) encodings are supported;
fixed type DBCS (DBCS-only) type encodings are not supported. The default encoding key is
the current setting.

The purpose of the database-wide setting is to serve as a default when loading files. Once
loaded, the encoding for a file is stored in its FCB. Changing the database-wide setting does not
affect files already loaded.

FWCODE: Encoding for Wide-Character Fields

The FWCODE parameter specifies the default encoding for wide-character (W) format fields for
all files in the database. The default encoding is the current setting.

The FWCODE parameter can be used to set a wide-character encoding that defines the superset
of code points of all user encodings. For example, Unicode encompasses about 50,000 code
points as opposed to Host-DBCS and Shift-JIS with about 10,000 code points each.

The purpose of the database-wide setting is to serve as a default when loading files. Once
loaded, the encoding for a file is stored in its FCB. Changing the database-wide setting does not
affect files already loaded.

231

MODIFY: Change EncodingsAdabas Utilities

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

UACODE: User Encoding for Alphanumeric Fields

The parameter UACODE specifies the default encoding for alpha fields for ASCII users. The
encoding must be derived from ASCII encoding; that is, X’20’ is the space character. Encodings
for multiple-byte character sets is supported. The default encoding is the current setting.

The UACODE setting is not stored in the loaded file. You can override this encoding for a user
session with the OP command.

UES: Universal Encoding Support

The parameter UES can be used to enable or disable universal encoding support for an existing
database. Disabling is only possible if no files are loaded with wide-character (W) format fields.

Any valid xxCODE parameter (FACODE, FWCODE, UACODE, UWCODE) implicitly sets
UES=YES.

To deactivate UES, you must explicitly set UES=NO.

UWCODE: User Encoding for Wide-Character Fields

The UWCODE parameter specifies the user encoding for wide-character (W) format fields. If
the parameter is not specified, the default value is the current setting.

The purpose of the database-wide setting is to serve as a default when loading files. Once
loaded, the encoding for a file is stored in its FCB. Changing the database-wide setting does not
affect files already loaded.

You can override the default encoding for a user session with the OP command.

Examples
Example 1:

Disable universal encoding support for an existing database. The database contains no files with wide (W)
format.

ADADEF MODIFY UES=NO

232

Adabas UtilitiesMODIFY: Change Encodings

Example 2:

Change the default encoding for wide-character (W) format fields for all files in the database from the
current setting to code page 835 (traditional Chinese host double byte including 6204 user-defined
characters).

ADADEF MODIFY FWCODE=835

Files already loaded are not affected by this change since the actual encoding of their fields is stored in the
FCB. The purpose of the database-wide setting is to serve as a default when loading files.

233

MODIFY: Change EncodingsAdabas Utilities

NEWWORK: Defining a Work File
The following parameters are used for Work dataset definition:

Notes:

1. The Adabas nucleus must not be active during this function, and the old Work must be specified in
the JCL/JCS.

2. The ADADEF NEWWORK function cannot be executed if a pending autorestart exists.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Example

Essential Parameter
WORKSIZE: Work Dataset Size

The number of blocks or cylinders to be assigned to the Work dataset.

Optional Parameters
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

WORKDEV: Device Type

The device type to be assigned to the new Work dataset.

This parameter is required only if the device type to be used is different from that specified by
the ADARUN DEVICE parameter.

234

Adabas UtilitiesNEWWORK: Defining a Work File

Example
A new Work dataset is defined with a size of 50 cylinders. The device type is obtained from the
ADARUN DEVICE parameter.

ADADEF NEWWORK
ADADEF WORKSIZE=50

235

NEWWORK: Defining a Work FileAdabas Utilities

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADADEF with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Work DDWORKR1 disk

ADARUN parameters SYSDTA/ DDCARD Operations

ADADEF parameters SYSDTA/ DDKARTE Utilities

ADARUN messages SYSOUT/ DDPRINT Messages and Codes

ADADEF messages SYSLST/ DDDRUCK Messages and Codes

ADADEF JCL Examples (BS2000)

Define Database

In SDF Format:

/.ADADEF LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK * A D A D E F DEFINE DATABASE
/REMARK *
/ASS-SYSLST L.DEF.DATA
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA
/SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADADEF,DB=yyyyy,IDTNAME=ADABAS5B
ADADEF DEFINE DBNAME=EXAMPLE-DB
ADADEF ASSOSIZE=100,DATASIZE=200,WORKSIZE=40
ADADEF MAXFILES=120

236

Adabas UtilitiesJCL/JCS Requirements and Examples

ADADEF FILE=1,CHECKPOINT
ADADEF NAME= CHECKPOINT ,MAXISN=5000,UISIZE=10B
ADADEF DSSIZE=500B,NISIZE=100B
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADADEF LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK * A D A D E F DEFINE DATABASE
/REMARK *
/SYSFILE SYSLST=L.DEF.DEFI
/FILE ADA.MOD,LINK=DDLIB
/FILE ADAyyyyy.ASSO ,LINK=DDASSOR1
/FILE ADAyyyyy.DATA ,LINK=DDDATAR1
/FILE ADAyyyyy.WORK ,LINK=DDWORKR1
/EXEC (ADARUN,ADA.MOD)
ADARUN PROG=ADADEF,DB=yyyyy,IDTNAME=ADABAS5B
ADADEF DEFINE DBNAME=EXAMPLE-DB
ADADEF ASSOSIZE=100,DATASIZE=200,WORKSIZE=40
ADADEF MAXFILES=120
ADADEF FILE=1,CHECKPOINT
ADADEF NAME= CHECKPOINT ,MAXISN=5000,UISIZE=10B
ADADEF DSSIZE=500B,NISIZE=100B
/LOGOFF NOSPOOL

OS/390 or z/OS

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Work (Current) DDWORKR1 disk

ADARUN parameters DDCARD reader Operations

ADADEF parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADADEF messages DDDRUCK printer Messages and Codes

ADADEF JCL Examples (OS/390 or z/OS)

Define Database

//ADADEF JOB
//*
//* ADADEF:
//* DEFINE THE PHYSICAL LAYOUT OF THE DATABASE
//* DEFINE THE NUCLEUS SYSTEMFILE: CHECKPOINT FILE
//*
//DEF EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA

237

JCL/JCS Requirements and ExamplesAdabas Utilities

//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADADEF,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADADEF DEFINE DBNAME=EXAMPLE-DB,DBIDENT=YYYYY
ADADEF ASSOSIZE=100,DATASIZE=200,WORKSIZE=40
ADADEF MAXFILES=120
*

ADADEF FILE=19,CHECKPOINT
ADADEF NAME=’CHECKPOINT’,MAXISN=5000
ADADEF DSSIZE=100B,NISIZE=3B,UISIZE=3B
/*

Refer to ADADEF in the MVSJOBS dataset for this example.

Define New Work

//ADADEFNW JOB
//*
//* ADADEF: DEFINE NEW WORK
//*
//DEF EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADADEF,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADADEF NEWWORK WORKSIZE=60,WORKDEV=eeee
/*

Refer to ADADEFNW in the MVSJOBS dataset for this example.

VM/ESA or z/VM

238

Adabas UtilitiesJCL/JCS Requirements and Examples

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Work DDWORKR1 disk

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADADEF parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADADEF messages DDDRUCK disk/ terminal/ printer

ADADEF JCL Examples (VM/ESA or z/VM)

Define Database

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.ASSO,VOL=DATAV1
DATADEF DDWORKR1,DSN=ADABASVv.WORK,VOL=WORKV1
DATADEF DDPRINT,DSN=ADADEF.DDPRINT,MODE=A
DATADEF DUMP,DUMMY

DATADEF DDDRUCK,DSN=ADADEF.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNDEF.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADADEF.CONTROL,MODE=A
ADARUN

Contents of RUNDEF CONTROL A1:

ADARUN PROG=ADADEF,DEVICE=dddd,DB=yyyyy

Contents of ADADEF CONTROL A1:

ADADEF DEFINE DBNAME=EXAMPLE-DB
ADADEF ASSOSIZE=100,DATASIZE=200,WORKSIZE=40
ADADEF MAXFILE=120
*

ADADEF FILE=1,CHECKPOINT
ADADEF NAME=’CHECKPOINT’,MAXISN=5000,UISIZE=10B
ADADEF DSSIZE=500B,NISIZE=100B

Define New Work

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.ASSO,VOL=DATAV1
DATADEF DDWORKR1,DSN=ADABASVv.WORK,VOL=WORKV1
DATADEF DDPRINT,DSN=ADADEF.DDPRINT,MODE=A
DATADEF DUMP,DUMMY

DATADEF DDDRUCK,DSN=ADADEF.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNDEF.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADADEF.CONTROL,MODE=A
ADARUN

239

JCL/JCS Requirements and ExamplesAdabas Utilities

Contents of RUNDEF CONTROL A1:

ADARUN PROG=ADADEF,DEVICE=dddd,DB=yyyyy

Contents of ADADEF CONTROL A1:

ADADEF NEWWORK WORKSIZE=60,WORKDEV=eeee

VSE/ESA

File Symbolic Name Storage Logical Unit More
Information

Associator ASSORn disk *

Data Storage DATARn disk *

Work (Current) WORKR1 disk *

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
*

ADADEF
parameters

- reader SYSIPT

ADARUN
messages

- printer SYSLST

ADADEF
messages

- printer SYS009 Messages and
Codes

* Any programmer logical unit may be used.

ADADEF JCS Examples (VSE/ESA)

See Procedures for VSE/ESA Examples for descriptions of the VSE procedures.

Define Database

Refer to member ADADEF.X for this example.

* $$ JOB JNM=ADADEF,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADADEF
* DEFINE THE PHYSICAL LAYOUT OF THE DATABASE
* DEFINE THE NUCLEUS SYSTEMFILE: CHECKPOINT FILE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADADEF,MODE=SINGLE,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADADEF DEFINE DBNAME=EXAMPLE-DB,DBIDENT=yyyyy
ADADEF ASSOSIZE=100,DATASIZE=200,WORKSIZE=40
ADADEF MAXFILES=120
*

ADADEF FILE=19,CHECKPOINT

240

Adabas UtilitiesJCL/JCS Requirements and Examples

ADADEF NAME=’CHECKPOINT’,MAXISN=5000
ADADEF DSSIZE=100B,NISIZE=3B,UISIZE=3B
/*
/&
* $$ EOJ

Define New Work

Refer to member ADADEFNW.X for this example.

* $$ JOB JNM=ADADEFNW,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADADEFNW
* DEFINE NEW WORK
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADADEF,MODE=SINGLE,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADADEF NEWWORK WORKSIZE=60,WORKDEV=eeee
/*
/&
* $$ EOJ

241

JCL/JCS Requirements and ExamplesAdabas Utilities

ADAFRM: Format
This chapter covers the following topics:

Functional Overview

Formating Database Components

JCL/JCS Requirements and Examples

242

Adabas UtilitiesADAFRM: Format

Functional Overview
Primary Adabas direct access (DASD) datasets must be formatted using the ADAFRM utility.

These datasets include the Associator, Data Storage, and Work datasets as well as the intermediate storage
(temp, sort, and command/protection/recovery logging) datasets.

Formatting must be performed before any new dataset can be used by the Adabas nucleus or an Adabas
utility. After increasing a dataset with the ADADBS INCREASE or ADD function, new RABNs must
also be formatted.

ADAFRM also provides functions to reset existing Associator, Data Storage, or Work blocks/cylinders to
binary zeros (nulls). Resetting fills the specified blocks in an existing Associator, Data Storage, or Work
dataset with binary zeros.

Statement Restrictions
More than one ADAFRM function (ASSOFRM, DATAFRM, RLOGFRM, and so on) can be performed
in the same job. However, each function must be specified on separate statements. See the examples at the
end of the do for more information.

Formatting Operation
Formatting with ADAFRM comprises two basic operations:

1. creating blocks (called RABNS) on the specified tracks/cylinders;

2. filling the created blocks with binary zeros (nulls).

243

Functional OverviewAdabas Utilities

Formatting Database Components
This chapter covers the following topics:

Formatting Modes

Syntax

Essential Parameter

Optional Parameters

Examples

Formatting Modes
There are three ADAFRM formatting modes:

1. Format a new dataset (...FRM functions). Only the dataset specified by the function name and the
NUMBER parameter is accessed and formatted. The FROMRABN parameter cannot be specified
when formatting a new dataset.

2. Format part of an existing dataset (ASSOFRM, DATAFRM, WORKFRM, and TEMPFRM
functions). Here, the FROMRABN parameter must be specified, except on OS/390 and MVS/ESA
platforms. When formatting Work and Data Storage (WORKFRM and DATAFRM functions), the
ADAFRM job control must also contain the Associator datasets.

This formatting mode is used in combination with the ADADBS INCREASE function for ASSO and
DATA. If a greater WORK is needed, then ADADEF NEWWORK should be used.

3. Reformat blocks of an existing dataset (...RESET functions). This mode opens all Associator, Data
Storage, and Work datasets in the database for access. The FROMRABN parameter is must be
specified for these functions.

Syntax
Format the Associator (ASSO..) or Data Storage (DATA..) dataset:

Format the Work (WORK..), command log (CLOG..), protection log (PLOG..), or sort (SORT..) dataset:

244

Adabas UtilitiesFormatting Database Components

Format the recovery log (RLOG..) dataset:

Format a temp (TEMP..) dataset:

Reformat blocks of an existing Associator, Data Storage, or Work dataset:

Essential Parameter
SIZE: Size of Area to be Formatted

SIZE specifies the size of the area to be formatted (or reset). Blocks (a decimal value followed
by "B") or cylinders may be specified. For the RLOGFRM function, the size must be the same
as that specified by the RLOGSIZE parameter on the ADARAI utility’s PREPARE function.
See section Essential Parameter.

Optional Parameters
DEVICE: Device Type

DEVICE is the physical device type on which the area to be formatted is contained. If DEVICE
is not specified, the device type specified by the ADARUN DEVICE parameter is used.

245

Formatting Database ComponentsAdabas Utilities

FROMRABN: Starting RABN

FROMRABN specifies the RABN at which formatting or resetting is to begin. This parameter
may only be used for an existing dataset; NUMBER cannot be specified in the same ADAFRM
job as FROMRABN.

When FROMRABN is specified with a ...FRM function, formatting begins at the FROMRABN
point and continues up to the highest complete track before the RABN computed from
FROMRABN + SIZE (assuming a size specified in or converted to blocks). This means that the
last track within the specified range (FROMRABN + SIZE) will be formatted only if all the
track’s RABNs are within that range.

When increasing the size of an ASSO or DATA dataset, FROMRABN is available as an option
only under VSE/ESA, VM/ESA or z/VM, and BS2000. The specified RABN must be one
higher than the highest allocated RABN before the logical increase using ADADBS (which
must precede the physical increase using ADAFRM). FROMRABN=NEXT instructs ADAFRM
to take the first unformatted RABN as the value for FROMRABN. ADAFRM then verifies that
the range of blocks determined for formatting by the NEXT value is contained in the free space
table (FST). If not, ADAFRM terminates with ERROR-126. On OS/390, FROMRABN should
only be used to reformat existing blocks as the last record pointer in the VTOC cannot be
modified by function FROMRABN. See the examples for ADADBS INCREASE .

This parameter is required for the ASSORESET, DATARESET and WORKRESET functions.
When specified with the function ASSORESET, the FROMRABN value must be greater than
30.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

NUMBER: Dataset Number

NUMBER selects the nonsequential command log, nonsequential protection log, Associator,
Data Storage and sort dataset to be formatted. The default is 1 (first dataset). Values allowed for

the Associator (ASSO) or Data Storage (DATA) are 1 through 5;

protection logs (PLOGs) or command logs (CLOGs) are 2 through 8;

the recovery log (RLOG) is just 1;

SORT is either 1 or 2 (1 only on VSE systems); and

WORK or TEMP is either 1 or the default.

ADAFRM ...FRM function statements cannot specify (and will not default to) a NUMBER
value if other ADAFRM statements in the same job specify a FROMRABN value.

246

Adabas UtilitiesFormatting Database Components

NUMBER must match the number suffix of the related data definition ("DD/...") statement. See
the tables of allowed statements and the examples in section JCL/JCS Requirements and
Examples.

Examples
Example 1:

Format 50 cylinders for the Associator, 200 cylinders for Data Storage, 10 cylinders for Work, and 2
cylinders for the recovery log (RLOG).

ADAFRM ASSOFRM SIZE=50,DEVICE=3380
ADAFRM DATAFRM SIZE=200,DEVICE=3380
ADAFRM WORKFRM SIZE=10,DEVICE=3380
ADAFRM RLOGFRM SIZE=2

Example 2:

One cylinder for nonsequential command log dataset 1, and 1 cylinder for nonsequential command log
dataset 2 are to be formatted.

ADAFRM CLOGFRM SIZE=1,DEVICE=3350,NUMBER=1
ADAFRM CLOGFRM SIZE=1,DEVICE=3350,NUMBER=2

Example 3:

The first two blocks of an existing Work dataset are to be reset to binary zeros.

ADAFRM WORKRESET FROMRABN=1,SIZE=2B

Example 4:

Assuming the Data Storage dataset is on a 3380 disk (9 blocks/track, 15 tracks/cylinder), 100
cylinders-starting at cylinder position 201 relative to the beginning of the dataset-will be formatted.

ADAFRM DATAFRM SIZE=100,FROMRABN=26992

Example 5:

Under VSE/ESA, VM/ESA, z/VM, or BS2000, assuming the Associator of the database has just been
increased by 200 cylinders, this job formats the new space in the database. For more detailed examples
across all supported platforms, see the ADADBS INCREASE examples in section
Operating-System-Specific Procedures.

ADAFRM ASSOFRM SIZE=200,FROMRABN=NEXT

247

Formatting Database ComponentsAdabas Utilities

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADAFRM with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

Note:
When running with the optional Recovery Aid (RLOG), all temporary datasets must also be cataloged in
the job control.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Associator DDASSORn disk datasets to be
formatted

Data Storage DDDATARn

Work DDWORKR1

Temp DDTEMPR1

Sort DDSORTRn

Multiple command logs DDCLOGRn

Multiple protection logs DDPLOGRn

Recovery log DDRLOGR1

ADARUN parameters SYSDTA/ DDCARD Operations

ADAFRM parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT/ DDPRINT Messages and Codes

ADAFRM messages SYSLST/ DDDRUCK Messages and Codes

ADAFRM JCL Example (BS2000)

248

Adabas UtilitiesJCL/JCS Requirements and Examples

In SDF Format:

/.ADAFRM LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK * A D A F R M ALL FUNCTIONS
/REMARK *

/ASS-SYSLST L.FRM
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,OPEN-MODE=OUTIN,BUFF-LEN=STD(1)
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,OPEN-MODE=OUTIN,BUFF-LEN=STD(2)
/SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK,OPEN-MODE=OUTIN,BUFF-LEN=STD(2)
/SET-FILE-LINK DDTEMPR1,ADAyyyyy.TEMP,OPEN-MODE=OUTIN,BUFF-LEN=STD(2)
/SET-FILE-LINK DDSORTR1,ADAyyyyy.SORT,OPEN-MODE=OUTIN,BUFF-LEN=STD(2)
/SET-FILE-LINK DDPLOGR1,ADAyyyyy.PLOGR1,OPEN-MODE=OUTIN,BUFF-LEN=STD(2)
/SET-FILE-LINK DDPLOGR2,ADAyyyyy.PLOGR2,OPEN-MODE=OUTIN,BUFF-LEN=STD(2)
/SET-FILE-LINK DDRLOGR1,ADAyyyyy.RLOGR1,OPEN-MODE=OUTIN,BUFF-LEN=STD(2)
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADAFRM,DB=yyyyy,IDTNAME=ADABAS5B
ADAFRM ASSOFRM SIZE=100
ADAFRM DATAFRM SIZE=200
ADAFRM WORKFRM SIZE=40
ADAFRM SORTFRM SIZE=25
ADAFRM TEMPFRM SIZE=10
ADAFRM PLOGFRM SIZE=40,NUMBER=1
ADAFRM PLOGFRM SIZE=40,NUMBER=2
ADAFRM RLOGFRM SIZE=10
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADAFRM LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK * A D A F R M ALL FUNCTIONS
/REMARK *
/SYSFILE SYSLST=L.FRM
/FILE ADA.MOD,LINK=DDLIB
/FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,OPEN=OUTIN,BLKSIZE=(STD,1)
/FILE ADAyyyyy.DATA ,LINK=DDDATAR1,OPEN=OUTIN,BLKSIZE=(STD,2)
/FILE ADAyyyyy.WORK ,LINK=DDWORKR1,OPEN=OUTIN,BLKSIZE=(STD,2)
/FILE ADAyyyyy.TEMP ,LINK=DDTEMPR1,OPEN=OUTIN,BLKSIZE=(STD,2)
/FILE ADAyyyyy.SORT ,LINK=DDSORTR1,OPEN=OUTIN,BLKSIZE=(STD,2)
/FILE ADAyyyyy.PLOGR1,LINK=DDPLOGR1,OPEN=OUTIN,BLKSIZE=(STD,2)
/FILE ADAyyyyy.PLOGR2,LINK=DDPLOGR2,OPEN=OUTIN,BLKSIZE=(STD,2)
/FILE ADAyyyyy.RLOGR1,LINK=DDRLOGR1,OPEN=OUTIN,BLKSIZE=(STD,2)
/EXEC (ADARUN,ADA.MOD)
ADARUN PROG=ADAFRM,DB=yyyyy,IDTNAME=ADABAS5B
ADAFRM ASSOFRM SIZE=100
ADAFRM DATAFRM SIZE=200
ADAFRM WORKFRM SIZE=40

ADAFRM SORTFRM SIZE=25
ADAFRM TEMPFRM SIZE=10
ADAFRM PLOGFRM SIZE=40,NUMBER=1
ADAFRM PLOGFRM SIZE=40,NUMBER=2
ADAFRM RLOGFRM SIZE=10
/LOGOFF NOSPOOL

249

JCL/JCS Requirements and ExamplesAdabas Utilities

OS/390 or z/OS

Dataset DD Name Storage More Information

Associator DDASSORn disk datasets to be
formatted

Data Storage DDDATARn

Work DDWORKR1

Temp DDTEMPR1

Sort DDSORTRn

Multiple command logs DDCLOGRn

Multiple protection logs DDPLOGRn

Recovery log DDRLOGR1

ADARUN parameters DDCARD reader Operations

ADAFRM parameters DDKARTE disk

ADARUN messages DDPRINT printer Messages and Codes

ADAFRM messages DDDRUCK printer Messages and Codes

ADAFRM JCL Example (OS/390 or z/OS)

Refer to ADAFRM in the MVSJOBS dataset for this example.

//ADAFRM JOB
//*
//* ALLOCATE AND FORMAT THE DATABASE COMPONENTS
//*
//* MORE THAN ONE DATASET CAN BE FORMATTED IN A SINGLE RUN
//*
//*

//FRM EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=(NEW,CATLG),DSN=EXAMPLE.DByyyyy.ASSOR1, <=== ASSO
// SPACE=(CYL,(0,100)),UNIT=DISK,VOL=SER=VOL001
//DDDATAR1 DD DISP=(NEW,CATLG),DSN=EXAMPLE.DByyyyy.DATAR1, <=== DATA
// SPACE=(CYL,(0,200)),UNIT=DISK,VOL=SER=VOL002
//DDWORKR1 DD DISP=(NEW,CATLG),DSN=EXAMPLE.DByyyyy.WORKR1, <=== WORK
// SPACE=(CYL,(0,40)),UNIT=DISK,VOL=SER=VOL003
//DDSORTR1 DD DISP=(NEW,CATLG),DSN=EXAMPLE.DByyyyy.SORTR1, <=== SORT
// SPACE=(CYL,(0,100)),UNIT=DISK,VOL=SER=VOL003
//DDTEMPR1 DD DISP=(NEW,CATLG),DSN=EXAMPLE.DByyyyy.TEMPR1, <=== TEMP
// SPACE=(CYL,(0,100)),UNIT=DISK,VOL=SER=VOL003
//DDPLOGR1 DD DISP=(NEW,CATLG),DSN=EXAMPLE.DByyyyy.PLOGR1, <=== PLOG1
// SPACE=(CYL,(50)),UNIT=DISK,VOL=SER=VOL003
//DDPLOGR2 DD DISP=(NEW,CATLG),DSN=EXAMPLE.DByyyyy.PLOGR2, <=== PLOG2
// SPACE=(CYL,(50)),UNIT=DISK,VOL=SER=VOL003
//DDCLOGR1 DD DISP=(NEW,CATLG),DSN=EXAMPLE.DByyyyy.CLOGR1, <=== CLOG1
// SPACE=(CYL,(50)),UNIT=DISK,VOL=SER=VOL003
//DDCLOGR2 DD DISP=(NEW,CATLG),DSN=EXAMPLE.DByyyyy.CLOGR2, <=== CLOG2

250

Adabas UtilitiesJCL/JCS Requirements and Examples

// SPACE=(CYL,(50)),UNIT=DISK,VOL=SER=VOL003
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAFRM,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAFRM ASSOFRM SIZE=100,DEVICE=dddd
ADAFRM DATAFRM SIZE=200,DEVICE=dddd
ADAFRM WORKFRM SIZE=40,DEVICE=dddd
ADAFRM SORTFRM SIZE=100,DEVICE=dddd
ADAFRM TEMPFRM SIZE=100,DEVICE=dddd
ADAFRM PLOGFRM SIZE=50,NUMBER=1,DEVICE=dddd
ADAFRM PLOGFRM SIZE=50,NUMBER=2,DEVICE=dddd
ADAFRM CLOGFRM SIZE=50,NUMBER=1,DEVICE=dddd
ADAFRM CLOGFRM SIZE=50,NUMBER=2,DEVICE=dddd
/*

VM/ESA or z/VM

Dataset DD Name Storage More Information

Associator DDASSORn disk datasets to be
formatted

Data Storage DDDATARn

Work DDWORKR1

Temp DDTEMPR1

Sort DDSORTRn

Multiple command logs DDCLOGRn

Multiple protection logs DDPLOGRn

Recovery log DDRLOGR1

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADAFRM parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADAFRM messages DDDRUCK disk/ terminal/ printer Messages and Codes

ADAFRM JCL Example (VM/ESA or z/VM)
DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDWORKR1,DSN=ADABASVv.WORK,VOL=WORKV1
DATADEF DDSORTR1,DSN=ADABASVv.SORT,VOL=SORTV1
DATADEF DDTEMPR1,DSN=ADABASVv.TEMP,VOL=TEMPV1
DATADEF DDPLOGR1,DSN=ADABASVv.PLOG1,VOL=PLOGV1
DATADEF DDPLOGR2,DSN=ADABASVv.PLOG2,VOL=PLOGV2
DATADEF DDRLOGR1,DSN=ADABASVv.RLOG1,VOL=RLOGV1
DATADEF DDPRINT,DSN=ADAFRM.DDPRINT,MODE=A
DATADEF DUMP,DUMMY

251

JCL/JCS Requirements and ExamplesAdabas Utilities

DATADEF DDDRUCK,DSN=ADAFRM.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNFRM.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADAFRM.CONTROL,MODE=A
ADARUN

Contents of RUNFRM CONTROL A1:

ADARUN PROG=ADAFRM,DEVICE=dddd,DB=yyyyy

Contents of ADAFRM CONTROL A1:

ADAFRM ASSOFRM SIZE=100
ADAFRM DATAFRM SIZE=200
ADAFRM WORKFRM SIZE=40
ADAFRM SORTFRM SIZE=25
ADAFRM TEMPFRM SIZE=10
ADAFRM PLOGFRM SIZE=40
ADAFRM PLOGFRM SIZE=40,NUMBER=2
ADAFRM RLOGFRM SIZE=10

VSE/ESA

File Symbolic Name Storage Logical Unit More
Information

Associator ASSORn disk * files to be
formatted

Data Storage DATARn

Work WORKR1

Temp TEMPR1

Sort SORTR1

Multiple command
log

CLOGRn

Multiple
protection log

PLOGRn

Recovery log RLOGR1

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
*

ADAFRM
parameters

- reader SYSIPT

ADARUN
messages

- printer SYSLST Messages and
Codes

ADAFRM
messages

- printer SYS009 Messages and
Codes

252

Adabas UtilitiesJCL/JCS Requirements and Examples

* Any programmer logical unit may be used.

ADAFRM JCS Example (VSE/ESA)

See Procedures for VSE/ESA Examples for descriptions of the VSE/ESA procedures (PROCs).

Refer to member ADAFRM.X for this example.

* $$ JOB JNM=ADAFRM,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAFRM
* FORMAT THE DATABASE COMPONENTS
?/ EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAFRM,MODE=SINGLE,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAFRM ASSOFRM SIZE=100,DEVICE=dddd
ADAFRM DATAFRM SIZE=200,DEVICE=dddd
ADAFRM WORKFRM SIZE=40,DEVICE=dddd
ADAFRM SORTFRM SIZE=100,DEVICE=dddd
ADAFRM TEMPFRM SIZE=100,DEVICE=dddd
ADAFRM PLOGFRM SIZE=50,NUMBER=1,DEVICE=dddd
ADAFRM PLOGFRM SIZE=50,NUMBER=2,DEVICE=dddd
ADAFRM CLOGFRM SIZE=50,NUMBER=1,DEVICE=dddd
ADAFRM CLOGFRM SIZE=50,NUMBER=2,DEVICE=dddd
/*
/&
* $$ EOJ

253

JCL/JCS Requirements and ExamplesAdabas Utilities

ADAICK: Check Index andAddress
Converter
This chapter covers the following topics:

Functional Overview

ACCHECK: Check Address Converter

ASSOPRINT: Print/Dump Associator Blocks

BATCH: Set Printout Width to 132 Characters Per Line

DATAPRINT: Print/Dump Data Storage Blocks

DSCHECK: Print/Dump Content of Data Storage Record

DUMP: Suspend Dump Suppression

FCBPRINT: Print/Dump File Control Block

FDTPRINT: Print/Dump Field Definition Table

GCBPRINT: Print/Dump General Control Block

ICHECK: Check Index and Address Converter

INT: Cancel Formatted Printout Suppression

NIPRINT: Print/Dump Normal Index

NOBATCH: Set Print Width to 80 Characters Per Line

NODUMP: Suppress Dumps

NOINT: Suppress Formatted Printout

PPTPRINT: Print/Dump Parallel Participant Table

UIPRINT: Print/Dump Upper Index

Examples

JCL/JCS Requirements and Examples

254

Adabas UtilitiesADAICK: Check Index andAddress Converter

Functional Overview
ADAICK checks the physical structure of the Associator. This includes validating the index based upon
the descriptor value structures and the Associator extents defined by the general control block (GCB) and
file control block (FCB).

The ADAICK utility should be used only for diagnostic purposes.

ADAICK can perform the following functions:

Check index and address converter for specific files;

Print/dump the contents of any ASSO or DATA block in the database;

Print/dump the contents of normal (NI) and upper (UI) indexes.

Print/dump formatted the contents of GCBs, FCBs, FDTs, and PPTss.

Notes:

1. ADAICK can run with or without an active Adabas nucleus.
2. A pending autorestart condition is ignored.
3. If the nucleus is active, ADAICK synchronizes its operation with the active nucleus unless the

NOOPEN parameter is specified.

255

Functional OverviewAdabas Utilities

ACCHECK: Check Address Converter

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Essential Parameter
FILE: File to be Checked

The file to be checked. A file number is required the first time you execute ADAICK.

If FILE is omitted on subsequent executions, the last file used by ADAICK is checked.

Optional Parameters
NOOPEN: Prevent Open Synchronization

When starting, ADAICK normally performs a utility open call to the nucleus to assure that no
blocks of the affected file or files are still in the nucleus buffer pool. However, this also locks
the file for other users. Specifying NOOPEN prevents ADAICK from issuing the open call.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

256

Adabas UtilitiesACCHECK: Check Address Converter

ASSOPRINT: Print/Dump Associator Blocks

This chapter covers the following topics:

Essential Parameter

Optional Parameter

Essential Parameter
RABN: RABNs to be Processed

The RABN (or a single range of RABNs) to be printed/dumped. If ADAICK can determine the
type of information stored in the block (for example. UI, NI,...), it produces a formatted printout.

Optional Parameter
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

257

ASSOPRINT: Print/Dump Associator BlocksAdabas Utilities

BATCH: Set Printout Width to 132
Characters Per Line

If ADAICK is to be used in batch mode, this function may be used to set the printout width to 132
characters per line. See the NOBATCH function for information about resetting the printout width.

Optional Parameter
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

258

Adabas UtilitiesBATCH: Set Printout Width to 132 Characters Per Line

DATAPRINT: Print/Dump Data Storage
Blocks

This chapter covers the following topics:

Essential Parameter

Optional Parameter

Essential Parameter
RABN: RABNs to be Processed

The RABN (or a single range of RABNs) to be printed/dumped.

Optional Parameter
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

259

DATAPRINT: Print/Dump Data Storage BlocksAdabas Utilities

DSCHECK: Print/Dump Content of Data
Storage Record

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Essential Parameter
FILE: File Number

The number of the file for which the record is to be printed/dumped. A file number is required
the first time you execute ADAICK.

If FILE is omitted on subsequent executions, the last file accessed by ADAICK is used.

Optional Parameters
ISN: ISN of Data Storage Record

The ISN of the Data Storage record to be printed. If ISN is omitted, the DSCHECK function
prints the last ISN plus 1.

NOOPEN: Prevent Open Resynchronization

When starting, ADAICK normally performs a utility open call to the nucleus to assure that no
blocks of the affected file or files are still in the nucleus buffer pool. However, this also locks
the file for other users. Specifying NOOPEN prevents ADAICK from issuing the open call.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

260

Adabas UtilitiesDSCHECK: Print/Dump Content of Data Storage Record

DUMP: Suspend Dump Suppression

This function suspends suppression of ADAICK dumps. See the NODUMP function for information
about suppressing dumps.

Optional Parameter
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

261

DUMP: Suspend Dump SuppressionAdabas Utilities

FCBPRINT: Print/Dump File Control Block

The file control block (FCB) is to be dumped/printed.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Essential Parameter
FILE: File Number

The number of the file for which the FCB is to be printed/dumped. A file number is required the
first time you execute ADAICK.

If FILE is omitted on subsequent executions, the last file accessed by ADAICK is used.

Optional Parameters
NOOPEN: Prevent Open Resynchronization

When starting, ADAICK normally performs a utility open call to the nucleus to assure that no
blocks of the affected file or files are still in the nucleus buffer pool. However, this also locks
the file for other users. Specifying NOOPEN prevents ADAICK from issuing the open call.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

262

Adabas UtilitiesFCBPRINT: Print/Dump File Control Block

FDTPRINT: Print/ Dump Field Definition
Table

The field definition table (FDT) is to be dumped/printed.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Essential Parameter
FILE: File Number

The number of the file for which the FDT is to be printed/dumped. A file number is required the
first time you execute ADAICK.

If FILE is omitted on subsequent executions, the last file accessed by ADAICK is used.

Optional Parameters
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

263

FDTPRINT: Print/ Dump Field Definition TableAdabas Utilities

GCBPRINT: Print/Dump General Control
Block

The general control block (GCB) is to be dumped/printed.

Optional Parameter
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

264

Adabas UtilitiesGCBPRINT: Print/Dump General Control Block

ICHECK: Check Index and Address
Converter

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Essential Parameter
FILE: Files to be Checked

The specified file (or a single range of files) to be checked. FILE must be specified.

Optional Parameters
NOOPEN: Prevent Open Resynchronization

When starting, ADAICK normally performs a utility open call to the nucleus to assure that no
blocks of the affected file or files are still in the nucleus buffer pool. However, this also locks
the file for other users. Specifying NOOPEN prevents ADAICK from issuing the open call.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

265

ICHECK: Check Index and Address ConverterAdabas Utilities

INT: Cancel Formatted Printout Suppression

This function cancels suppression of the formatted printout produced by ADAICK. See the NOINT
function for information about suppressing formatted printouts.

Optional Parameter
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

266

Adabas UtilitiesINT: Cancel Formatted Printout Suppression

NIPRINT: Print/Dump Normal Index

Essential Parameter
FILE: File Number

The number of the file for which the normal index is to be printed/dumped. A file number is
required the first time you execute ADAICK.

If FILE is omitted on subsequent executions, the last file accessed by ADAICK is used.

Optional Parameter
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

267

NIPRINT: Print/Dump Normal IndexAdabas Utilities

NOBATCH: Set Print Width to 80
Characters Per Line

The printout width is set to 80 characters per line. See the BATCH function for information about
resetting the printout width.

Optional Parameter
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

268

Adabas UtilitiesNOBATCH: Set Print Width to 80 Characters Per Line

NODUMP: Suppress Dumps

This function suppresses ADAICK dumps. See the DUMP function for information about suspending the
suppression.

Optional Parameter
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

269

NODUMP: Suppress DumpsAdabas Utilities

NOINT: Suppress Formatted Printout

This function suppresses the formatted printout produced by ADAICK. See the INT function for
information about suspending the suppression.

Optional Parameter
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

270

Adabas UtilitiesNOINT: Suppress Formatted Printout

PPTPRINT: Print/Dump Parallel Participant
Table

The parallel participant table (PPT) for the Adabas cluster is to be dumped/printed. Note that in the
dump/print, ’PPH’ is the tag for the PPT header and ’PPE’ is the tag for the PPT entries.

Each of the 32 blocks (RABNs) allocated for the PPT represents a single nucleus in the cluster and
comprises

a single header of fixed length; and

multiple entries of variable length.

In the dump/print, ’PPH’ is the tag for a PPT block’s header and ’PPE’ is the tag for a PPT block’s entries.

This chapter covers the following topics:

Optional Parameters

Example Output

Optional Parameters
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

Example Output
ADAICK PPTPRINT

 MEANING: DUMP ASSO BLOCK 000000BF THRU 000000DE
DB 00072 PPT AT RABN 000000BF
DB 00072 PPT BLOCK NUMBER 01
DB 00072 PPH+000 NUMBER OF ENTRIES: 03
DB 00072 PPH+001 NUCLEUS INDICATOR: C0
DB 00072 PPH+002 EXTERNAL NUCID: 0000
DB 00072 PPH+004 UNUSED: 00000000
DB 00072 PPE+000 LENGTH OF PPT ENTRY: 0023
DB 00072 PPE+002 HDDATE FROM FIRST PLOG BLK (HIGH): 00000000
DB 00072 PPE+006 HDDATE FROM FIRST PLOG BLK (LOW): 00000000
DB 00072 PPE+00A PTT STATUS FLAG: 00

271

PPTPRINT: Print/Dump Parallel Participant TableAdabas Utilities

DB 00072 PPE+00B ID OF PPT ENTRY: W
DB 00072 DATASET=ADABAS.GB.UTI.72.WORKR1
DB 00072 PPE+000 LENGTH OF PPT ENTRY: 0023
DB 00072 PPE+002 HDDATE FROM FIRST PLOG BLK (HIGH): 00000000
DB 00072 PPE+006 HDDATE FROM FIRST PLOG BLK (LOW): 00000000
DB 00072 PPE+00A PTT STATUS FLAG: 00
DB 00072 PPE+00B ID OF PPT ENTRY: 1
DB 00072 DATASET=ADABAS.GB.UTI.72.PLOGR1
DB 00072 PPE+000 LENGTH OF PPT ENTRY: 0023
DB 00072 PPE+002 HDDATE FROM FIRST PLOG BLK (HIGH): 00000000
DB 00072 PPE+006 HDDATE FROM FIRST PLOG BLK (LOW): 00000000
DB 00072 PPE+00A PTT STATUS FLAG: 00
DB 00072 PPE+00B ID OF PPT ENTRY: 2
DB 00072 DATASET=ADABAS.GB.UTI.72.PLOGR2

ASSO BLOCK 000000BF PPT
0000 03C00000 00000000 00230000 00000000 *.� . *
0010 000000E6 7AC1C4C1 7A5BC7C5 C24BE4E3 * WADABAS.GB.UT*
0020 C94BF7F2 4BE6D6D9 D2D9F100 23000000 *I.74.WORKR1 . *
0030 00000000 0000F17A C1C4C17A 5BC7C5C2 * 1ADABAS.GB*
0040 4BE4E3C9 4BF7F24B D7D3D6C7 D9F10023 *.UTI.74.PLOGR1 .*
0050 00000000 00000000 00F27AC1 C4C17A5B * 2ADABAS*
0060 C7C5C24B E4E3C94B F7F24BD7 D3D6C7D9 *.GB.UTI.74.PLOGR*
0070 F2000000 00000000 00000000 00000000 *2 *
0080 00000000 00000000 00000000 00000000 * *
 SAME
0FF0 00000000 00000000 00000000 * *

DB 00072 PPT RABNS 000000C0 - 000000DE (02-32) ARE UNUSED

A D A I C K TERMINATED NORMALLY 2000-07-26 09:45:19

272

Adabas UtilitiesPPTPRINT: Print/Dump Parallel Participant Table

UIPRINT: Print/Dump Upper Index

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Essential Parameter
FILE: File Number

The number of the file for which the upper index(es) is/are to be printed/dumped. A file number
is required the first time you execute ADAICK.

If FILE is omitted on subsequent executions, the last file accessed by ADAICK is used.

Optional Parameters
NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

273

UIPRINT: Print/Dump Upper IndexAdabas Utilities

Examples
Example 1:

Check the index and address converter for file 18 and print/dump the FDT for this file.

ADAICK ICHECK FILE=18
ADAICK FDTPRINT

Example 2:

Set printout width to 120 characters per line (printer). Check index and address converter for file 1 and
print/dump Associator RABNs 123 through 135.

ADAICK BATCH
ADAICK ICHECK FILE=1
ADAICK ASSOPRINT RABN=123-135

274

Adabas UtilitiesExamples

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADAICK with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

Collation with User Exit

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

Collation with User Exit
If a collation user exit is to be used during ADAICK execution, the ADARUN CDXnn parameter must be
specified for the utility run.

Used in conjunction with the universal encoding subsystem (UES), the format of the collation descriptor
user exit parameter is

where

nn is the number of the collation descriptor exit, a two-digit decimal integer in the
range 01-08 inclusive.

exit-name is the name of the user routine that gets control at the collation descriptor exit; the
name can be up to 8 characters long.

Only one program may be specified for each collation descriptor exit. Up to 8 collation descriptor exits
may be specified (in any order). See the Adabas DBA Reference documentation for more information.

BS2000

275

JCL/JCS Requirements and ExamplesAdabas Utilities

Dataset Link Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

ADARUN parameters SYSDTA/ DDCARD Operations

ADAICK parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT DDPRINT Messages and Codes

ADAICK messages SYSLST DDDRUCK Messages and Codes

ADAICK JCL Example (BS2000)

In SDF Format:

/.ADAICK LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK *A D A I C K INDEX CHECK
/REMARK *
/REMARK *
/ASS-SYSLST L.ICK.DATA
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADAICK,DB=yyyyy,IDTNAME=ADABAS5B
ADAICK ICHECK FILE=27
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADAICK LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK *A D A I C K INDEX CHECK
/REMARK *
/REMARK *
/SYSFILE SYSLST=L.ICK.DATA
/FILE ADA.MOD,LINK=DDLIB
/FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
/FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
/EXEC (ADARUN,ADA.MOD)
ADARUN PROG=ADAICK,DB=yyyyy,IDTNAME=ADABAS5B
ADAICK ICHECK FILE=27
/LOGOFF NOSPOOL

OS/390 or z/OS

276

Adabas UtilitiesJCL/JCS Requirements and Examples

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

ADARUN parameters DDCARD reader Operations

ADAICK parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADAICK messages DDDRUCK printer Messages and Codes

ADAICK JCL Example (OS/390 or z/OS)

Refer to ADAICK in the MVSJOBS dataset for this example.

//ADAICK JOB
//*
//* ADAICK:
//* INDEX AND ADDRESS CONVERTER CHECK
//*
//ICK EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAICK,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAICK ICHECK FILE=1-3
/*

VM/ESA or z/VM

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADAICK parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADAICK messages DDDRUCK disk/ terminal/ printer Messages and Codes

277

JCL/JCS Requirements and ExamplesAdabas Utilities

ADAICK JCL Example (VM/ESA or z/VM)
DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDPRINT,DSN=ADAICK.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAICK.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNICK.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADAICK.CONTROL,MODE=A
ADARUN

Contents of RUNICK CONTROL A1:

ADARUN PROG=ADAICK,DEVICE=dddd,DB=yyyyy

Contents of ADAICK CONTROL A1:

ADAICK ICHECK FILE=27

VSE/ESA

File Symbolic Name Storage Logical Unit More
Information

Associator ASSORn disk *

Data Storage DATARn disk *

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
*

ADAICK
parameters

 reader SYSIPT

ADARUN
messages

 printer SYSLST Messages and
Codes

ADAICK
messages

 printer SYS009 Messages and
Codes

* Any programmer logical unit may be used.

ADAICK JCS Example (VSE/ESA)

See Procedures for VSE/ESA Examples for descriptions of the VSE/ESA procedures (PROCs).

Refer to member ADAICK.X for this example.

* $$ JOB JNM=ADAICK,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAICK
* INDEX AND ADDRESS CONVERTER CHECK
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAICK,MODE=SINGLE,SVC=xxx,DEVICE=dddd,DBID=yyyyy

278

Adabas UtilitiesJCL/JCS Requirements and Examples

/*
ADAICK ICHECK FILE=1-3
/*
/&
* $$ EOJ

279

JCL/JCS Requirements and ExamplesAdabas Utilities

ADAINV: Invert
This chapter covers the following topics:

Functional Overview

COUPLE: Define a File-Coupling Descriptor

INVERT: Create a Descriptor

JCL/JCS Requirements and Examples

280

Adabas UtilitiesADAINV: Invert

Functional Overview
The INVERT function

modifies the field definition table (FDT) to indicate that the specified field is a descriptor; and

adds all values and corresponding ISN lists for the field to the inverted list.

The newly defined descriptor may then be used in the same manner as any other descriptor. This function
may also be used to create a subdescriptor, superdescriptor, phonetic descriptor, or hyperdescriptor.

The COUPLE function adds a common descriptor to two files (updates their inverted lists). Any two files
may be coupled provided that a common descriptor with identical format and length definitions is present
in both files. A single file may be coupled with up to 18 other files, but only one coupling relationship
may exist between any two files at any one time. A file may not be coupled to itself.

Note:
Only files with numbers 255 or lower can be coupled.

Changes affecting a coupled file’s inverted lists are automatically made to the other file. The DBA should
consider the additional overhead required to update the coupling lists when the descriptor used as the basis
for coupling is updated, or when records are added to or deleted from either file. If a field that is not
defined with the NU option is used as the basis for coupling and the field contains a large number of null
values, a considerable amount of additional execution time and required disk space to store the coupling
lists may result.

An interrupted ADAINV operation can be restarted without first having to restore the file.

281

Functional OverviewAdabas Utilities

COUPLE: Define a File-Coupling Descriptor

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Example

Temporary Space for File Coupling

Associator Coupling Lists

Space for Coupling Lists

Space Allocation

Essential Parameters
DESCRIPTOR: Descriptors Used as Basis for Coupling

The DESCRIPTOR parameter defines one descriptor in each file to provide the basis for
coupling the files. Subdescriptors or superdescriptors may also be used, or may be defined as or
derived from a multiple-value field. The descriptors specified may not be contained within a
periodic group, nor be derived from a periodic group. The descriptors can have different names,
but must have the same length and format definitions.

FILES: Files to Be Coupled

FILES specifies the two files to be coupled. The number of each file must be 255 or lower. The
files specified may not be currently coupled to each other.

SORTSIZE: Sort Size

282

Adabas UtilitiesCOUPLE: Define a File-Coupling Descriptor

SORTSIZE specifies the space available for the sort dataset or datasets R1/2 (SORTR2 is not
supported under VSE). The value can be either cylinders (a numeric value only) or blocks (a numeric
value followed by "B"). If blocks are specified, they should be equivalent to a full number of cylinders.
The SORTSIZE parameter must be specified. Refer to the Adabas DBA Reference
documentation for more information on estimating the sort space.

TEMPSIZE: Temporary Storage Size

TEMPSIZE defines the space available for the temp dataset. The value may be in cylinders (a
numeric value only) or blocks (a numeric value followed by "B"). This parameter must be
specified.

Optional Parameters
LPB: Prefetch Buffer Size

LPB specifies the size, in bytes, of the internal prefetch buffer. The maximum value is 32760
bytes. The default depends on the ADARUN LU parameter; ADAINV may also reduce a
specified LPB value if the LU value is too small.

LWP: Work Pool Size

LWP specifies the size of the work pool to be used for descriptor value sorting. The value can
be specified in bytes or kilobytes followed by a "K". If no value is specified, the default is
1048576 bytes (or 1024K); however, to shorten ADAINV run time for files with very long
descriptors or an unusually large number of descriptors, set LWP to a higher value. To avoid
problems with the sort dataset, a smaller LWP value should be specified when defining
descriptors for relatively small files.

The minimum work pool size depends on the sort dataset’s device type:

Sort Device Minimum LWP Minimum LWP

Bytes Kilobytes

2000 106496 104K

2314 090112 88K

3375 131072 128K

3380 139264 136K

3390 159744 156K

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

283

COUPLE: Define a File-Coupling DescriptorAdabas Utilities

PASSWORD: File Password

If one or both of the files being coupled is security protected, a valid password for the file (or
files) must be specified with this parameter. If both files are password-protected, both must have
the same password.

SORTDEV: Sort Device Type

ADAINV uses the sort dataset to sort descriptor values. The SORTDEV parameter indicates the
device type to be used for the sort dataset. This parameter is required only if the device type to
be used is different from that specified with the ADARUN DEVICE parameter. See the MVS
job control information for specific SORTDEV considerations.

TEMPDEV: Temporary Storage Device Type

ADAINV uses the temp dataset to store intermediate data. The TEMPDEV parameter indicates
the device type to be used for this dataset. This parameter is required only if the device type to
be used is different from that specified with the ADARUN DEVICE parameter.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

Example
ADAINV COUPLE
FILES=3,4,DESCRIPTOR=’AA,BB’

Files 3 and 4 are to be coupled. Descriptor AA from file 3 and descriptor BB from file 4 are to be used as
the basis for the coupling.

Temporary Space for File Coupling
An intermediate dataset is generated for each of the files being coupled.

An entry is written to the dataset for each record contained in the file. Each entry contains the ISN of the
record (3 or 4 bytes, depending on the ISNSIZE defined for the files) and the value (in compressed form)
of the descriptor being used as the basis for the coupling. If the descriptor is defined with the NU option,
no entries are written for records in which the descriptor contains a null value. If the descriptor is a
multiple-value field, an entry is written for each different value.

The space required for each of the intermediate datasets is a function of the number of records contained
in each Adabas file, and the length and the number of the different values present for the coupling
descriptor in each record.

Use the following equation to determine the space needed for an intermediate dataset:

SP = RECS x UV x (ISNSIZE + (AVLEN x 4)

284

Adabas UtilitiesCOUPLE: Define a File-Coupling Descriptor

where

SP intermediate dataset space required (in bytes).

RECS number of records contained in the coupled file.

UV average number of unique values per record for the descriptor. If the
descriptor is not defined with the NU option, UV is equal to or less than 1. If
the descriptor is defined with the NU option, UV is equal to the average
number of values per record minus the percentage of records that contain a
null value. For example, if the average number of values per record is 1 and
20 percent of the values are null, UV is equal to 1 - 0.2 = 0.8.

ISNSIZE length of ISNs in the file (3 or 4 bytes).

AVLEN average length (after compression) of each value for the descriptor.

Example: Calculating Intermediate Space Requirements for File Coupling

The file being coupled has 3-byte ISNs and contains 50,000 records. The descriptor being used as the
basis for coupling contains 1 value per record (with no null values) and has an average value length of 5
bytes.

SP = 50,000 x 1 x (3 + (5 + 1))
SP = 50,000 x 9
SP = 450,000 bytes

Associator Coupling Lists
ADAINV matches the two lists, sorts each resulting list, and writes each list to the Associator coupling
lists.

The temp dataset stores the matched (coupled) ISNs for each file. An entry is written to the temp dataset
for each match found. The entry contains the ISN of each record containing a matching value.

ADAINV sorts the entries stored on the temp dataset using the sort area and writes the sorted entries to the
Associator coupling lists for file A. The same process is then repeated for file B.

The temp area size requirement depends on the number of matching values in the two files for the
descriptor used to couple the files. Each match requires 6 or 8 bytes, depending on the ISNSIZE defined
for the files.

The sort area generally requires twice the amount of space as that needed for the temp area.

File coupling is bidirectional rather than hierarchical in that two coupling lists are created with each list
containing the ISNs which are coupled to the other file.

Example: Coupling Lists

Assume that 2 files containing the descriptors AA and BB, respectively, are to be coupled. The values for
the first five records of each file are as follows:

285

COUPLE: Define a File-Coupling DescriptorAdabas Utilities

File A File B

ISN Field AA value ISN Field BB value

1
2
3
4
5

20
25
27
30
40

1
2
3
4
5

18
40
25
20
20

If the two files were coupled using AA and BB as the basis for the coupling, the resulting coupling lists
would be:

File A File B

ISN in FILE
B*

COUNT COUPLED
ISNs

ISN in FILE
A*

COUNT COUPLED
ISNs

2
3
4
5

1
1
1
1

5
2
1
1

1
2
5

2
1
1

4,5
3
2

* Internally, Adabas uses this field like a descriptor to determine the number and the ISNs of the coupled
records.

Space for Coupling Lists
The total space requirement for the coupling lists depends upon the number of common values that exist
between the two descriptors used as the basis for the coupling.

The space requirement for each common value may be estimated as follows:

SP = 4 a + 4 b + 6 ab

where

SP space requirement for one common value (in bytes);

a number of records in file A containing the common value;

b number of records in file B containing the common value.

The total coupling list requirement is the sum of the space requirements of each common value.

Using sample files A and B as previously defined, space requirements per common value are

Common Value Space Requirements

20 SP = 4(1) + 4(2) + 6(1 • 2) = 24 bytes

25 SP = 4(1) + 4(1) + 6(1 • 1) = 14 bytes

40 SP = 4(1) + 4(1) + 6(1 • 1) = 14 bytes

286

Adabas UtilitiesCOUPLE: Define a File-Coupling Descriptor

Total space required = 24 + 14 + 14 = 52 bytes

Example: Coupling List Space Requirements

Assume that 2 files are being coupled on the field ID. The values for ID are unique within each file. There
are 5,000 common values in the coupled files.

Common Value Space Requirements

n SP = 4(1) + 4(1) + 6(1) SP = 14 bytes for one common value

There are 5,000 common values, each of which requires 14 bytes. The total space requirement for the
coupling lists is 70,000 bytes.

Space Allocation
The coupling lists constructed by ADAINV are contained within the normal (NI) and upper (UI) index for
each file being coupled. If the NI or UI component’s logical extents currently allocated to the file are used
up during ADAINV execution, ADAINV attempts to allocate an additional extent to the component. The
size of the extent allocated is equal to 25 percent of the current total size of all logical extents currently
assigned to the component. If insufficient space is available or if the maximum of five extents has already
been allocated to the component, ADAINV terminates with an error message.

287

COUPLE: Define a File-Coupling DescriptorAdabas Utilities

INVERT: Create a Descriptor
The INVERT function creates descriptors, subdescriptors, superdescriptors, hyperdescriptors, phonetic
descriptors or collation descriptors for existing fields in a file. Several descriptors may be created in a
single ADAINV INVERT run, but only for a single file.

This chapter covers the following topics:

Essential Parameters

Optional Parameters and Subparameters

Space Allocation for the INVERT Function

Examples

Essential Parameters
FILE: File Number

FILE specifies the file in which the descriptor(s) to be created is contained.

SORTSIZE: Sort Size

SORTSIZE specifies the space available for the sort dataset or datasets R1/2 (SORTR2 is not
supported under VSE). The value can be either cylinders (a numeric value only) or blocks (a
numeric value followed by "B"). If blocks are specified, they should be equivalent to a full
number of cylinders. The SORTSIZE parameter must be specified. Refer to the Adabas DBA
Reference documentation for more information on estimating the sort space.

288

Adabas UtilitiesINVERT: Create a Descriptor

TEMPSIZE: Temporary Storage Size

TEMPSIZE defines the space available for the temp dataset. The value may be in cylinders (a
numeric value only) or blocks (a numeric value followed by "B"). This parameter must be
specified.

Optional Parameters and Subparameters
CODE: Cipher Code

If the file specified with the FILE parameter is ciphered, an appropriate cipher code must be
supplied using the CODE parameter.

FIELD/ COLDE/ HYPDE/ PHONDE/ SUBDE/ SUPDE: Define Descriptor(s)

These parameters may be used to define various types of descriptors. You must specify at least
one descriptor definition for the file specified; you may specify more than one descriptor or type
of descriptor.

Use the FIELD parameter to define one or more fields as descriptors; use the COLDE parameter
for a collation descriptor; HYPDE parameter for a hyperdescriptor; PHONDE for a phonetic
descriptor; SUBDE for a subdescriptor; and SUPDE for a superdescriptor.

If provided, a FIELD specification must come before any collation descriptor, hyper-, super-,
sub-, or phonetic descriptor specification.

FIELD specifies an existing field (or fields) to be inverted. The field may be an elementary or
multiple-value field and may be contained within a periodic group (unless the field is defined
with the FI option).

If the descriptor is to be unique, specify "UQ" following the field name. If the uniqueness of the
descriptor is to be determined with the index (occurrence number) excluded, specify "XI" as
well.

Note:
For Adabas expanded files, ADAINV can only detect unique descriptor violations within the
specified component file. If an identical value exists for a unique descriptor in one of the other
component files, ADAINV cannot detect it. You must therefore ensure that unique descriptor
values remain unique throughout an expanded file.

Although multiple fields can be specified for inversion using the FIELD parameter, only one
collation descriptor, hyper-, sub-, super-, or phonetic descriptor is defined per instance of its
parameter. Multiple instances of the parameters are allowed per execution of ADAINV.

When inverting a sub- or superfield, the respective SUBDE or SUPDE parameter must specify
the same parent fields that were specified when the field was created; otherwise, an error occurs.
Begin and end values are taken from the original field definitions.

If a parent field with the NU option is specified, no entries are made in the inverted list for those
records containing a null value for the field. For super- and hyperdescriptors, this is true
regardless of the presence or absence of values for other descriptor elements.

289

INVERT: Create a DescriptorAdabas Utilities

If a parent field is not initialized and logically falls past the end of the physical record, the
inverted list entry for that record is not generated for performance reasons. To generate the inverted list
entry in this case, it is necessary to unload short, decompress, and reload the file; or use an application
program to initialize the field for each record of the file.

See ADACMP utility description for detailed information about the individual descriptor syntax,
subparameter values, and coding.

LPB: Prefetch Buffer Size

LPB specifies the size, in bytes, of the internal prefetch buffer. The maximum value is 32,760
bytes. The default depends on the ADARUN LU parameter; ADAINV may also reduce a
specified LPB value if the LU value is too small.

LWP: Work Pool Size

LWP specifies the size of the work pool to be used for descriptor value sorting. The value can
be specified in bytes or kilobytes followed by a "K". If no value is specified, the default is
1048576 bytes (or 1024K); however, to shorten ADAINV run time for files with very long
descriptors or an unusually large number of descriptors, set LWP to a higher value. To avoid
problems with the Sort dataset, a smaller LWP value should be specified when defining
descriptors for relatively small files.

The minimum work pool size depends on the Sort dataset’s device type:

Sort Device Minimum LWP Minimum LWP

Bytes Kilobytes

2000 106496 104K

2314 090112 88K

3375 131072 128K

3380 139264 136K

3390 159744 156K

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

If the file specified with the FILE parameter is security protected, the file’s password must be
supplied using this parameter.

SORTDEV: Sort Device Type

290

Adabas UtilitiesINVERT: Create a Descriptor

ADAINV uses the sort dataset to sort descriptor values. The SORTDEV parameter indicates the
device type to be used for the sort dataset. This parameter is required only if the device type to be used is
different from that specified with the ADARUN DEVICE parameter. See the MVS job control
information at the end of this section for specific MVS SORTDEV considerations.

TEMPDEV: Temporary Storage Device Type

ADAINV uses the temp dataset to store intermediate data. The TEMPDEV parameter indicates
the device type to be used for this dataset. This parameter is required only if the device type to
be used is different from that specified with the ADARUN DEVICE parameter.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

Space Allocation for the INVERT Function
The values for the field being inverted and the ISNs of the records containing the values are written to the
inverted list (normal and upper indexes).

If either the normal or upper index logical extent is exhausted during ADAINV execution, ADAINV
allocates an additional extent. The size of the extent allocated is equal to 25 percent of the current total
size of all the normal index extents currently allocated to the file.

If sufficient space is not available for the new extent or if the maximum of five extents has already been
allocated, ADAINV terminates with an error message.

Examples
Example 1:

ADAINV INVERT
FILE=3,FIELD=’AR’,TEMPSIZE=10,SORTSIZE=5

Field AR in file 3 is to be made a descriptor.

Example 2:

ADAINV INVERT FILE=5,SUBDE=’SA=AA(1,4)’
ADAINV TEMPSIZE=6,SORTSIZE=3

Subdescriptor SA is to be created using field AA (positions 1-4) in file 5 as the parent field.

Example 3:

ADAINV INVERT FILE=6,SUPDE=’SB=AA(1,4),AB(1,1)’
ADAINV TEMPSIZE=5,SORTSIZE=3

Superdescriptor SB is to be created using fields AA (positions 1-4) and AB (position 1) in file 6.

291

INVERT: Create a DescriptorAdabas Utilities

Example 4:

ADAINV INVERT FILE=1,PHONDE=’XX(AA)’
ADAINV TEMPSIZE=5,SORTSIZE=3

A phonetic descriptor XX is created using field AA as the source field.

Example 5:

ADAINV INVERT FILE=6,COLDE=’1,Y1=AA’
ADAINV TEMPSIZE=5,SORTSIZE=4

Collation descriptor CDX=01 named Y1 is created using AA as the source field.

292

Adabas UtilitiesINVERT: Create a Descriptor

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADAINV with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

Collation with User Exit

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

Collation with User Exit
If a collation user exit is to be used during ADAINV execution, the ADARUN CDXnn parameter must be
specified for the utility run.

Used in conjunction with the universal encoding support (UES), the format of the collation descriptor user
exit parameter is

where

nn is the number of the collation descriptor exit, a two-digit decimal integer in the range
01-08 inclusive.

exit-name is the name of the user routine that gets control at the collation descriptor exit; the
name can be up to 8 characters long.

Only one program may be specified for each collation descriptor exit. Up to 8 collation descriptor exits
may be specified (in any order). See the Adabas DBA Reference documentation for more information.

BS2000

293

JCL/JCS Requirements and ExamplesAdabas Utilities

Dataset Link Name Storage More Information

Associator DDASSORn disk

Intermediate storage DDTEMPR1 disk

Sort area DDSORTR1 disk

Sort area DDSORTR2 disk When using large
files, the Sort area
should be split across
two volumes (see
Note).

Recovery log (RLOG) DDRLOGR1 disk Required when using
the recovery log
option

ADARUN parameters SYSDTA/ DDCARD Operations

ADAINV parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT/ DDPRINT Messages and Codes

ADAINV messages SYSLST/ DDDRUCK Messages and Codes

Note:
Performance can be improved when sorting large files if the sort dataset is split across two volumes. If
two datasets are specified, they must both be on the same device type (SORTDEV parameter), and each
must be exactly half the size specified with the SORTSIZE parameter.

ADAINV JCL Examples (BS2000)

Couple Files

In SDF Format:

/.ADAINV LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A I N V COUPLE FIELD (REFLECTIVE)
 /REMARK *
 /ASS-SYSLST L.INV.COUP
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDTEMPR1,ADAyyyyy.TEMP
 /SET-FILE-LINK DDSORTR1,ADAyyyyy.SORT
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAINV,DB=yyyyy,IDTNAME=ADABAS5B
 ADAINV COUPLE FILE=1,3,DESCRIPTOR= AA,AA
 ADAINV TEMPSIZE=100,SORTSIZE=50
 /LOGOFF SYS-OUTPUT=DEL

294

Adabas UtilitiesJCL/JCS Requirements and Examples

In ISP Format:

/.ADAINV LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A I N V COUPLE FIELD (REFLECTIVE)
 /REMARK *
 /SYSFILE SYSLST=L.INV.COUP
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSOR ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.TEMP ,LINK=DDTEMPR1
 /FILE ADAyyyyy.SORT ,LINK=DDSORTR1
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAINV,DB=yyyyy,IDTNAME=ADABAS5B
 ADAINV COUPLE FILE=1,3,DESCRIPTOR= AA,AA
 ADAINV TEMPSIZE=100,SORTSIZE=50
 /LOGOFF NOSPOOL

Invert File

In SDF Format:

/.ADAINV LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A I N V INVERT FIELD (REFLECTIVE)
 /REMARK *
 /ASS-SYSLST L.INV.INVE
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDTEMPR1,ADAyyyyy.TEMP
 /SET-FILE-LINK DDSORTR1,ADAyyyyy.SORT
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAINV,DB=yyyyy,IDTNAME=ADABAS5B
 ADAINV INVERT FILE=1
 ADAINV TEMPSIZE=100,SORTSIZE=50
 ADAINV FIELD= AC
 ADAINV SUPDE= S1,UQ=AA(1,3),AD(2,4)
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADAINV LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A I N V INVERT FIELD (REFLECTIVE)
 /REMARK *
 /SYSFILE SYSLST=L.INV.INVE
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSOR ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.TEMP ,LINK=DDTEMPR1
 /FILE ADAyyyyy.SORT ,LINK=DDSORTR1
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAINV,DB=yyyyy,IDTNAME=ADABAS5B
 ADAINV INVERT FILE=1
 ADAINV TEMPSIZE=100,SORTSIZE=50
 ADAINV FIELD= AC
 ADAINV SUPDE= S1,UQ=AA(1,3),AD(2,4)
 /LOGOFF NOSPOOL

295

JCL/JCS Requirements and ExamplesAdabas Utilities

OS/390 or z/OS

Dataset DD Name Storage More Information

Associator DDASSORn disk

Intermediate storage DDTEMPR1 disk

Sort area DDSORTR1 disk

Sort area DDSORTR2 disk When using large
files, the Sort area
should be split across
two volumes (see
Note).

Recovery log (RLOG) DDRLOGR1 disk Required when using
the recovery log
option

ADARUN parameters DDCARD reader Operations

ADAINV parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADAINV messages DDDRUCK printer Messages and Codes

Note:
Performance can be improved when sorting large files if the sort dataset is split across two volumes, but
this is difficult to accomplish under OS. Two sort datasets may be specified instead. They must both be on
the same device type (SORTDEV parameter), and each must be exactly half the size specified with the
SORTSIZE parameter.

*

ADAINV JCL Example (OS/390 or z/OS)

Couple Files

Refer to ADAINVCO in the MVSJOBS dataset for this example.

//ADAINVCO JOB
//*
//* ADAINV: COUPLE FILES
//*
//INV EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <===== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <===== DATA

//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <===== WORK
//DDTEMPR1 DD DISP=OLD,DSN=EXAMPLE.DByyyyy.TEMPR1 <===== TEMP
//DDSORTR1 DD DISP=OLD,DSN=EXAMPLE.DByyyyy.SORTR1 <===== SORT
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X

296

Adabas UtilitiesJCL/JCS Requirements and Examples

//DDCARD DD *
ADARUN PROG=ADAINV,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAINV COUPLE FILE=2,3,DESCRIPTOR=’BB,BB’
ADAINV TEMPSIZE=100,SORTSIZE=100
/*

Invert File

Refer to ADAINV in the MVSJOBS dataset for this example.

//ADAINVDE JOB
//*
//* ADAINV: INVERT A FIELD TO A DE
//*
//INV EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <===== ASSO
//DDTEMPR1 DD DISP=OLD,DSN=EXAMPLE.DByyyyy.TEMPR1 <===== TEMP
//DDSORTR1 DD DISP=OLD,DSN=EXAMPLE.DByyyyy.SORTR1 <===== SORT
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAINV,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAINV INVERT FILE=1
ADAINV FIELD=’AC’
ADAINV SUPDE=’S1,UQ=AA(1,3),AD(2,4)’
ADAINV TEMPSIZE=100,SORTSIZE=100
/*

VM/ESA or z/VM

297

JCL/JCS Requirements and ExamplesAdabas Utilities

Dataset DD Name Storage More Information

Associator DDASSORn disk

Intermediate storage DDTEMPR1 disk

Sort area DDSORTR1 disk

Sort area DDSORTR2 disk When using large
files, the Sort area
should be split across
two volumes.*

Recovery log (RLOG) DDRLOGR1 disk Required when using
the recovery log
option

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADAINV parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADAINV messages DDDRUCK disk/ terminal/ printer Messages and Codes

* Performance can be improved when sorting large files if the sort dataset is split across two volumes, but
this is difficult to accomplish under CMS. Two sort datasets may be specified instead. They must both be
on the same device type (SORTDEV parameter), and each must be exactly half the size specified with the
SORTSIZE parameter.

ADAINV JCL Examples (VM/ESA or z/VM)

Couple Files

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDTEMPR1,DSN=ADABASVv.TEMP,VOL=TEMPV1
DATADEF DDSORTR1,DSN=ADABASVv.SORT,VOL=SORTV1
DATADEF DDPRINT,DSN=ADAINV.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAINV.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNINV.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADAINV.CONTROL,MODE=A
ADARUN

Contents of RUNINV CONTROL A1:

ADARUN PROG=ADAINV,DEVICE=dddd,DB=yyyyy

Contents of ADAINV CONTROL A1:

ADAINV COUPLE FILE=1,3,DESCRIPTOR=’AA,AA’
ADAINV TEMPSIZE=100,SORTSIZE=50
*

298

Adabas UtilitiesJCL/JCS Requirements and Examples

Invert File

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDTEMPR1,DSN=ADABASVv.TEMP,VOL=TEMPV1
DATADEF DDSORTR1,DSN=ADABASVv.SORT,VOL=SORTV1
DATADEF DDPRINT,DSN=ADAINV.DDPRINT,MODE=A
DATADEF DUMP,DUMMY

DATADEF DDDRUCK,DSN=ADAINV.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNINV.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADAINV.CONTROL,MODE=A
ADARUN

Contents of RUNINV CONTROL A1:

ADARUN PROG=ADAINV,DEVICE=dddd,DB=yyyyy

Contents of ADAINV CONTROL A1:

ADAINV INVERT FILE=1
ADAINV TEMPSIZE=100,SORTSIZE=50
*
ADAINV FIELD=’AC’
ADAINV SUPDE=’S1,UQ=AA(1,3),AD(2,4)’

VSE/ESA

File File Name Storage Logical Unit More
Information

Associator ASSORn disk *

Intermediate
storage

TEMPR1 disk *

Sort area SORTR1 disk *

Recovery log
(RLOG)

RLOGR1 disk * Required with
recovery log
(RLOG) option

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
*

ADAINV
parameters

- reader SYSIPT

ADARUN
messages

- printer SYSLST Messages and
Codes

ADAINV
messages

- printer SYS009 Messages and
Codes

* Any programmer logical unit can be used.

299

JCL/JCS Requirements and ExamplesAdabas Utilities

ADAINV JCS Examples (VSE/ESA)

See Procedures for VSE/ESA Examples for a description of the VSE/ESA procedures (PROCs).

Couple Files

Refer to member ADAINVCO.X for this example.

* $$ JOB JNM=ADAINVCO,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAINVCO
* COUPLE FILES
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAINV,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAINV COUPLE FILE=2,3,DESCRIPTOR=’BB,BB’
ADAINV TEMPSIZE=100,SORTSIZE=100
/*
/&
* $$ EOJ

Invert File

Refer to member ADAINV.X for this example.

* $$ JOB JNM=ADAINV,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAINV
* INVERT A FIELD TO A DESCRIPTOR
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAINV,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAINV INVERT FILE=1
ADAINV FIELD=’AC’
ADAINV SUPDE=’S1,UQ=AA(1,3),AD(2,4)’
ADAINV TEMPSIZE=100,SORTSIZE=100
/*
/&
* $$ EOJ

300

Adabas UtilitiesJCL/JCS Requirements and Examples

ADALOD: Loader
This chapter covers the following topics:

Functional Overview

LOAD: Load a File

UPDATE : ADD/Delete Records

Loader Storage Requirements and Use

Temp Dataset Space Usage

ADALOD Space/Statistics Report

JCL/JCS Requirements and Examples

301

ADALOD: LoaderAdabas Utilities

Functional Overview
The ADALOD LOAD function loads a file into the database. Compressed records produced by the
ADACMP or ADAULD utility may be used as input.

ADALOD loads each compressed record into Data Storage, builds the address converter for the file, and
enters the field definitions for the file into the field definition table (FDT). ADALOD also extracts the
values for all descriptors in the file together with the ISNs of all records in which the value is present, to
an intermediate dataset. This dataset is then sorted into value/ISN sequence and then entered into the
Associator inverted lists.

The ADALOD UPDATE function is used to add or delete a large number of records to/from an Adabas
file. The UPDATE function requires considerably less processing time than the repetitive execution of the
Adabas aDD/delete record commands. Records to be added may be the compressed records produced by
the ADACMP or ADAULD utility. The ISNs of records to be deleted can be provided either in an input
dataset or by using control statements.

Records may be added and other records deleted during a single execution of ADALOD.

302

Adabas UtilitiesFunctional Overview

LOAD: Load a File

This chapter covers the following topics:

Essential Parameters

Optional Parameters and Subparameters

Examples

303

LOAD: Load a FileAdabas Utilities

LOAD Data and Space Requirements

Loading Expanded Files

Loading Multiclient Files

Essential Parameters
DSSIZE: Extent Size for Data Storage

DSSIZE is the count of blocks or cylinders to be assigned to the file’s Data Storage logical
extent. This value must be specified. Block values must be followed by "B" (for example,
5000B).

The number can be taken directly from the Space Requirements report produced by the
ADACMP utility. If the specified extent size exceeds the largest free size, ADALOD allocates
as many file extents as necessary (up to a total of 5) to satisfy the request.

If a small number of records is being loaded now and a larger number of records is to be added
later, the ADACMP report value should be increased in proportion to the total records to be
added; otherwise, the space allocation for Data Storage (the original and four additional extents)
may not be large enough to accommodate the records to be added. The file must then be
unloaded and reloaded (or reordered) to increase the Data Storage space allocation. For more
information, see the section LOAD File Space Allocation in the LOAD Data and Space
Requirements section.

FILE: File Number, File Type

FILE specifies the Adabas file number and file type to be assigned to the file.

The number specified must not be currently assigned to another file in the database, unless that
file was first deleted using the KEEPFDT parameter (see ADADBS DELETE function). The
number must not be greater than the maximum file number defined for the database; for a
checkpoint, security, or system file, the number must be 255 or lower (a trigger file can have a
two-byte file number). File numbers may be assigned in any sequence.

The file type is used to indicate that the file is an Adabas system file. One of the following
keywords may be specified:

CHECKPOINT Adabas checkpoint file

SECURITY Adabas security file

SYSFILE Adabas system file

TRIGGER Adabas trigger file

Notes:

1. An existing checkpoint system file created using the ADADEF utility cannot be
overwritten.

2. The security system file is required if Adabas Security is to be used.

304

Adabas UtilitiesLOAD: Load a File

3. In an Adabas Transaction Manager (ATM) database, SYSFILE numbers 5 and 6 are
reserved for the ATM nucleus. For Adabas version 7.1, these file numbers cannot be changed. The file
numbers will become more flexible in subsequent versions of Adabas.

4. Use the following parameters to load the ATM system files on an ATM database
(ADARUN DTP=TM): ADALOD LOAD FILE=5,SYSFILE , ADALOD LOAD
FILE=6,SYSFILE

5. If CHECKPOINT, SECURITY, or TRIGGER is specified, the contents of DD/EBAND are
ignored.

6. CHECKPOINT, SECURITY, or SYSFILE files can be deleted only by the ADADBS
DELETE function running as the only Adabas user; deleting a system file terminates Adabas when
deletion is completed.

7. Adabas allows a maximum of eight (8) system files.
MAXISN: Highest ISN to be Allocated

The MAXISN parameter is required. It specifies the highest ISN that may be assigned in the
file. The highest MAXISN value that Adabas permits is 4,294,967,294. There is no default
value.

Note that MAXISN does not specify the maximum number of records that can be loaded into
the file. The maximum number of records that Adabas permits in a file depends on the ISNSIZE
parameter, which specifies whether ISNs in the file are 3 bytes or 4 bytes long. If ISNSIZE=3,
Adabas permits up to 16,777,215 records. If ISNSIZE=4, Adabas permits up to 4,294,967,294
records.

However, the MAXISN and MINISN parameters together limit the number of records in the
file. The number of possible ISNs is given by

(MAXISN - MINISN) + 1

For example, to limit a file to 10 million records, the user can specify the following values:

MAXISN=10000000 or MAXISN=30000000

MINISN=1 MINISN=20000001

Similarly, the following values would limit a file with 4-byte ISNs to 50 million records:

MAXISN=50000000 or MAXISN=50500000

MINISN=1 MINISN=500001

ADALOD uses the MAXISN and MINISN values when it allocates space for the address
converter. Depending on the size of RABNs in the database (which is determined by the
ADADEF parameter RABNSIZE), each ISN requires 3 or 4 bytes in the address converter.
ADALOD multiplies the number of possible ISNs by 3 or 4 and then calculates the number of
blocks that must be allocated.

If more than (MAXISN - MINISN) + 1 records are to be loaded, and if NOACEXTENSION is
not specified, ADALOD increases the MAXISN value and allocates an additional address
converter extent.

305

LOAD: Load a FileAdabas Utilities

SORTSIZE: Sort Size

SORTSIZE specifies the space available for the sort dataset or datasets R1/2 (SORTR2 is not
supported under VSE). The value can be either cylinders (a numeric value only) or blocks (a
numeric value followed by "B"). If blocks are specified, they should be equivalent to a full
number of cylinders. The SORTSIZE parameter must be specified. Refer to the Adabas DBA
Reference documentation for more information on estimating the sort space.

TEMPSIZE: Temporary Storage Size

TEMPSIZE specifies the size of the temp dataset for the file. The Temp size equals the total of
TEMP space required for each descriptor in the file; see the section LOAD File Space Allocation
in the LOAD Data and Space Requirements section for more information. The size can be either
in cylinders or blocks (followed by "B").

Optional Parameters and Subparameters
ACRABN/ DSRABN/ NIRABN/ UIRABN: Starting RABN

Causes space allocation for the address converter (ACRABN), Data Storage (DSRABN), the
normal index (NIRABN), or the upper index (UIRABN) to begin at the specified RABN.

ADAMFILE: File to Be Loaded with ADAM Option

ADAMFILE specifies the file is to be loaded using the ADAM option.

If this parameter is specified, the Data Storage RABN for each input record is calculated using a
randomizing algorithm, the result of which is based on the value of the ADAM descriptor in
each record. See the ADAMER utility description for additional information about using the
ADAM option. If ADAMFILE is specified, ADAMDE must also be specified.

ADAMDE: ADAM Key

ADAMDE specifies the field to be used as the ADAM key.

The ADAM descriptor must be defined in the field definition table (FDT). The descriptor must
have been defined with the UQ option, and cannot

be a sub-, super-, hyper-, collation, or phonetic descriptor;

be a multiple-value field;

be a field within a periodic group;

be variable length;

specify the null suppression (NU) option.

If the ISN of the record is to be used as the ADAM key, ADAMDE=ISN must be specified.

This parameter must be specified when the ADAM option has been selected for the file being
loaded with the ADAMFILE parameter.

306

Adabas UtilitiesLOAD: Load a File

ADAMOFLOW: Overflow Area Size for ADAM File

ADAMOFLOW is the size of the Data Storage area to be used for ADAM file overflow. The
ADAMOFLOW value applies only if the ADAM option has been selected for the file being
loaded (see ADAMFILE parameter).

ADALOD will choose a prime number which is less than DSSIZE minus ADAMOFLOW (in
blocks). This prime number is used to compute the Data Storage RABN for each record. If a
record does not fit into the block with the computed RABN, it is written to the next free RABN
in the overflow area.

ADAMPARM: Bit Truncation for ADAM File

ADAMPARM specifies the number of bits to be truncated from the ADAM descriptor value
before it is used as input to the ADAM randomizing algorithm. A value in the range 1-255 may
be specified. If this parameter is omitted, a value of 0 bits (no truncation) will be used.

This parameter achieves a type of record "clustering" with nearly equal ADAM keys.
ADAMPARM can be specified only when the ADAMFILE parameter has also been specified.

ALLOCATION: Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameters ACRABN, DSRABN, NIRABN, or UIRABN.

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameters fails,
the utility retries the allocation without the placement parameter.

If insufficient space can be obtained according to the placement parameters DSRABN,
NIRABN, or UIRABN, only the first extent will be made there and the rest (until the fifth
extent) will be made elsewhere. But if the placement parameter ACRABN is used with
ALLOCATION=FORCE, the complete space has to be available there; otherwise, the utility
terminates with an error.

ANCHOR: Expanded Component/ Anchor File

ANCHOR defines the base (anchor) file for either an existing or a new expanded file. If the file
defined by ANCHOR is the same as that defined by the FILE parameter, the loaded file
becomes the physical base (anchor) file for a new expanded logical file. Otherwise, the FILE
file becomes a new component of the expanded file defined by ANCHOR.

If ANCHOR specifies a file that is not part of an expanded file, the LOAD operation defines this
file and the file specified by the FILE parameter as a new expanded file. It also sets the
NOACEXTENSION indicator for the file specified by ANCHOR.

If ANCHOR specifies the anchor file of an already existing expanded file, the LOAD operation
adds the file specified by FILE to the expanded file.

307

LOAD: Load a FileAdabas Utilities

Note:
When loading a new file to an existing expanded file, you must have exclusive update use of the
anchor file as well as the file being added. This can be achieved by locking the anchor file for utility use.

Both the file specified by ANCHOR and the file specified by FILE must have the same field
definition table (FDT) structure. The maximum record length (MAXRECL parameter) and any file
security definitions must also be the same.

If ANCHOR is specified, the MINISN and NOACEXTENSION parameters must also be
specified. Coupled files or multiclient files cannot be part of expanded files.

ASSOPFAC: Associator Padding Factor

ASSOPFAC defines the padding factor to be used for each Associator block. If not specified,
the default padding factor is 10.

The value specified represents the percentage of each Associator block (padding area) that is not
to be used during the loading process. The padding area is reserved for use when additional
entries must be added to the block for new descriptor values or new ISNs for existing values,
thereby avoiding the overhead caused by relocating overflow entries into another block.

A value in the range 1-90 may be specified. The number of bytes contained in an Associator
block, minus the number of bytes reserved for padding, must be larger than the largest
descriptor value contained in the file, plus 10 bytes.

A small padding factor (1-10) should be specified if little or no descriptor updating is planned.
A larger padding factor (10-50) should be specified if a large amount of updating including
addition of new descriptor values (or new ISNs) is planned.

ASSOVOLUME: Associator Extent Volume

Note:
The value for ASSOVOLUME must be enclosed in apostrophes.

ASSOVOLUME specifies the volume on which the file’s Associator space (that is, the AC, NI,
and UI extents) is to be allocated. If the requested number of blocks cannot be found on the
specified volume, ADALOD retries the allocation while disregarding the ASSOVOLUME
parameter.

Note:
If there are five or more blocks of unused ASSO space on the specified volume, ADALOD
allocates these blocks; if this is not enough space, it ends with ERROR-060. If there are no free
blocks remaining on the specified volume, ADALOD tries to allocate space on another volume.

If ACRABN, UIRABN, or NIRABN is specified, ADALOD ignores the ASSOVOLUME value
when allocating the corresponding extent type. If ASSOVOLUME is not specified, the file’s
Associator space is allocated according to ADALOD’s default allocation rules.

DATAFRM: Overwrite ADAM Data Storage

DATAFRM controls overwriting of an ADAM file’s Data Storage during loading.
DATAFRM=YES (the default) forces ADALOD to reformat the Data Storage area when the file
is loaded; DATAFRM=NO prevents reformatting, and is recommended when loading relatively

308

Adabas UtilitiesLOAD: Load a File

few records because the load operation may run significantly faster. Specifying NO, however,
assumes that the Data Storage area was previously formatted with the ADAFRM utility specifying
FROMRABN.

Warning:
Specify DATAFRM=NO with care. If the primary Data Storage
area was inxcorrectly formatted, later file processing could
cause errors and unpredictable results.

DATAPFAC: Data Storage Padding Factor

DATAPFAC is the padding factor to be used for each Data Storage physical block. A
percentage value in the range 1-90 may be specified. If not specified here, the default padding
factor is 10.

A small padding factor (1-10) should be specified if little or no record expansion is expected. A
larger padding factor (10-50) should be specified if a large amount of updating is planned that
will expand the logical records.

The percentage value specified represents the portion of each Data Storage block (padding area)
to be reserved during the loading process for later record expansion. The padding area is used
when any given logical record within the block requires additional space as the result of record
updating, thereby avoiding the overhead that would be needed to relocate the record to another
block.

Since records loaded into a file can be different lengths, the padding factor cannot be exactly the
percentage specified in each block. Adabas balances the size of the padding area for the
different record lengths to the extent that at least 50 bytes remain in a block.

Example:

A blocksize is 1000 bytes; the padding factor is 10%. The space available for loading records
(blocksize - padding-area) is therefore 900 bytes.

After loading some records, 800 bytes of the block have been used. The next record is 170 bytes
long. This record cannot be loaded into the current block because less the 50 bytes would
remain in the block after the record was loaded. Therefore, the record is loaded into the next
block.

The current block remains filled to 800 bytes. The difference between 800 and 900 bytes (that
is, -100 bytes) is used for balancing.

Suppose the next record had been 150 bytes instead of 170 bytes, and assume that the
cumulative balancing value at that point in time is a negative number of bytes. The 150-byte
record would be loaded because 50 bytes would remain in the block after the record was loaded
(1000 - 950).

However, 50 bytes of the padding area would have been used (900 - 950) leaving +50 bytes for
balancing.

309

LOAD: Load a FileAdabas Utilities

For files loaded with the ADAM option, a new record is loaded into its calculated Data Storage
block if space is available in the block (including the padding area). Records that cannot be stored in their
calculated block are stored in another block (in this case, the padding area is not used).

DATAVOLUME: Data Storage Extent Volume

Note:
The value for DATAVOLUME must be enclosed in apostrophes.

DATAVOLUME specifies the volume on which the file’s Data Storage space (DS extents) is to
be allocated. If the number of blocks requested with DSSIZE cannot be found on the specified
volume, ADALOD retries the allocation while disregarding the DATAVOLUME value.

If DSRABN is specified, DATAVOLUME is ignored for the related file. If DATAVOLUME is
not specified, the Data Storage space is allocated according to ADALOD’s default allocation
rules.

DSDEV: Data Storage Device Type

DSDEV specifies the device type on which the file’s Data Storage is to be loaded. There is no
default value; if DSDEV is not specified, an arbitrary device type is used.

DSREUSE: Data Storage Reusage

DSREUSE indicates whether Data Storage space which becomes available is to be reused. The
default is YES.

ETID: Multiclient File Owner ID

The ETID parameter assigns a new owner ID to all records being loaded into a multiclient file.
It specifies the user ID identifying the owner of the records being loaded. The owner ID
assigned to the records is taken from the user profile of the specified user ID.

The ETID parameter must be specified if the file is to be loaded as a multiclient file (see the
LOWNERID parameter discussion) and the input file contains no owner IDs; that is, the input
file was not unloaded from a multiclient source file.

ETID is optional if the input file was unloaded from a multiclient source file. In this case, the
loaded records keep their original owner IDs.

The ETID parameter must not be specified when loading a non-multiclient file.

Note:
If the ETID parameter is used, the ADALOD utility requires an active nucleus. The nucleus will
translate the ETID value into the internal owner ID value.

IGNFDT: Ignore Old FDT

When a file is deleted using the ADADBS DELETE function with the KEEPFDT parameter, the
field definition table (FDT) remains in the Associator. When the file is again reloaded and
IGNFDT is not specified, ADALOD compares the file’s old FDT with the new one (security
information is not compared). If both FDTs are identical, ADALOD loads the file and replaces
the old FDT with the new FDT. If the FDTs are not identical, the old FDT is kept and the
ADALOD operation ends with an error message.

310

Adabas UtilitiesLOAD: Load a File

Specifying the IGNFDT parameter causes ADALOD to ignore any existing (old) FDT for the
file; no comparison is made. The new FDT replaces the old FDT, and ADALOD loads the file.

INDEXCOMPRESSION: Compress File Index

INDEXCOMPRESSION indicates whether the index of the file is loaded in compressed or
uncompressed form. A compressed index usually requires less index space and improves the
efficiency of index operations in the Adabas nucleus.

If INDEXCOMPRESSION is not specified, ADALOD obtains the default value from the
sequential input file. If the input file was created using

ADACMP, the default value is NO.

ADAULD, the value of the file at the time of the unload is taken as the default.

ISNREUSE: ISN Reusage

ISNREUSE indicates whether or not an ISN freed as the result of deleting records may be
reassigned to a new record. The default is NO.

ISNSIZE: 3- or 4-Byte ISN

ISNSIZE indicates whether ISNs in the file are 3 or 4 bytes long. The default is 3 bytes.

LIP: ISN Buffer Pool Size

LIP specifies the size of the ISN pool for containing ISNs and their assigned Data Storage
RABNs. The value may be specified in bytes as a numeric value ("2048") or in kilobytes as a
value followed by "K" ("2K"). The default for LIP is 2000 bytes.

LIP can be used to decrease the number of address converter I/Os during loading when the
USERISN=YES and the user-supplied ISNs are unsorted. Optimum performance is obtained if
LIP specifies a buffer size large enough to hold all ISNs to be processed.

The length of one input record is ISNSIZE + RABNSIZE + 1. Thus the entry length is at least 7
bytes (the ISNSIZE of the file is 3 and the RABNSIZE of the database is 3) and at most 9 bytes
(the ISNSIZE is 4 and the RABNSIZE is 4).

LOWNERID: Internal Owner ID Length for Multiclient File

The LOWNERID parameter specifies the length of the internal owner ID values assigned to
each record for multiclient files. Valid length values are 0-8. If the LOWNERID parameter is
not specified, its default value is the length of the owner IDs in the input file.

The specified or default value of the LOWNERID parameter determine whether a file is to be
loaded as a multiclient or a non-multiclient file. If the effective LOWNERID value is zero, the
file is loaded as a normal, non-multiclient file; if it is nonzero, the file is loaded as a multiclient
file.

In combination with the ETID parameter, the LOWNERID parameter can be used to

311

LOAD: Load a FileAdabas Utilities

reload a non-multiclient file as a multiclient file;

increase/decrease the length of the owner ID for the file; or

remove the owner ID from the records of a file.

The following table shows the possible combinations of the LOWNERID parameter and the
owner ID length in the input file.

LOWNERID
Parameter
Setting

Owner ID Length Value in Input File

0 2

0 Keep as a non-multiclient
file

Convert to a non-multiclient
file

1 Set up multiclient file
(ETID)

Decrease owner ID length

2 Set up multiclient file
(ETID)

Keep owner ID length

3 Set up multiclient file
(ETID)

Increase owner ID length

(not specified) Keep as a non-multiclient
file

Keep as a multiclient file

When loading a multiclient file (the specified or default value of LOWNERID is non-zero), the
ETID parameter can be specified to assign a new owner ID to all records being loaded. If the
input file already contains owner IDs and ETID is omitted, all records keep their original owner
IDs.

Where the table indicates the ETID parameter in the "Owner ID Length...0" column, the ETID
parameter is mandatory, as there are no owner IDs given in the input file.

LWP: Work Pool Size

LWP specifies the size of the work pool to be used for descriptor value sorting. The value can
be specified in bytes or kilobytes followed by a "K". If no value is specified, the default is
1048576 bytes (or 1024K); however, to shorten ADALOD run time for files with very long
descriptors or an unusually large number of descriptors, set LWP to a higher value. To avoid
problems with the sort dataset, a smaller LWP value should be specified when loading relatively
small files.

The minimum work pool size depends on the sort dataset’s device type:

312

Adabas UtilitiesLOAD: Load a File

Sort Device Minimum LWP Minimum LWP

Bytes Kilobytes

2000 106496 104K

2314 090112 88K

3375 131072 128K

3380 139264 136K

3390 159744 156K

MAXDS/ MAXNI/ MAXUI: Maximum Secondary Allocation

Specifies the maximum number of blocks per secondary extent allocation for Data Storage
(MAXDS), normal index (MAXNI), or upper index (MAXUI). The value specified must be in
blocks (for example, MAXNI=8000B) and cannot be more than 65535B. If no limit is specified,
no limit is assumed (the default).

MAXRECL: Maximum Compressed Record Length

MAXRECL specifies the maximum compressed record length permitted for the file. The default
is the maximum length supported by the device type being used.

MINISN: Lowest ISN to be Allocated

This parameter specifies the lowest ISN that can be assigned in the file. The default is 1.

The main purpose of MINISN is to assign the low end of the ISN range for a component file of
an Adabas expanded file. MINISN is required when ANCHOR is specified for an expanded file.

Use MINISN to avoid wasting Associator space in files where all records are assigned ISNs
significantly greater than 1. For example, a savings bank uses account numbers as ISN numbers,
and the lowest account number is 1,000,001. Specifying MINISN = 1 000 001 stops Adabas
from allocating address converter space for ISNs 1-999 999, which would be unused. For more
information, see the description of the MAXISN parameter.

MIXDSDEV: Data Storage Mixed Device Types

MIXDSDEV allows the allocation of secondary Data Storage extents on different device types,
and therefore with different block lengths. If MIXDSDEV is not specified (the default), Data
Storage extents for the specified file must all be on the same device type.

NAME: File Name

NAME is the name to be assigned to the file. This name appears, along with data pertaining to
this file, on the Database Status Report produced by the ADAREP utility. The maximum
number of characters permitted is 16. The default name assigned is TESTFILE.

If the file name contains special characters or embedded blanks, the name must be enclosed
within apostrophes (’...’), which themselves must be doubled if one is included in the name; for
example, ’JAN’’S FILE’.

313

LOAD: Load a FileAdabas Utilities

NISIZE: Normal Index Size

NISIZE specifies the number of blocks or cylinders to be assigned to the normal index. A block
value must be followed by "B" (for example, 5500B).

If the specified extent size exceeds the largest free size, ADALOD allocates as many file extents
as necessary (up to a total of 5) to satisfy the request.

If the NISIZE parameter is omitted:

ADALOD determines the space allocation for the normal index based on a sampling of
records taken from the input dataset. Since this calculation requires additional CPU time
and I/O operations, Software AG recommends setting this parameter if the size is known so
that no estimation is performed.

and INDEXCOMPRESSION=YES is set, the index size estimation made by ADALOD
does not consider the index compression as it has no knowledge of the rate of compression
to be expected. ADALOD may thus allocate a larger index than necessary.

If a small number of records is being loaded and a larger number of records is to be added later,
the NISIZE parameter should be set to increase the Normal Index to accommodate the total
record amount. For more information, see the section LOAD File Space Allocation in the LOAD
Data and Space Requirements section.

NOACEXTENSION: Limit Address Converter Extents

If NOACEXTENSION is specified, the MAXISN defined for this file cannot be increased in the
future. No additional address converter (AC) extents will be created. NOACEXTENSION
applies mainly to component files comprising Adabas expanded files; if ANCHOR is specified,
NOACEXTENSION must also be specified.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

NUMREC: Limit Number of Records to Be Loaded

NUMREC specifies the limit on the number of records to be loaded. If NUMREC is specified,
ADALOD stops after processing the specified number of records (unless an end-of-file
condition on the input dataset ends ADALOD operation before that time). This option is most
often used to create a subset of a file for test purposes. If this parameter is omitted, all input
records are processed.

If the input dataset contains more records than specified by NUMREC, ADALOD processes the
number of records specified by NUMREC and then ends with condition code 4.

PGMREFRESH: Program-Generated File Refresh

314

Adabas UtilitiesLOAD: Load a File

PGMREFRESH specifies whether a user program is allowed to perform a refresh operation on
the file being loaded. If PGMREFRESH is specified, a refresh can be made using an E1 command, or an
equivalent call to the nucleus.

RESTART: Restart Interrupted ADALOD Execution

RESTART forces an interrupted ADALOD run to be restarted, beginning with the last "restart
point" reached before the interruption. The "restart point" is the latest point of execution that can
be restored from the temp dataset.

If ADALOD is interrupted by a defined error condition, ADALOD issues a message indicating
whether or not a restart is possible.

When restarting the ADALOD operation, the following parameters may be changed:

TEMPSIZE can be increased to make the temp dataset larger. Note, however, that the temp
dataset content contains information necessary for the restart operation, and therefore must
not be changed ;

The SORTSIZE and SORTDEV parameters and the sort dataset can be changed.

No other parameters can be changed. The DDEBAND/EBAND and DDFILEA/FILEA datasets
must remain the same.

SKIPREC: Number of Records to Be Skipped

SKIPREC specifies the number of input records to be skipped before beginning load processing.
The default is 0 (no records are skipped).

SORTDEV: Sort Device Type

ADALOD uses the sort dataset to sort descriptor values. The SORTDEV parameter indicates the
device type to be used for this dataset. This parameter is required only if the device type to be
used is different from that specified by the ADARUN DEVICE parameter.

TEMPDEV: Temporary Storage Device Type

ADALOD uses the temp dataset to store intermediate data. The TEMPDEV parameter indicates
the device type to be used for this dataset. This parameter is required only if the device type to
be used is different from that specified by the ADARUN DEVICE parameter.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

UISIZE: Upper Index Size

UISIZE specifies the number of blocks or cylinders to be assigned to the upper index. A block
value must be followed by "B" (for example, 5500B).

If the specified extent size exceeds the largest free size, ADALOD allocates as many file extents
as necessary (up to a total of 5) to satisfy the request.

315

LOAD: Load a FileAdabas Utilities

If the UISIZE parameter is omitted:

ADALOD determines the space allocation for the upper index based on a sampling of
records taken from the input dataset. Since this calculation requires additional CPU time
and I/O operations, Software AG recommends setting this parameter if the size is known so
that no estimation is performed.

and INDEXCOMPRESSION=YES is set, the index size estimation made by ADALOD
does not consider the index compression as it has no knowledge of the rate of compression
to be expected. ADALOD may thus allocate a larger index than necessary.

If a small number of records is being loaded and a larger number of records are to be added
later, the UISIZE parameter should be set to increase the upper index to accommodate the total
record amount. For more information, see the section LOAD File Space Allocation in the LOAD
Data and Space Requirements section.

UQDE: Unique Descriptors

UQDE defines one or more descriptors as unique. Each descriptor specified must contain a
different value in each input record. If a non-unique value is detected during ADALOD
processing, ADALOD terminates with an error message.

If the unique descriptor (UQ) option was specified with the ADACMP utility, the UQDE
parameter here is not required.

Adabas prevents a descriptor defined with the unique descriptor (UQ) option from being
updated with an add or update command if the update would cause a duplicate value for the
descriptor.

Note:
For Adabas expanded files, ADALOD can only detect unique descriptor violations within the
component file. If an identical value exists for a unique descriptor in one of the other component
files, ADALOD cannot detect it. You must therefore ensure that unique descriptor values
remain unique throughout an expanded file.

USERISN: User ISN Assignment

USERISN=YES indicates that the USERISN option for the loaded file is to be in effect, and that
the ISN for each new record is being supplied by the user in the input data. If USERISN=NO,
Adabas assigns the ISN for each new record.

If USERISN is not specified, a default setting is assumed that depends on the input file itself. If
the input file was created by ADACMP with the USERISN option or by ADAULD from a file
having the USERISN option, the default for ADALOD operation is USERISN=YES; otherwise,
the default is USERISN=NO. Specifying USERISN here overrides the existing default value.

Note:
Adabas 5.2 files initially loaded with the USERISN option do not require USERISN=YES to
again be specified when the files are reloaded; ADALOD assumes the default as described
above. However, Adabas 5.1 files initially loaded with the USERISN option must have
USERISN=YES specified whenever they are reloaded.

316

Adabas UtilitiesLOAD: Load a File

VERSION: Input Data Format

Originally, this parameter specified the Adabas version of the output (ADACMP) datasets to be
loaded into Adabas.

Because ADALOD determines the version of the sequential input dataset itself, this parameter is
ignored. It is available only for compatibility with old ADALOD jobs.

Examples
Example 1:

ADALOD LOAD FILE=6,MAXISN=20000,DSSIZE=20,ASSOPFAC=15,
ADALOD DATAPFAC=15,TEMPSIZE=20,SORTSIZE=10

File 6 is to be loaded. The number of records initially permitted for the file is 20,000. 20 cylinders are to
be allocated for Data Storage. The Associator and Data Storage block padding factors are both 15 percent.
The temp and sort datasets are 20 and 10 cylinders, respectively.

Example 2:

ADALOD LOAD FILE=7,MAXISN=350000,ASSOPFAC=5,MINISN=100001
ADALOD DATAPFAC=15,DSSIZE=100,USERISN=YES
ADALOD TEMPSIZE=200,SORTSIZE=100

File 7 is to be loaded. The number of records initially allocated for the file is 250,000, and the minimum is
100,001. The Associator padding factor is 5 percent. The Data Storage padding factor is 15 percent. 100
cylinders are to be allocated for Data Storage. ISNs are contained in the input. The temp and sort datasets
are equal to 200 and 100 cylinders, respectively.

Example 3:

ADALOD LOAD FILE=8,ADAMFILE,ADAMDE=’AK’
ADALOD ADAMPARM=4,ADAMOFLOW=5,UQDE=’AK’,MINISN=1
ADALOD MAXISN=10000,DSSIZE=20,ASSOPFAC=5,DATAPFAC=5
ADALOD TEMPSIZE=10,SORTSIZE=5

File 8 is to be loaded as an ADAM file. Field AK is the ADAM key. 4 bits are to be truncated from each
value of AK before using the value to calculate the Data Storage RABN for the record. The size of the
ADAM overflow area is 5 cylinders. The field AK is defined as a unique descriptor. The maximum
number of records initially allocated for the file is 10,000. 20 cylinders are to be allocated to Data Storage,
from which the five ADAM overflow cylinders are taken. The padding factor for both the Associator and
Data Storage is 5 percent. The sizes of the temp and sort datasets are 10 and 5 cylinders, respectively.

Example 4:

ADALOD LOAD FILE=9,NAME=INVENTORY,MAXISN=5000
ADALOD DSSIZE=2000B,DSRABN=30629,NISIZE=300B,UISIZE=50B
ADALOD MAXDS=1000B,MAXNI=50B,MAXUI=1B
ADALOD INDEXCOMPRESSION=YES
ADALOD ASSOPFAC=20,DATAPFAC=10
ADALOD TEMPSIZE=10,SORTSIZE=5,UQDE=’U1,U2’

317

LOAD: Load a FileAdabas Utilities

File 9 is to be loaded. The text name for the file is INVENTORY. The initial space allocation for the file
is for 5,000 records. 2,000 blocks are to be allocated for Data Storage, beginning with RABN 30,629. 300
blocks are to be allocated for the normal index. 50 blocks are to be allocated to the upper index. The
maximum allocations per secondary extent for Data Storage, normal index and upper index are 1000
blocks, 50 blocks, and 1 block respectively. The index is to be compressed. The padding factor for the
Associator is 20 percent. The padding factor for Data Storage is 10 percent. The sizes of the temp and sort
datasets are 10 and 5 cylinders respectively. Descriptors U1 and U2 are defined as unique descriptors.

Example 5:

ADALOD LOAD FILE=2,SECURITY
ADALOD DSSIZE=20B,MAXISN=2000,NISIZE=20B,UISIZE=5B
ADALOD TEMPSIZE=10,SORTSIZE=5

File 2 is to be loaded as an Adabas security file. The DDEBAND contents are ignored. Space is allocated
for Data Storage (20 blocks), for the address converter (2000 ISNs), the normal index (20 blocks), and the
upper index (5 blocks). The temp size is 10 cylinders, and the sort area size is 5 cylinders.

LOAD Data and Space Requirements
The following general information describes data requirements for LOAD operation, and how ADALOD
LOAD allocates space. For more information about space allocation, refer to the Adabas DBA Reference
documentation.

Input Data for LOAD Operations

Compressed data records produced by the ADACMP or ADAULD utility may be used as input
to ADALOD. If output from an ADAULD utility run made with the MODE=SHORT option is
used as ADALOD input, any descriptor information will be removed from the FDT, and no
index will exist for the file.

LOAD File Space Allocation

ADALOD allocates space for the normal index (NI), upper index (UI), address converter (AC),
Data Storage, and the temp area for the file being loaded.

Index Space Allocation

If the NISIZE and/or the UISIZE parameters are supplied, allocation is made using the
user-supplied values. If these parameters are not supplied, ADALOD allocates space for these
indexes based on a sampling of the values present for each descriptor.

Descriptor values are sampled as follows:

1. ADALOD reads the compressed input, stores the records into Data Storage, extracts each
value for each descriptor and writes these values to the temp dataset. Each temp block
contains values for one descriptor only. At the end of this processing phase, the following
information is present:

number of values for each descriptor

318

Adabas UtilitiesLOAD: Load a File

number of bytes required for each descriptor

temp RABNs used for each descriptor

For unique descriptors, the NI space requirement is equal to the temp size used. For
non-unique descriptors, the number of duplicate values must be determined. Each duplicate
value’s space requirement must be estimated and then subtracted from the number of bytes
required. The result is the NI size required for the duplicate descriptor.

The number of duplicate values is determined by reading up to 16 temp blocks containing
values for a single descriptor. These values are sorted to determine how many are
duplicates. The resulting count of duplicate values is multiplied by the factor:

The result is the estimated number of identical descriptor values present in the entire file
for this descriptor. This space requirement is subtracted from the temp size estimate.

2. The upper index (UI) size is computed after all normal index (NI) and temp sizes are
available.

3. The NI and UI sizes are each multiplied by the result of:

For example, if 10000 records require 10 blocks of UI space and 500 blocks of NI space
with MINISN = 1 (the default), the specification of MAXISN = 60000 causes 60 UI blocks
and 3000 NI blocks to be allocated:

However, this calculation is not made if USERISN=YES is in effect.

By setting MAXISN appropriately, it is therefore possible to increase the size allocation for
files in which a small number of records are being loaded and for which a much larger
number of records are to be added subsequently.

319

LOAD: Load a FileAdabas Utilities

If the NISIZE and UISIZE parameters have been specified, the space allocation is made
using unassigned Associator RABNs. If the NIRABN and/or the UIRABN parameters are supplied, space
allocation is made at the user-specified RABN.

Address Converter Space Allocation

The address converter allocation is based on the MAXISN and MINISN values for the file.
ADALOD allocates the blocks needed to contain the number of bytes calculated by the formula:

RABNSIZE x((MAXISN - MINISN)+ 1)

If the ACRABN parameter has been specified, ADALOD allocates the address converter
beginning with the user-specified block number; otherwise, it uses unassigned Associator
RABNs.

Data Storage Space Allocation

Data Storage allocation is based upon the value specified with the DSSIZE parameter. If the
DSRABN parameter has been specified, the allocation is made beginning with the
user-specified block number; otherwise, unassigned Data Storage RABNs are used.

If there are different device types in the database, Data Storage allocation can be forced on a
specified device type by specifying DSDEV. The MIXDSDEV parameter permits Data Storage
allocation on different device types, assuming the device types can store records with the length
specified by MAXRECL.

Temp Area Space Allocation

For each descriptor, ADALOD generates a list of the values and ISNs of the records containing
the value, and writes this information to the temp dataset. The space required for descriptor
information is equal to the sum of the space required for each descriptor. The space needed for
each descriptor can be calculated using the following formula:

SP = N x NPE x NMU x (L + 4)

where

SP is the space required for the descriptor (in bytes).

N is the number of records being loaded.

NPE is the average number of occurrences, if the descriptor is
contained in a periodic group. If not in a periodic group, NPE
equals 1.

NMU is the average number of occurrences, if the descriptor is a
multiple-value field. If not a multiple-value field, NMU equals
1.

L is the average length (after compression) of each value for the
descriptor.

320

Adabas UtilitiesLOAD: Load a File

Example:

A file containing 20,000 records is being loaded. The file contains two descriptors (AA and
CC). Descriptor AA has 1 value in each record and the average compressed value length is 3 bytes.
Descriptor CC has an average of 10 values in each record and the average compressed value length is
equal to 4 bytes.

Field Definitions:

01,AA,5,U,DE
01,CC,12,A,DE,MU

Space requirement for AA.

SP = 20,000 • 1 • (3 + 4)
SP = 140,000 bytes

Space requirement for CC.

SP = 20,000 • 10 • (4 + 4)
SP = 1,600,000 bytes

Total space requirement = 1,740,000 bytes .

The number of cylinders required may be calculated by dividing the number of blocks required
by the number of blocks per cylinder.

For a model 3380 device type:

Associator Updating by LOAD

ADALOD then sorts the descriptor values collected in the input phase and enters the sorted
values into the normal index and upper index. If the allocated index space is not enough for the
normal index or upper index, ADALOD allocates up to four additional extents.

Each additional extent allocated is equal to about 25 percent of the total current space allocated
to the index. If insufficient space is available for the additional extent or the maximum of five
extents has already been allocated, ADALOD terminates with an error message.

Loading Expanded Files
An expanded file is made up of a series of normal Adabas physical files. The number sequence of the files
within the expanded file is arbitrary. The first file may be file 53; the second, file 127; the third, 13, and so
on. ISNs assigned to each component file must be unique; no two files can contain the same ISN. The ISN

321

LOAD: Load a FileAdabas Utilities

range over all files must be in ascending order; however, there can be gaps in the sequence.

The total number of records in an expanded-file chain cannot exceed 4,294,967,294.

The sequence of physical component files that build an expanded logical file is defined by the ANCHOR
parameter, which defines the first component file (anchor) in the sequence. The anchor file is loaded just
as any other Adabas file; each additional component file must be loaded with the ANCHOR parameter
referring to the anchor file. ADALOD inserts the new physical file into the existing expanded file chain
according to the range of ISNs assigned to the added file. Each added component file must also specify
the NOACEXTENSION parameter when being loaded to prevent Adabas from assigning new ISNs to a
component file.

ADALOD processes only the anchor file and the single physical (component) files that compose an
expanded file, and not the complete expanded file itself.

Loading Data into an Expanded File

To load data (for example, several million records) into different physical files, the input data must first be
divided into several DDEBAND/EBAND input files. The DDEBAND/EBAND file data may be mapped
into the component files using the SKIPREC and NUMREC parameters; however, one-to-one mapping
without skipping or limits is recommended. This avoids the need to read records that will not be used
later, and thus improves performance.

Examples:

The following examples, which show parts of one or more jobs for loading an expanded file, illustrate the
mapping of DDEBAND/EBAND file data into component files:

//DDEBAND DD DSN=LOAD.DATA.FILE1,...
//DDKARTE DD *
ADALOD LOAD FILE=40,NAME=’XXX_Part1’
ADALOD MINISN=1,MAXISN=10000000,NOACEXTENSION
ADALOD NUMREC=10000000
ADALOD DSSIZE=...,NISIZE=...,UISIZE...
ADALOD SORTSIZE=...,TEMPSIZE=...
 .
 .

//DDEBAND DD DSN=LOAD.DATA.FILE1,...
//DDKARTE DD *
ADALOD LOAD FILE=41,NAME=’XXX_Part2’,ANCHOR=40
ADALOD MINISN=10000001,MAXISN=20000000,NOACEXTENSION
ADALOD NUMREC=10000000,SKIPREC=10000000
ADALOD DSSIZE=...,NISIZE=...,UISIZE...
ADALOD SORTSIZE=...,TEMPSIZE=...
 .
 .

//DDEBAND DD DSN=LOAD.DATA.FILE2,...
//DDKARTE DD *
ADALOD LOAD FILE=35,NAME=’XXX_Part2’,ANCHOR=40
ADALOD MINISN=20000001,MAXISN=30000000,NOACEXTENSION
ADALOD NUMREC=10000000
ADALOD DSSIZE=...,NISIZE=...,UISIZE...
ADALOD SORTSIZE=...,TEMPSIZE=...
 .
 .

322

Adabas UtilitiesLOAD: Load a File

Loading Multiclient Files
Note:
A multiclient file cannot be made part of an expanded file, and an expanded file cannot be converted to a
multiclient file.

A multiclient file stores records for multiple users or groups of users. It divides the physical file into
multiple logical files by attaching an owner ID to each record. Each user can access only the subset of
records that is associated with the user’s owner ID.

For any installed external security package such as RACF or CA-Top Secret, a user is still identified by
either Natural ETID or LOGON ID. The owner ID is assigned to a user ID. A user ID can have only one
owner ID, but an owner ID can belong to more than one user.

The ADALOD LOAD function uses the LOWNERID and ETID parameters to support the migration of an
application from a standard to a multiclient environment. The parameters work together to define owner
IDs and determine whether a file is a multiclient file.

LOWNERID specifies the length of the internal owner ID values assigned to each record for multiclient
files. In combination with the ETID parameter, the LOWNERID parameter can be used to reload a
standard file as a multiclient file, change the length of the owner ID for the file, or remove the owner ID
from the records of a file.

If the LOWNERID parameter is not specified, the length of the owner ID for the input file (if any)
remains the same.

ETID assigns a new owner ID to all records being loaded into a multiclient file, and must be specified if
the input file contains no owner IDs; that is, the input file was not unloaded from a multiclient source file.

Examples of Loading/Updating Multiclient Files
ADALOD LOAD FILE=20,LOWNERID=2,NUMREC=0

Creates file 20 as a multiclient file. The length of the internal owner ID is two bytes, but no actual owner
ID (ETID) is specified. No records are actually loaded in the file (NUMREC=0).

ADALOD LOAD FILE=20,LOWNERID=2,ETID=USER1

Creates file 20 as a multiclient file, load all supplied records, and assign them to user USER1. The length
of the internal owner ID is two bytes.

ADALOD UPDATE FILE=20,ETID=USER2

Performs a mass update to add records to file 20, a multiclient file. Load all the new records and assign
them to USER2.

323

LOAD: Load a FileAdabas Utilities

UPDATE: ADD/Delete Records
Warning:
If ADALOD UPDATE ends abnormally (due to insufficient space, for
example), updates made to the file before the abnormal ending cannot
be "backed out". Software AG therefore recommends that you
perform ADASAV SAVE on the file before you run ADALOD
UPDATE.

The UPDATE function adds and/or deletes a large number of records (ISNs) to and/or from an existing
file. A single UPDATE operation can both add and delete ISNs.

Records to be added must be in compressed (ADACMP or ADAULD output) form and be in the
DDEBAND/EBAND input dataset.

ISNs to be deleted must be specified by either or both of the DDISN and DELISN parameters.

Notes:

1. The UPDATE function cannot be used with an Adabas system file if the Adabas nucleus is active,
and cannot be used to change the checkpoint or security files.

2. A multiclient file cannot be made part of an expanded file, and an expanded file cannot be converted
to a multiclient file.

324

Adabas UtilitiesUPDATE: ADD/Delete Records

This chapter covers the following topics:

Essential Parameters

Optional Parameters and Subparameters

Examples

Formats for Specifying ISNs

UPDATE Data and Space Requirements

Mass Updates of Expanded Files

Essential Parameters
FILE: File Number

FILE specifies the number of the file to be updated. If a component file of an Adabas expanded
file is specified, only that component file is updated; the other component files must be updated
in separate UPDATE operations.

SORTSIZE: Sort Size

SORTSIZE is the number of blocks or cylinders available for the sort dataset.

TEMPSIZE: Temporary Storage Size

TEMPSIZE is the number of blocks or cylinders available for the temp dataset.

Optional Parameters and Subparameters
ACRABN: Starting RABN for Address Converter

ACRABN causes additional space allocation for the address converter to begin at the specified
RABN. ACRABN is effective only if MAXISN specifies an increase for the file’s address
converter.

ASSOVOLUME: Associator Extent Volume

Note:
The value for ASSOVOLUME must be enclosed in apostrophes.

ASSOVOLUME is effective only if MAXISN specifies an increase for the file’s address
converter.

ASSOVOLUME specifies the volume on which the file’s address converter extents is to be
allocated. If the requested number of blocks cannot be found on the specified volume,
ADALOD retries the allocation while disregarding the ASSOVOLUME parameter.

325

UPDATE: ADD/Delete RecordsAdabas Utilities

If ACRABN is specified, ADALOD ignores the ASSOVOLUME value when allocating the
address converter extent type. If ASSOVOLUME is not specified, the file’s Associator space is allocated
according to ADALOD’s default allocation rules.

DDISN: Read ISNs to be Deleted from Sequential Dataset

If DDISN is specified, ISNs to be deleted are read from the DDISN/ISN sequential dataset. If
both the DDISN and DELISN parameters are specified, the ISNs from the two lists are merged.
The DDISN/ISN dataset must have variable or variable blocked records. See the section
Formats for Specifying ISNs for more information.

When the UPDATE function is executed, all ISNs are first read and stored in the ISN pool in the
order they occur. The size of the ISN pool (specified by LIP) must be large enough to store all
data read from DDISN/ISN.

The records are then sorted in ascending order. Overlapping ranges and duplicate ISNs are not
allowed. ISNs not found during processing are ignored.

When deleting ISNs from an Adabas expanded file, you can specify the complete ISN list for all
component files; the UPDATE function automatically selects only the ISNs that are appropriate
for the component file being processed.

DELISN: ISNs to be Deleted

DELISN specifies a list of the ISNs of records to be deleted. If both DDISN and DELISN are
specified, the ISNs from the two lists are merged. A range list may be specified as:

DELISN=10-80,90,100-110

Overlapping ranges and duplicate ISNs are not allowed. You can specify, at most, 32 single
ISNs or ISN ranges. When deleting ISNs from an Adabas expanded file, you can specify the
complete list for all component files. The UPDATE function selects the appropriate ISNs from
the list and deletes them from the component file.

DSREUSE: Data Storage Reusage

DSREUSE indicates whether or not Data Storage space that becomes available as a result of a
record deletion is to be reused.

This parameter is in effect for the execution of the UPDATE function only. The permanent
setting of DSREUSE is not changed. That permanent setting is the default if this value is not
specified.

ETID: Multiclient File Owner ID

The ETID parameter assigns a new owner ID to all records being added to an existing
multiclient file. The owner ID is automatically adjusted to the length for owner IDs specified by
LOWNERID when the multiclient file was last loaded. If no ETID is specified, all loaded
records keep their owner IDs specified on the input source.

The ETID parameter must be specified if the existing file is multiclient and the input file was
not unloaded from a multiclient file. ETID must not be specified if the existing file is a
non-multiclient file.

326

Adabas UtilitiesUPDATE: ADD/Delete Records

Note:
If the ETID parameter is used, the ADALOD utility requires an active nucleus. The nucleus will
translate the ETID value into the internal owner ID value.

ISNREUSE: ISN Reusage

ISNREUSE indicates whether the ISN for a deleted record can be reassigned to a new record.

This ISNREUSE setting is in effect only during execution of the UPDATE function. The
permanent ISNREUSE setting is unchanged. The permanent setting is the default if this value is
not specified.

LIP: ISN Work Pool Size

LIP specifies the size of the work pool for containing ISNs to be deleted. Four bytes per ISN
and eight bytes per ISN range are required in this pool. The value may be specified in bytes as a
numeric value ("2048") or in kilobytes as a value followed by "K" ("2K"). The default for LIP is
2000 bytes.

LWP: Work Pool Size

LWP specifies the size of the work pool to be used for descriptor value sorting. The value can
be specified in bytes or kilobytes followed by a "K". If no value is specified, the default is
1048576 bytes (or 1024K); however, to shorten ADALOD run time for files with very long
descriptors or an unusually large number of descriptors, set LWP to a higher value. To avoid
problems with the Sort dataset, a smaller LWP value should be specified when updating
relatively small files.

The minimum work pool size depends on the sort dataset’s device type:

Sort Device Minimum LWP Minimum LWP

Bytes Kilobytes

2000 106496 104K

2314 090112 88K

3375 131072 128K

3380 139264 136K

3390 159744 156K

MAXISN: Highest ISN to be Allocated to the File

The MAXISN parameter may be used to specify a new setting for the file. This parameter
should be used if the current record count plus the number of ISNs (records) to be added
exceeds the current MAXISN setting. The specified larger value determines the additional space
required for the address converter, and causes ADALOD to allocate a new extent. A smaller
MAXISN value causes no change in the address converter space.

Note:
The MAXISN setting for a file cannot be increased if the file was last loaded with
NOACEXTENSION active.

327

UPDATE: ADD/Delete RecordsAdabas Utilities

The MAXISN setting should be increased by an amount suitable for all planned expansion; this
avoids using up the address converter extent too quickly, and alleviates the need to either unload and
reload the file or run the ADAORD REORFASSO utility because the maximum of five address converter
extents has been allocated.

With the optional ACRABN parameter, the beginning of the new address converter extent can
be set to a specific RABN number. See the ACRABN parameter description for more information.

If the MAXISN parameter is omitted, ADALOD allocates new address converter extents only if
the old MAXISN value is exceeded.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

NUMREC: Limit Number of Records to Be Added

NUMREC limits the number of records to be added. If NUMREC is specified, ADALOD
processing terminates after adding the number of records specified (unless an end-of-file
condition on the input dataset has already caused ADALOD termination). If this parameter is
omitted, all input records are added.

If the input dataset contains more records than specified by NUMREC, ADALOD adds the
number of records specified by NUMREC and then terminates with condition code 4.

PASSWORD: File Password

If the file to be updated is password-protected, the parameter must be used to provide a valid
password. There is no default for PASSWORD.

RESTART: Restart Interrupted ADALOD Execution

RESTART forces an interrupted ADALOD run to be restarted, beginning with the last "restart
point" reached before the interruption. The "restart point" is the latest point of execution that can
be restored from the Temp dataset.

If ADALOD is interrupted by a defined error condition, ADALOD issues a message indicating
whether or not a restart is possible.

When restarting the ADALOD operation, the following parameters may be changed:

TEMPSIZE can be increased to make the temp dataset larger. Note, however, that the temp
dataset contents must not be changed because it contains information necessary for the
restart operation;

The SORTSIZE and SORTDEV parameters and the sort dataset can be changed.

328

Adabas UtilitiesUPDATE: ADD/Delete Records

No other parameters can be changed. The DDEBAND/EBAND, DDFILEA/FILEA and
DDISN/ISN datasets must remain the same.

SAVEDREC: Save Deleted Records on a Sequential File

SAVEDREC indicates that deleted records are to be written to a sequential dataset. The format
of the dataset is identical to that created by the ADAULD utility with the MODE=SHORT
option.

SKIPREC: Number of Records to Be Skipped

SKIPREC is the number of input records to be skipped before beginning to process updates. The
default is 0 (no records are skipped).

SORTDEV: Sort Device Type

ADALOD uses the sort dataset to sort descriptor values. The SORTDEV parameter indicates the
device type to be used for this dataset. This parameter is required only if the device type to be
used is different from that specified by the ADARUN DEVICE parameter.

TEMPDEV: Temporary Storage Device Type

ADALOD uses the temp dataset to store intermediate data. The TEMPDEV parameter indicates
the device type to be used for this dataset. This parameter is required only if the device type to
be used is different from the standard device type assigned to Temp by the ADARUN DEVICE
parameter.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

USERISN: User ISN Assignment

USERISN=YES indicates that the USERISN option for the file is to be in effect, and that the
ISN for each new record is being supplied by the user in the input data. If USERISN=NO,
Adabas assigns the ISN for each new record.

The specified USERISN setting is effective only while the UPDATE function is executing. The
permanent USERISN setting is not changed, and is the default if this parameter is not specified.

When performing an ADALOD UPDATE function on a file with a hyperdescriptor for which
the hyperexit changed the ISNs of descriptor values, USERISN=YES is no longer required for
the aDD/load operation.

When adding records from a non-USERISN=YES file, the ADALOD parameter USERISN=NO
must be specified and the file to be updated must have the USERISN option. This feature is
useful for Adabas Text Retrieval (TRS).

329

UPDATE: ADD/Delete RecordsAdabas Utilities

Examples
Example 1:

ADALOD UPDATE FILE=6,MAXISN=18000
ADALOD TEMPSIZE=10,SORTSIZE=5

Records are to be added to file 6. The MAXISN for the file is to be increased to 18,000.

Example 2:

ADALOD UPDATE FILE=7,TEMPSIZE=10,
ADALOD ETID=USER3,SORTSIZE=5

Records with user’s owner ID of USER3 are to be added to multiclient file 7.

Example 3:

ADALOD UPDATE FILE=8,DELISN=1000-1999,5000-5999
ADALOD TEMPSIZE=10,SORTSIZE=5

The records with ISNs 1,000 to 1,999 and 5,000 to 5,999 are to be deleted from file 8. If an input dataset
is provided, records are to be added.

Example 4:

ADALOD UPDATE FILE=6
ADALOD DDISN,SAVEDREC
ADALOD TEMPSIZE=10,SORTSIZE=5

Records are to be deleted from file 6. The ISNs of the records to be deleted are contained in an input
dataset. The deleted records are to be saved on an output dataset.

Example 5:

ADALOD UPDATE FILE=6,DDISN,LIP=20K,SKIPREC=500
ADALOD TEMPSIZE=5,SORTSIZE=10

Records are to be added and deleted from file 6. The ISNs which identify the records to be deleted are
contained in an input dataset (DDISN). The size of the ISN pool is set to 20K. The first 500 records on the
input dataset are to be skipped.

Formats for Specifying ISNs
There are two formats for specifying ISNs in the DDISN or ISN dataset. The first format can be used in
all cases where only 31-bit ISNs are specified. A record can contain a mix of single ISNs and ranges of
ISNs.

The second format supports 32-bit ISNs and can only be used with Adabas version 6 and above. Each
record can specify either single ISNs (indicated by X’00000000’ in the first fullword) or ranges of ISNs
(indicated by X’FFFFFFFF’ in the first fullword).

If the first fullword in a record contains a value other than X’00000000’ or X’FFFFFFFF’, it is assumed to
be the 31-bit format. The DDISN/ISN dataset can contain records in both formats.

330

Adabas UtilitiesUPDATE: ADD/Delete Records

Format 1: 31-Bit Format

A single ISN requires 4 bytes. Set the high-order bit to 0 and specify the ISN in bits 01-31:

A range of ISNs requires 8 bytes. In the first four bytes, specify the first ISN in the range as a single ISN;
in the next four bytes, set the high-order bit to 1 and specify the last ISN:

The following example shows a variable-length record containing the equivalent of
DELISN=10-80,90,100-110:

Format 2: 32-Bit Format

In the 32-bit format, the first fullword in each record indicates whether the record contains single ISNs or
ranges of ISNs. To indicate single ISNs, put zero in the first fullword (X’00000000’); to indicate ranges of
ISNs, put -1 (X’FFFFFFFF’). In the following example, the first record contains single ISNs; the second
record contains ranges. The two records are identical except for the indicator in the first fullword.

331

UPDATE: ADD/Delete RecordsAdabas Utilities

UPDATE Data and Space Requirements
The following general information describes data requirements for UPDATE operation, and how
ADALOD UPDATE allocates space. For more information about space allocation, refer to the Adabas
DBA Reference documentation.

Input Data for UPDATE Operations

Records to be added must be in the form of compressed data records produced by the ADACMP
or ADAULD utility. The field definitions used for the ADACMP run must agree with the
definitions for the file to which the records will be added as contained in the field definition
table (FDT).

Note:
Records being added to a ciphered file must already be encrypted using the same cipher code as
was used for the records already in the file.

The ISNs of records to be deleted may be provided with the DELISN parameter and/or in an
input dataset. If provided in an input dataset, each ISN must be provided as a 4-byte binary
number. The dataset must have the record format VARIABLE BLOCKED. If desired, all ISNs
to be added to or deleted from an Adabas expanded file can be specified; the UPDATE function
selects the appropriate ISNs for the component file being processed.

UPDATE Space Allocation

If records are to be added and a larger MAXISN value has been specified, an additional address
converter extent will be allocated by ADALOD. The size of the new extent is based on the
difference between the new MAXISN and the previous MAXISN setting. If either insufficient
space is available for the new extent or the maximum of five extents has already been allocated,

332

Adabas UtilitiesUPDATE: ADD/Delete Records

processing ends with an error message.

If an additional Data Storage extent is required, ADALOD allocates an additional extent equal
to approximately 25 percent of the total size of the Data Storage extents currently allocated to the file. As
for the address converter, processing ends with an error message if either sufficient space is not available
for the added extent or the maximum of five extents has already been allocated.

Generating UPDATE Descriptor Information

When adding records, ADALOD UPDATE generates a list of all descriptor values and the
corresponding ISNs of the new records, and writes this information to the temp dataset.

Associator Updating with UPDATE

Before processing the input, ADALOD UPDATE copies the file’s existing normal index to the
temp dataset, but removes the descriptor values of any ISNs to be deleted.

ADALOD sorts the information written to temp during the input phase and merges the sorted
values with the current normal index. The normal index is reordered during this process, and the
Associator block padding factor is reestablished for each block. A new upper index is then
created.

Empty space in partially filled blocks resulting from descriptor updating is reused. This can
increase the number of empty blocks at the end of the index. Although one or more normal
index and/or upper index extents may become empty as the result of the reorder process,
ADALOD does not condense, delete, or change the size of these extents.

If new free space is needed for the normal index or upper index, ADALOD allocates an
additional extent (or extents). Each additional extent allocated is equal to approximately 25
percent of the total current space allocated to the index. If insufficient space is available for the
additional extent or if the maximum of five extents has already been allocated, ADALOD
terminates with an error message.

Mass Updates of Expanded Files
Using ADALOD UPDATE for a mass update to an expanded file, records must be added to or deleted
from each component file individually. However, each component file can be processed using the same
ADALOD commands.

When deleting a record with DELISN or DDISN, the complete list of ISNs to be deleted from all
component files can be supplied. ADALOD automatically selects only the ISN values from the specified
range that is appropriate for the component file currently being processed.

The same is true when adding new records with USERISN=YES.

When new expanded file records are being added with USERISN=NO but no free ISN is found, the loader
cannot allocate a new address converter extent since the ISN range cannot be increased
(NOACEXTENSION is active for all component files). Instead, ADALOD creates the index as though
end-of-file had been reached. The remaining records not loaded may be added later to another component
file using the SKIPREC parameter.

333

UPDATE: ADD/Delete RecordsAdabas Utilities

ADALOD does not check for unique descriptor values across component file boundaries.

Example:

The following is an example for performing a mass update to an expanded file (only the relevant parts of
the complete jobs are shown):

 .
 .
//DDEBAND DD DSN=MOREDATA.LOAD.PART1-2,...
//DDKARTE DD *
ADALOD UPDATE FILE=40,USERISN=YES
ADALOD DELISN=9000001-9500000,12000001-14000000
ADALOD SORTSIZE=...,TEMPSIZE=...
 .
 .
//DDEBAND DD DSN=MOREDATA.LOAD.PART1-2,...
//DDKARTE DD *
ADALOD LOAD FILE=41,USERISN=YES
ADALOD DELISN=9000001-9500000,12000001-14000000
ADALOD SORTSIZE=...,TEMPSIZE=...
 .
 -

334

Adabas UtilitiesUPDATE: ADD/Delete Records

Loader Storage Requirements and Use
Static Storage

Static Type* Size

Modules ADARUN, ADALOD A approximately 180 kilobytes

Dynamic Storage

Dynamic Type* Size

Sort work pool A LWP

General work pool A 6 • (Associator block size)

I/O buffer for Associator A Associator block size

ISN pool A LIP

I/O buffer for Data Storage A Data Storage block size

AC bitmap A 4K bytes

I/O buffer for temp A temp block size

DVT splitting A temp block size • number of descriptors

Internal descriptor table A number of descriptors • 74

I/O buffer for
DDEBAND/EBAND

O DDEBAND/EBAND block size

I/O buffer for DDOLD/OLD O DDOLD/OLD block size

I/O buffer for DDISN/ISN data O DDISN/ISN block size

I/O buffer if records must be
written to temp overflow

O DDFILEA/FILEA block size

* Type A is always used; type O is used only if needed.

335

Loader Storage Requirements and UseAdabas Utilities

Temp Dataset Space Usage
ADALOD uses the temp dataset to store the following information:

restart information;

Data Storage RABN/ISN for each record to be deleted (UPDATE only);

contents of the normal index at the start of the operation (UPDATE only);

descriptor values obtained from the input dataset;

ADAM overflow area (ADAM files only).

Sequential Temp Dataset
If the temp dataset is filled while collecting descriptor values from the input dataset, ADALOD
temporarily writes the remaining descriptors to the sequential temp file DD/FILEA (if specified in the
JCL). The descriptors are later read back in when the new index is built.

If actually called, DD/FILEA makes ADALOD operation considerably slower than specifying a temp
dataset that is large enough to hold all descriptor values. The DD/FILEA TEMP dataset should normally
be used only as a "safety net" to ensure adequate space for all descriptors during ADALOD operation.
Specifying the DD/FILEA temp file therefore avoids an ADALOD ABEND caused by a temp area
overrun.

Notes:

1. ADALOD writes only descriptor values from the DD/EBAND input file to DD/FILEA.
2. The normal temp dataset must be large enough to hold all values for each single descriptor.

336

Adabas UtilitiesTemp Dataset Space Usage

ADALOD Space/Statistics Report
During LOAD or UPDATE operation, ADALOD prints a report on the message output dataset
(DDDRUCK for MVS and VM systems, SYS009 for VSE systems, or SYSOUT for BS2000). The report
shows the following information:

ADALOD function executed (LOAD or UPDATE), and the database/file affected;

Estimated NI/UI sizes (shown for the LOAD function only if the NI/UISIZE parameters were not
specified);

Available and used file space, by Adabas component (shown for the LOAD function only);

Current RABNs assigned for the file (shown for the LOAD function only);

File processing statistics (records processed and system storage used).

Example of the ADALOD LOAD report:

 PARAMETERS:ADALOD LOAD FILE...
 .
 .

 FUNCTION TO BE EXECUTED:

LOAD FILE NUMBER 7 (MYOWNFILE)
INTO DATABASE 0013 (MYBESTDB)

AVAILABLE SPACE:

(LOAD function only)

 I FILE I DEV I NUMBER OF I FROM TO I
 I LAY- I TYPE I BLOCKS I RABN RABN I
 I OUT I I I I
 I------I--------I-------------I----------------------I
 I ASSO I 3380 I 2695 I 137 2831 I
 I DATA I 3380 I 1339 I 3 1341 I
 --

ESTIMATED NORMAL INDEX SIZE = 37 BLOCKS
ESTIMATED UPPER INDEX SIZE = 8 BLOCKS

TOP ISN = 773, MAX ISN EXPECTED = 1335

I FILE I DEV I LIST I ALLOC I FROM TO I UNUSED I
I LAY- I TYPE I TYPE I SPACE I RABN RABN I SPACE I
I OUT I I I (BL0CKS) I I (BLOCKS) I
--
I ASSO I 3380 I AC I 2 I 137 138 I O I
I ASSO I 3380 I UI I 8 I 139 146 I O I
I ASSO I 3380 I NI I 37 I 147 183 I 15 I
I DATA I 3380 I DS I 60 I 3 62 I 48 I
--

 PROCESSING STATISTICS

337

ADALOD Space/Statistics ReportAdabas Utilities

 773 INPUT RECORDS PROCESSED
 14 BLOCKS USED ON TEMP-DATASET (0%)
 0 BLOCKS USED ON SORT PART 1 (0%)
 0 BLOCKS USED ON SORT PART 2 (0%)
 51824 BYTES OF STORAGE USED TO STORE RECORDS

338

Adabas UtilitiesADALOD Space/Statistics Report

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADALOD with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

Note:
When running with the optional Recovery Aid (RLOG), all temporary datasets must also be cataloged in
the job control.

This chapter covers the following topics:

Collation with User Exit

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

Collation with User Exit
If a collation user exit is to be used during ADALOD execution, the ADARUN CDXnn parameter must be
specified for the utility run.

Used in conjunction with the universal encoding support (UES), the format of the collation descriptor user
exit parameter is

where

nn is the number of the collation descriptor exit, a two-digit decimal integer in the range
01-08 inclusive.

exit-name is the name of the user routine that gets control at the collation descriptor exit; the
name can be up to 8 characters long.

Only one program may be specified for each collation descriptor exit. Up to 8 collation descriptor exits
may be specified (in any order). See the Adabas DBA Reference documentation for more information.

BS2000

339

JCL/JCS Requirements and ExamplesAdabas Utilities

Dataset Link Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Work DDWORKR1 disk

Temp area DDTEMPR1 disk

Temp overflow
(optional)

DDFILEA disk/ tape Stores descriptor
values if the temp
dataset is too small

Sort area DDSORTR1 disk With large files, split
the sort area across
two volumes 1 Sort area DDSORTR2 disk

Recovery log (RLOG) DDRLOGR1 disk Required when using
the recovery log
option

Compressed data DDEBAND disk/ tape Output of ADACMP
or ADAULD utility

ISNs to be deleted DDISN disk/ tape ISNs to be deleted 2

Deleted records DDOLD disk/ tape Deleted records, if
any 3

ADARUN parameters SYSDTA/ DDCARD Operations

ADALOD parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT/ DDPRINT ADALOD report, see
also Messages and
Codes

ADALOD messages SYSLST/ DDDRUCK Messages and Codes

Notes:

1. Performance can be improved when sorting large files if the sort dataset either occupies two volumes,
or if two sort datasets are specified. Both datasets must be on the same device type (SORTDEV
parameter), and each must be exactly half the size specified by the SORTSIZE parameter.

2. Four bytes per ISN, REC-FORM=VB, BUFF-LEN as in sequential file description, REC-SIZE
maximum equals BUFF-LEN - 4. (In ISP format, REC-FORM is RECFM; BUFF-LEN is BLKSIZE;
and REC-SIZE is LRECL.)

3. REC-FORM=VB, BUFF-LEN as in sequential file description, REC-SIZE maximum equals
BUFF-LEN - 4. (In ISP format, REC-FORM is RECFM; BUFF-LEN is BLKSIZE; and REC-SIZE is
LRECL.)

ADALOD JCL Example (BS2000)

340

Adabas UtilitiesJCL/JCS Requirements and Examples

Load File

In SDF Format:

/.ADALOD LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK * A D A L O D LOAD FILE
/REMARK *
/ASS-SYSLST L.LOD.LOAD
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
/SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK,SHARE-UPD=YES
/SET-FILE-LINK DDTEMPR1,ADAyyyyy.TEMP
/SET-FILE-LINK DDSORTR1,ADAyyyyy.SORT
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADALOD,DB=yyyyy,IDTNAME=ADABAS5B
ADALOD LOAD FILE=1
ADALOD NAME= TESTFILE-1
ADALOD MAXISN=10000,DSSIZE=10
ADALOD TEMPSIZE=100,SORTSIZE=50
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADALOD LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK * A D A L O D LOAD FILE
/REMARK *
/SYSFILE SYSLST=L.LOD.LOAD
/FILE ADA.MOD,LINK=DDLIB
/FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
/FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
/FILE ADAyyyyy.WORK ,LINK=DDWORKR1,SHARUPD=YES
/FILE ADAyyyyy.TEMP ,LINK=DDTEMPR1
/FILE ADAyyyyy.SORT ,LINK=DDSORTR1
/FILE CMP.AUS,LINK=DDEBAND

/EXEC (ADARUN,ADA.MOD)
ADARUN PROG=ADALOD,DB=yyyyy,IDTNAME=ADABAS5B
ADALOD LOAD FILE=1
ADALOD NAME= TESTFILE-1
ADALOD MAXISN=10000,DSSIZE=10
ADALOD TEMPSIZE=100,SORTSIZE=50
/LOGOFF NOSPOOL

Update

In SDF Format:

/.ADALOD LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK * A D A L O D LOAD FILE
/REMARK *
/DELETE-FILE LOD.ISN
/SET-JOB-STEP
/CREATE-FILE LOD.ISN,PUB(SPACE=(48,48))

341

JCL/JCS Requirements and ExamplesAdabas Utilities

/SET-JOB-STEP
/DELETE-FILE LOD.OLD
/SET-JOB-STEP
/CREATE-FILE LOD.OLD,PUB(SPACE=(480,48))
/SET-JOB-STEP
/ASS-SYSLST L.LOD.LOAD
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
/SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
/SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK,SHARE-UPD=YES
/SET-FILE-LINK DDTEMPR1,ADAyyyyy.TEMP
/SET-FILE-LINK DDSORTR1,ADAyyyyy.SORT
/SET-FILE-LINK DDEBAND,CMP.AUS
/SET-FILE-LINK DDISN,LOD.ISN
/SET-FILE-LINK DDOLD,LOD.OLD
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADALOD,DB=yyyyy,IDTNAME=ADABAS5B
ADALOD UPDATE FILE=1,DDISN,SAVEDREC
ADALOD TEMPSIZE=100,SORTSIZE=50
ADALOD DELISN=100 199,230,301 399
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADALOD LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK * A D A L O D MASS UPDATE
/REMARK *
/SYSFILE SYSLST=L.LOD.UPDA
/FILE ADA.MOD,LINK=DDLIB
/FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
/FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
/FILE ADAyyyyy.WORK ,LINK=DDWORKR1,SHARUPD=YES
/FILE ADAyyyyy.TEMP ,LINK=DDTEMPR1
/FILE ADAyyyyy.SORT ,LINK=DDSORTR1
/FILE CMP.AUS,LINK=DDEBAND
/FILE LOD.ISN,LINK=DDISN ,SPACE=(48,48)
/FILE LOD.OLD,LINK=DDOLD ,SPACE=(480,48)
/EXEC (ADARUN,ADA.MOD)
ADARUN PROG=ADALOD,DB=yyyyy,IDTNAME=ADABAS5B
ADALOD UPDATE FILE=1,DDISN,SAVEDREC
ADALOD TEMPSIZE=100,SORTSIZE=50
ADALOD DELISN=100 199,230,301 399
/LOGOFF NOSPOOL

OS/390 or z/OS

342

Adabas UtilitiesJCL/JCS Requirements and Examples

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Work DDWORKR1 disk Required only if
Adabas nucleus is not
active

Temp area DDTEMPR1 disk

Temp overflow
(optional)

DDFILEA disk/ tape Stores descriptor
values if the temp
dataset is too small

Sort area DDSORTR1 disk

Sort area DDSORTR2 disk When using large
files, split the sort
area across two
volumes 1

Recovery log (RLOG) DDRLOGR1 disk Required for the
recovery log option

Compressed data DDEBAND disk/ tape Output of ADACMP
or ADAULD utility

ISNs to be deleted DDISN disk/ tape ISNs to be deleted 2

Deleted records DDOLD disk/ tape Deleted records, if
any 3

ADARUN parameters DDCARD reader Operations

ADALOD parameters DDKARTE reader

ADARUN messages DDPRINT printer ADALOD report, see
also Messages and
Codes

ADALOD messages DDDRUCK printer Messages and Codes

Notes:

1. Performance can be improved when sorting large files if the sort dataset either occupies two volumes,
or if two sort datasets are specified. When using two volumes, each volume must be exactly half the
size specified by the SORTSIZE parameter. If two datasets are used, both must be on the same
device type (SORTDEV parameter).

2. Four bytes per ISN, RECFM=VB, BLKSIZE as in sequential file description, LRECL maximum
equals BLKSIZE - 4.

3. RECFM=VB, BLKSIZE as in sequential file description, LRECL maximum equals BLKSIZE - 4.

343

JCL/JCS Requirements and ExamplesAdabas Utilities

ADALOD JCL Examples (OS/390 or z/OS)

Refer also to ADALODE, ADALODA, ADALODM, and ADALODV in the MVSJOBS dataset for
additional ADALOD examples on loading an ADAM file or the Adabas demo files.

Load File

Refer to ADALOD in the MVSJOBS dataset for this example.

//ADALOD JOB
//*
//* ADALOD: LOAD FILE
//*
//LOD EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDTEMPR1 DD DISP=OLD,DSN=EXAMPLE.DByyyyy.TEMPR1 <=== TEMP
//DDSORTR1 DD DISP=OLD,DSN=EXAMPLE.DByyyyy.SORTR1 <=== SORT
//DDEBAND DD DISP=OLD,DSN=EXAMPLE.DByyyyy.DDEBAND <=== INPUT
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADALOD,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADALOD LOAD FILE=1
ADALOD NAME=’TESTFILE-1’
ADALOD MAXISN=10000,DSSIZE=10
ADALOD TEMPSIZE=100,SORTSIZE=100
/*

Update

Refer to ADALODMU in the MVSJOBS dataset for this example.

//ADALODMU JOB
//*
//* ADALOD: MASS UPDATE
//*
//LOD EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDTEMPR1 DD DISP=OLD,DSN=EXAMPLE.DByyyyy.TEMPR1 <=== TEMP
//DDSORTR1 DD DISP=OLD,DSN=EXAMPLE.DByyyyy.SORTR1 <=== SORT
//DDEBAND DD DISP=OLD,DSN=EXAMPLE.DByyyyy.DDEBAND <=== INPUT
//DDISN DD DISP=OLD,DSN=EXAMPLE.DByyyyy.DDISN <=== ISNS TO DEL
//DDOLD DD DISP=(NEW,CATLG),DSN=EXAMPLE.DByyyyy.DDOLD, <=== DEL REC
// SPACE=(TRK,(100,20),RLSE),UNIT=DISK,VOL=SER=VOLvvv
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADALOD,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*

344

Adabas UtilitiesJCL/JCS Requirements and Examples

//DDKARTE DD *
ADALOD UPDATE FILE=1,LWP=400K,SAVEDREC
ADALOD TEMPSIZE=100,SORTSIZE=100
ADALOD DELISN=100-199,230,301-399
/*

VM/ESA or z/VM

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDATARn disk

Work DDWORKR1 disk

Temp area DDTEMPR1 disk

Temp overflow
(optional)

DDFILEA disk/ tape Stores descriptor
values if temp dataset
is too small.

Sort area DDSORTR1 disk With large files, split
sort area across two
volumes 1 Sort area DDSORTR2 disk

Recovery log (RLOG) DRLOGR1 disk Required for the
recovery log option

Compressed data DDEBAND disk/ tape Output of ADACMP
or ADAULD utility

ISNs to be deleted DDISN disk/ tape ISNs to be deleted 2

Deleted records DDOLD disk/ tape Deleted records, if
any 3

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADALOD parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/ terminal/ printer ADALOD report, see
also Messages and
Codes

ADALOD messages DDDRUCK disk/ terminal/ printer Messages and Codes

Notes:

1. Performance can be improved when sorting large files if the sort dataset either occupies two volumes,
or if two sort datasets are specified. Both datasets must be on the same device type (SORTDEV
parameter), and each must be exactly half the size specified by the SORTSIZE parameter.

2. Four bytes per ISN, RECFM=VB, BLKSIZE as in sequential file description, LRECL maximum
equals BLKSIZE - 4.

3. RECFM=VB, BLKSIZE as in sequential file description, LRECL maximum equals BLKSIZE - 4.

345

JCL/JCS Requirements and ExamplesAdabas Utilities

ADALOD JCL Examples (VM/ESA or z/VM)

Load File

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDWORKR1,DSN=ADABASVv.WORK,VOL=WORKV1
DATADEF DDTEMPR1,DSN=ADABASVv.TEMP,VOL=TEMPV1
DATADEF DDSORTR1,DSN=ADABASVv.SORT,VOL=SORTV1
DATADEF DDEBAND,DSN=FILE001.LODD001,MODE=A
DATADEF DDPRINT,DSN=ADALOD.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADALOD.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNLOD.CONTROL,MODE=A
DATADEF DDKARTE,DSN=FILE001.LODC001,MODE=A
ADARUN

Contents of RUNLOD CONTROL A1:

ADARUN PROG=ADALOD,DEVICE=dddd,DB=yyyyy

Contents of FILE015 LODC001 A1:

ADALOD LOAD FILE=1
ADALOD NAME=’TESTFILE-1’
ADALOD MAXISN=50000,DSSIZE=10
ADALOD TEMPSIZE=100,SORTSIZE=50

Update

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDWORKR1,DSN=ADABASVv.WORK,VOL=WORKV1
DATADEF DDTEMPR1,DSN=ADABASVv.TEMP,VOL=TEMPV1
DATADEF DDSORTR1,DSN=ADABASVv.SORT,VOL=SORTV1
DATADEF DDEBAND,DSN=ADALOD.LODD015,MODE=A
DATADEF DDISN,DSN=ADALOD.ISN,MODE=A
DATADEF DDOLD,DSN=ADABASVv.OLDISN,MODE=A
DATADEF DDPRINT,DSN=ADALOD.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADALOD.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNLOD.CONTROL,MODE=A
DATADEF DDKARTE,DSN=UPDATE.CONTROL,MODE=A
ADARUN

Contents of RUNLOD CONTROL A1:

ADARUN PROG=ADALOD,DEVICE=dddd,DB=yyyyy

Contents of UPDATE CONTROL A1:

ADALOD UPDATE FILE=1,DDISN,SAVEDREC

ADALOD TEMPSIZE=100,SORTSIZE=50
ADALOD DELISN=100-199,230,301-399

346

Adabas UtilitiesJCL/JCS Requirements and Examples

VSE/ESA

Dataset Symbolic Storage Logical Unit More
Information

Associator ASSORn disk 1

Data Storage DATARn disk 1

Work WORKR1 disk 1 Required for
inactive nucleus

Compressed data EBAND tape
disk

SYS010
1

Recovery log
(RLOG)

RLOGR1 disk Required for the
recovery log
option

Temp area TEMPR1 disk 1

Temp overflow
(optional)

FILEA tape
disk

SYS012
1

Stores descriptor
values if the temp
dataset is too
small.

Sort area SORTR1 disk With large files,
split sort area
across two
volumes 2

ISNs to be deleted ISN tape
disk

SYS016
1

ISNs to be deleted

Deleted records OLD tape
disk

SYS014
1

Deleted ISNs

ADALOD
messages

-- printer SYS009 ADALOD report,
see also Messages
and Codes

ADARUN
messages

-- printer SYSLST Messages and
Codes

ADARUN
parameters

--
CARD
CARD

reader
tape
disk

SYSRDR SYS000
1

ADALOD
parameters

- reader SYSIPT

Notes:

1. Any programmer logical unit may be used.
2. Performance can be improved when sorting large files if the sort dataset occupies two volumes.

When using two volumes, each volume must be exactly half the size specified by the SORTSIZE
parameter. If two datasets are used, both must be on the same device type (SORTDEV parameter).

347

JCL/JCS Requirements and ExamplesAdabas Utilities

ADALOD JCS Examples (VSE/ESA)

See Procedures for VSE/ESA Examples for a description of the VSE/ESA procedures (PROCs).

Load File

Refer to member ADALOD.X for this example.

* $$ JOB JNM=ADALOD,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADALOD
* SAMPLE FILE LOAD
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYSTEN,TAPE
// PAUSE MOUNT LOAD INPUT FILE ON TAPE cuu
// TLBL EBAND,’DEMO.FILE’
// MTC REW,SYS010
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADALOD,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADALOD LOAD FILE=1
ADALOD NAME=’TESTFILE-1’
ADALOD MAXISN=10000,DSSIZE=10
ADALOD TEMPSIZE=100,SORTSIZE=100
/*
/&
* $$ EOJ

Update

Refer to member ADALODMU.X for this example.

* $$ JOB JNM=ADALODMU,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADALODMU
* MASS UPDATE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS010,DISK,VOL=DISK01,SHR
// ASSGN SYS014,DISK,VOL=DISK02,SHR
// ASSGN SYS016,DISK,VOL=DISK03,SHR
// DLBL EBAND,’FILE.INPUT’,,SD
// EXTENT SYS010,DISK01,1,0,sssss,nnnnn
// DLBL OLD,’FILE.OLD’,,SD
// EXTENT SYS014,DISK02,1,0,sssss,nnnnn
// DLBL ISN,’FILE.ISN’,,SD
// EXTENT SYS016,DISK03,1,0,sssss,nnnnn
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADALOD,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADALOD UPDATE FILE=1,LWP=400K,SAVEDREC
ADALOD TEMPSIZE=100,SORTSIZE=100
ADALOD DELISN=100-199,230,301-399
/*
/&
* $$ EOJ

348

Adabas UtilitiesJCL/JCS Requirements and Examples

ADAMER: ADAM Estimation
This chapter covers the following topics:

Functional Overview

Estimate ADAM Access Requirements

ADAMER Output Report Description

JCL/JCS Requirements and Examples

349

ADAMER: ADAM EstimationAdabas Utilities

Functional Overview
The ADAMER utility produces statistics that indicate the number of Data Storage accesses required to
find and read a record when using an ADAM descriptor. This information is used to determine

whether usage of the ADAM option would reduce the number of accesses required to retrieve a
record using an ADAM descriptor as opposed to the standard Adabas accessing method;

the amount of Data Storage space required to produce an optimum distribution of records based on
the randomization of the ADAM descriptor.

The input data for ADAMER is a dataset containing the compressed records of a file produced by the
ADACMP or ADAULD utility.

The field to be used as the ADAM descriptor is specified with the ADAMDE parameter. A multiple value
field or a field contained within a periodic group may not be used. The ISN assigned to the record may be
used instead of a descriptor as the basis for randomization (ADAMDE=ISN parameter).

The ADAM descriptor must contain a different value in each record, since the file cannot be successfully
loaded with the ADAM option of the ADALOD utility if duplicate values are present for the ADAM
descriptor. The ADAMER utility requires a descriptor field defined as unique (UQ), but does not check
for unique values; checking for unique descriptor values is done by the ADALOD utility when loading the
file as an ADAM file.

The BITRANGE parameter may be used to specify that a given number of bits are to be truncated from
each ADAM descriptor value before the value is used as input to the randomization algorithm. This
permits records containing ADAM descriptor values beginning with the same value (for example,
40643210, 40643220, 40643344) to be loaded into the same physical block in Data Storage. This
technique can be used to optimize sequential reading of the file when using the ADAM descriptor to
control the read sequence, or to remove insignificant information such as a check digit.

350

Adabas UtilitiesFunctional Overview

Estimate ADAM Access Requirements

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Examples

Essential Parameters
ADAMDE: ADAM Key

Specifies the descriptor to be used as the ADAM key. If ISN is specified, ADAMER uses the
ISN of each input record as input for the randomization algorithm.

The ADAM descriptor must be found in the field definition table (FDT) and be defined as a
unique descriptor (UQ). It cannot be a sub-, super-, hyper-, collation, or phonetic descriptor. The
descriptor also cannot specify the NU option, cannot be an MU field or a field within a periodic
group, and cannot be a variable-length field.

MAXISN: Highest ISN to be Allocated for the File

The total number of records expected to be contained in the file.

MAXISN should include the number of records to be originally loaded plus the number of
records that are likely to be added to the file.

Optional Parameters
BITRANGE: Bit Truncation for ADAM Key

The minimum, maximum, and incremental number of bits to be truncated from each ADAM
descriptor value before the value is used as input to the ADAM randomization algorithm. Bits
are always truncated from the rightmost portion of the compressed value.

351

Estimate ADAM Access RequirementsAdabas Utilities

A maximum of 20 different bit truncations is permitted for each ADAMER execution.

Example:

The following specification results in the truncation of 0 bits, 2 bits, and 4 bits for each Data
Storage size for which statistics are provided.

BITRANGE=0,4,2

If this parameter is omitted, a default BITRANGE equal to 0,18,2 is used.

DATADEV: Data Storage Device Type

The device type to be used for Data Storage. If DATADEV is not specified, the device type
specified by the ADARUN DEVICE parameter is the default.

DATAPFAC: Data Storage Padding Factor

The Data Storage padding factor to be used for the file. The number specified represents the
percent of each Data Storage physical block that is not to be used during initial file loading. A
value in the range 1-90 may be specified.

If this parameter is omitted, a padding factor of 10 percent is used during ADAMER execution.

DATASIZE: Data Storage Sizes for ADAM Estimates

The Data Storage sizes, in cylinders, for which ADAM statistics are to be provided. A
maximum of four Data Storage sizes can be calculated per ADAM execution. The minimum and
maximum values may be specified without the increment. ADAMER calculates two increments
to produce a report based on all four values.

Example:

The following specification results in statistics for Data Storage sizes of 100, 125, 150, and 175
cylinders.

DATASIZE=100,175,25

If DATASIZE is omitted, ADAMER provides statistics for four Data Storage sizes as follows:

Size 1: The first 100 input records are read and the Data Storage size
requirement is based on the ADAM descriptor values present in
these records and the value specified for MAXISN. The resulting
Data Storage size is used as Data Storage Size 1.

Size 2: Data Storage Size 1 x 1.33.

Size 3: Data Storage Size 2 x 1.33.

Size 4: Data Storage Size 3 x 1.33.

NOUSERABEND: Termination without ABEND

352

Adabas UtilitiesEstimate ADAM Access Requirements

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and the utility
terminates with condition code 20.

NUMREC: Maximum Number of Records to Read

The maximum number of records to be read from the input file. If NUMREC is not specified,
all records are read.

Examples
Example 1:

ADAMER ADAMDE=CC,
ADAMER DATADEV=3350,DATASIZE=50,110,20,
ADAMER DATAPFAC=10,MAXISN=225000,BITRANGE=2,6,1

The ADAM descriptor is CC. Model 3350 device type is to be used for Data Storage. Statistics for Data
Storage sizes of 50, 70, 90, and 110 cylinders are to be provided. Data Storage padding factor of 10
percent is to be used. The planned number of records for the file is 225,000. For each Data Storage size,
statistics are to be provided for bit truncations of 2, 3, 4, 5, and 6 bits.

Example 2:

ADAMER ADAMDE=CD,DATADEV=3380,DATAPFAC=5,MAXISN=80000

The ADAM descriptor is CD. Model 3380 device type is to be used for Data Storage. Data Storage
padding factor of 5 percent is to be used. The planned number of records for the file is 80,000. Default
values are to be used for all other parameters.

353

Estimate ADAM Access RequirementsAdabas Utilities

ADAMER Output Report Description
The following entries appear on the report produced by ADAMER:

Field Explanation

LOADISNS Number of records contained in the input dataset.

MAXISN Total file records (see the MAXISN parameter description).

DATA DEVICE Data Storage device type (see the DATADEV parameter description).

DATAPFAC Data Storage padding factor (see DATAPFAC parameter description).

The following fields appear under "AVERAGE NUMBER OF EXCPs":

Field Explanation

Data Storage
SIZE

See the DATASIZE parameter description. The number of cylinders is rounded up to
the nearest integer.

BIT-PARM See the BITRANGE parameter description.

FOR
LOADISNS

The average number of I/Os required to find and read a record when the ADAM
descriptor is used. This result assumes that the number of records in the file is equal to
the number of records contained in the input dataset.

DISK
USAGE

The percentage of Data Storage space occupied after initial loading of the file. This
result assumes that the number of records to be loaded is equal to the number of
records contained in the input dataset.

FOR
MAXISN

The average number of I/Os required to find and read a record when using the ADAM
descriptor. This result assumes that the number of records in the file is equal to the
value specified with the MAXISN parameter.

DISK
USAGE

The percentage of Data Storage space occupied after initial loading of the file. This
result assumes that the number of records to be loaded is equal to the number of
records specified with the MAXISN parameter.

Using the information contained on the ADAMER report, the user can determine

the optimum balance between access and Data Storage space requirements; and

the optimum number of bits that should be truncated from each ADAM descriptor value so that
records containing similar beginning values are loaded into the same physical block. This is
necessary only if optimization of sequential reading is desired.

354

Adabas UtilitiesADAMER Output Report Description

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADAMER with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Input data DDEBAND tape/ disk Output of ADACMP
or ADAULD utility

ADARUN parameters SYSDTA/ DDCARD Operations

ADAMER parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT/ DDPRINT Messages and Codes

ADAMER
messages/report

SYSLST/ DDDRUCK Messages and Codes

ADAMER JCL Example (BS2000)

In SDF Format:

/.ADALOD LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK * A D A M E R ALL FUNCTIONS
/REMARK *
/ASS-SYSLST L.MER
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
/SET-FILE-LINK DDEBAND,CMP.AUS
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADAMER,DB=yyyyy,IDTNAME=ADABAS5B
ADAMER ADAMDE=AA,DATASIZE=5200,BITRANGE=8,10,1
ADAMER MAXISN=10000
/LOGOFF SYS-OUTPUT=DEL

355

JCL/JCS Requirements and ExamplesAdabas Utilities

In ISP Format:

/.ADAMER LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK * A D A M E R ALL FUNCTIONS
/REMARK *
/SYSFILE SYSLST=L.MER
/FILE ADA.MOD,LINK=DDLIB
/FILE CMP.AUS,LINK=DDEBAND
/EXEC (ADARUN,ADA.MOD)

ADARUN PROG=ADAMER,DB=yyyyy,IDTNAME=ADABAS5B
ADAMER ADAMDE=AA,DATASIZE=5200,BITRANGE=8,10,1
ADAMER MAXISN=10000
/LOGOFF NOSPOOL

OS/390 or z/OS

Dataset DD Name Storage More Information

Input data DDEBAND tape/ disk Output of ADACMP
or ADAULDutility

ADARUN parameters DDCARD reader Operations

ADAMER parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADAMER
messages/report

DDDRUCK printer Messages and Codes

ADAMER JCL Example (OS/390 or z/OS)

Refer to ADAMER in the MVSJOBS dataset for this example.

//ADAMER JOB
//*
//* ADAMER:
//* ADAM ESTIMATION
//*
//MER EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDEBAND DD DISP=OLD,DSN=EXAMPLE.DByyyyy.COMPR1 <=== COMPRESS
DATA
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAMER,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAMER MAXISN=1000,ADAMDE=AA,BITRANGE=0,2,4
ADAMER DATADEV=eeee,DATAPFAC=10,DATASIZE=100,175,25
/*

356

Adabas UtilitiesJCL/JCS Requirements and Examples

VM/ESA or z/VM

Dataset DD Name Storage More Information

Input data DDEBAND tape/ disk Output of ADACMP
or ADAULD utility

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADAMER parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/terminal/printer Messages and Codes

ADAMER
messages/report

DDDRUCK disk/terminal/printer Messages and Codes

ADAMER JCL Example (VM/ESA or z/VM)
DATADEF DDEBAND,DSN=ADABASVv.BAND,MODE=A
DATADEF DDPRINT,DSN=ADAMER.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAMER.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNMER.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADAMER.CONTROL,MODE=A
ADARUN

Contents of RUNMER CONTROL A1:

ADARUN PROG=ADAMER,DEVICE=dddd,DB=yyyyy

Contents of ADAMER CONTROL A1:

ADAMER ADAMDE=AA,DATASIZE=5200,BITRANGE=8,10,1 ADAMERMAXISN=10000

VSE/ESA

File Sym. Name Storage Logical Unit More
Information

Input data EBAND tape
disk

SYS010
*

Output of
ADACMP or
ADAULD utility

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
*

Operations

ADAMER
parameters

- reader SYSIPT

ADARUN
messages

- printer SYSLST Messages and
Codes

ADAMER
messages/report

- printer SYS009 Messages and
Codes

357

JCL/JCS Requirements and ExamplesAdabas Utilities

* Any programmer logical unit may be used.

ADAMER JCS Example (VSE/ESA)

See Procedures for VSE/ESA Examples for a description of the VSE/ESA procedures (PROCs). Refer to
member ADAMER.X for this example.

* $$ JOB JNM=ADAMER,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAMER
// OPTION LOG,PARTDUMP
* ADAM ESTIMATION
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// DLBL EBAND,’EXAMPLE.DByyyyy.COMPR1’,0,SD
// EXTENT SYS004
// ASSGN SYS004,DISK,VOL=DISK01,SHR
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAMER,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAMER MAXISN=1000,ADAMDE=AA,BITRANGE=0,2,4
ADAMER DATADEV=eeee,DATAPFAC=10,DATASIZE=100,175,25
/*
/&
* $$ EOJ

358

Adabas UtilitiesJCL/JCS Requirements and Examples

ADAORD: Reorder
The ADAORD utility is used to

Functional Overview

REORASSO: Reorder Associator

REORDATA: Reorder Data Storage

REORDB: Reorder Database

REORFASSO: Reorder Associator for a Single File

REORFDATA: Reorder Data Storage for a Single File

REORFILE: Reorder File

RESTRUCTUREDB: Restructure Database

RESTRUCTUREF: Restructure Single Files

STORE: Store Files

JCL/JCS Requirements and Examples

359

ADAORD: ReorderAdabas Utilities

Functional Overview
Only one function may be executed during a given execution of ADAORD.

Notes:

1. The format of the sequential dataset produced by the RESTRUCTURE functions is independent of
the database device type, and is not compatible with the format required by the ADALOD or
ADASAV utilities. Therefore, the target database may be contained on a device type different from
the source database.

2. The Associator and Data Storage are reordered as part of RESTRUCTURE/STORE processing.
3. Parts of the database are overwritten during ADAORD execution. It is therefore recommended that

the database (or file) be backed up with the ADASAV utility before running ADAORD functions.
4. The REORDATA, REORDB, REORFDATA and STORE functions do not reorder ADAM files.

However, these functions can be used to relocate an ADAM file to different RABNs.
5. All ADAORD functions except RESTRUCTUREF (file) require exclusive EXF control of the

database files involved in the operation. RESTRUCTUREF requires EXU control; other users may
access database files being used by RESTRUCTUREF, but only for reading. Note, however, that
operations involving either the checkpoint or security files require exclusive database control.

6. If the specified file was originally loaded with ISNREUSE=YES active, a STORE function and all
ADAORD reorder functions that affect the file’s Associator will reset the "first unused ISN" value in
that file’s control block (FCB) to the actual first unused ISN found in the address converter.

7. When specifying the starting RABN for Associator extents, the space needed for the FCBs, FDTs,
and DSST should also be considered.

8. When RESTRUCTUREDB/F restructures an ADAM file that uses the overflow area, and then
STORE stores the restructured file in a database with a smaller DATA block size, an ADAORD
ERROR-103 may occur. Use the ADAULD/LOD utilities to move ADAM files, instead.

Reorder Functions
The REORASSO function physically reorders all Associator blocks for all files; the REORFASSO
function reorders the Associator for a single file. This eliminates Associator space fragmentation and
combines multiple address converter, normal and upper index, and Data Storage space table (DSST)
component extents into a single logical extent for each component.

The REORDATA function reorders Data Storage for all files in the database; the REORFDATA function
reorders Data Storage for a single file. This condenses extents containing only empty blocks, and also
eliminates any Data Storage fragmentation caused by file deletion.

The REORDB function performs both the REORASSO and REORDATA functions in a single execution
of ADAORD.

The REORFILE function performs both the REORFASSO and REORFDATA functions in a single
execution of ADAORD. The records may be reordered in the logical sequence by a descriptor, by ISN, or
in the current sequence.

360

Adabas UtilitiesFunctional Overview

Restructure Functions
The RESTRUCTUREDB function unloads an entire database to a sequential dataset; the
RESTRUCTUREF function unloads one or more files to a sequential dataset. This dataset can be used as
input to the STORE function.

The RESTURCTURE functions are used to relocate the database to a different physical device or a file or
files to another device.

Store Function
The STORE function loads one or more files into an existing database using the DDFILEA output created
by the RESTRUCTUREDB, RESTRUCTUREF, or REORDB function.

Space Allocation
ADAORD allocates the amount of space required by the xxSIZE or MAXISN parameters, if specified.
Otherwise, ADAORD allocates space based on the current size of the file. Note that the xxRELEASE
parameters affect the amount of space required.

If possible, space is allocated on the volume specified by the xxxxVOLUME parameter. If insufficient
free space is available on the specified volume, ADAORD allocates the remainder of the required space
on other volumes, according to its default rules of allocation.

An xxRABN parameter overrides the associated xxxxVOLUME parameter.

361

Functional OverviewAdabas Utilities

REORASSO: Reorder Associator
The REORASSO function reorders the entire Associator. If a file is not explicitly specified, its related
Associator information is reordered according to its existing definition. To reorder Associator information
for specific files, use the REORFASSO function.

Note:
If the parameter MAXFILES or NEWDBID is specified, an active nucleus will terminate automatically at
the end of the REORASSO function.

This chapter covers the following topics:

Optional Parameters and Subparameters

Examples

Optional Parameters and Subparameters
ACRABN: Starting RABN for Address Converter

The beginning RABN for the file’s address converter extent. If this parameter is omitted,
ADAORD assigns the starting RABN. The space requested must be available in one extent.

362

Adabas UtilitiesREORASSO: Reorder Associator

ALLOCATION: Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameters ACRABN, NIRABN, or UIRABN.

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameters fails,
the utility retries the allocation without the placement parameter.

ASSOPFAC: Associator Padding Factor

The new Associator block padding factor. The number specified represents the percentage of
each Associator block not to be used during the reorder process. A value in the range 1-90 may
be specified. The remaining number of bytes after padding must be greater than the largest
descriptor value plus 10.

If this parameter is omitted, the current Associator padding factor in effect for the file is used.

ASSOVOLUME: Associator Extent Volume

Note:
The value for the ASSOVOLUME parameter must be enclosed in apostrophes.

ASSOVOLUME identifies the volume on which the corresponding file’s Associator space (that
is, the AC, NI, and UI extents) should be allocated. If the requested number of blocks cannot be
found on the specified volume, ADAORD allocates the remaining blocks on other volumes
according to its default rules of allocation.

If ACRABN, UIRABN, or NIRABN is specified, ADAORD ignores the ASSOVOLUME value
when allocating the corresponding extent type.

If ASSOVOLUME is not specified, the file’s Associator space is allocated according to
ADAORD’s default allocation rules.

DBINDEXCOMPRESSION: Compress Database Indexes

DBINDEXCOMPRESSION indicates whether the indexes of files are rebuilt in compressed or
uncompressed form. It applies to all files for which no INDEXCOMPRESSION parameter is
specified.

DBINDEXCOMPRESSION can be used to build compressed or uncompressed indexes for all
files of the database, making it unnecessary to specify index compression for each file.

FILE: File Number

The file number to which the following parameters apply. Each specified file and its parameters
should be on a separate ADAORD statement following the ADAORD REORASSO function
statement.

363

REORASSO: Reorder AssociatorAdabas Utilities

For any file whose number is not specified, current Associator block padding factor and
MAXISN value are retained, and all Associator space allocations remain the same.

INDEXCOMPRESSION: Compress File Index

INDEXCOMPRESSION indicates whether the index for the file is rebuilt in compressed or
uncompressed form. A compressed index usually requires less index space and improves the
efficiency of index operations in the Adabas nucleus.

If INDEXCOMPRESSION is not specified

but the DBINDEXCOMPRESSION parameter is specified for the database as a whole, the
default is the database value.

and DBINDEXCOMPRESSION is also not specified, the default is the current
compression form of the file.

ISNSIZE: 3- or 4-Byte ISN

ISNSIZE specifies whether ISNs in the file are to be 3 or 4 bytes long. The default is the value
currently used for the file; this value is stored in the file control block (FCB).

Note:
It is not possible to change the ISNSIZE of a physically coupled file using ADAORD.

LPB: Prefetch Buffer Size

Specifies the size, in bytes, of the internal prefetch buffer. The maximum value is 32760 bytes.
The default depends on the ADARUN LU parameter. ADAORD may reduce a specified LPB
value if the LU value is too small.

MAXFILES: Maximum Number of Files

MAXFILES specifies the maximum number of files that can be loaded into the database. The
minimum value for this parameter is 3. The highest value permitted is 5000 or one less than the
ASSOR1 blocksize, whichever is lower. For example, 2003 is the highest MAXFILES value for
a database whose ASSOR1 is stored on a 3380 DASD.

If this parameter is omitted, the current value for MAXFILES is retained.

When MAXFILES is specified, the nucleus terminates after the ADAORD REORASSO
function is completed.

MAXISN: Highest ISN Permitted for the File

MAXISN specifies the highest ISN that can be allocated for the file. This value must be greater
than the current TOPISN value displayed in the ADAREP database report.

ADAORD uses the specified value to calculate the address converter space required. If this
parameter is omitted, the current MAXISN value for the file is retained.

NEWDBID: Database Identifier

364

Adabas UtilitiesREORASSO: Reorder Associator

NEWDBID is the ID to be assigned to the database. A value in the range 1-65535 may be used.
For systems using Online System Security, the value 999 is reserved. If this parameter is omitted, the
current database ID is retained.

When NEWDBID is specified, the nucleus terminates after the ADAORD REORASSO function
is completed.

NEWDBNAME: Database Name

The name to be assigned to the database. The name assigned may be from 1 to 16 characters. If
this parameter is omitted, the current database name is retained.

If the database name contains special characters or embedded blanks, the name must be
enclosed within apostrophes (’...’), which themselves must be doubled if included in the name;
for example, ’JAN’’S DB’.

NIRABN: Starting RABN for Normal Index

NIRABN specifies the beginning RABN number for the normal index extent. If this parameter
is omitted, ADAORD assigns the starting RABN.

NIRELEASE: Release Unused Normal Index Blocks

Specifying NIRELEASE releases unused normal index (NI) blocks belonging to the specified
file. If NIRELEASE is not specified, ADAORD allocates at least the number of NI blocks that
were allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

NISIZE: Normal Index Size

NISIZE is the number of blocks or cylinders to be allocated for the normal index. If the value is
blocks, it must be followed by "B" (for example, 2000B).

If this parameter is omitted, ADAORD computes the file extent size in proportion to any
increase or decrease in the ASSOPFAC padding factor.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

RAID: Action to Follow Determination That File Does Not Exist

The RAID parameter instructs ADAORD to ignore any FILE parameters that refer to a file that
does not exist in the database.

365

REORASSO: Reorder AssociatorAdabas Utilities

If RAID is not specified (the default), ADAORD terminates with an error message when it
encounters a FILE parameter referring to a file that does not exist in the database.

The RAID parameter is provided for use in recovery jobs built by the Adabas Recovery Aid
(ADARAI).

TEST: Test Syntax

This parameter tests the operation syntax without actually performing the operation. Note that
the validity of values and variables cannot be tested: only the syntax of the specified parameters
can be tested.

UIRABN: Starting RABN for Upper Index

UIRABN is the beginning RABN number for the file’s upper index extent. If this parameter is
omitted, ADAORD assigns the starting RABN for each of these extents.

UIRELEASE: Release Unused Upper Index Blocks

Specifying UIRELEASE releases unused upper index (UI) blocks belonging to the specified
file. If UIRELEASE is not specified, ADAORD allocates at least the number of UI blocks that
were allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

UISIZE: Upper Index Size

UISIZE is the number of blocks or cylinders to be allocated for the upper index. If the value is
blocks, it must be followed by "B" (for example, 2000B).

If this parameter is omitted, ADAORD computes the file extent size in proportion to any
increase or decrease in the ASSOPFAC padding factor.

Examples
Example 1:

ADAORD REORASSO

The Associator is to be reordered.

Example 2:

ADAORD REORASSO
ADAORD MAXFILES=200
ADAORD NEWDBID=6,NEWDBNAME=DATABASE-6

The Associator is to be reordered. A maximum of 200 files are permitted for the database. The database
ID and name are to be 6 and DATABASE-6, respectively.

366

Adabas UtilitiesREORASSO: Reorder Associator

Example 3:

ADAORD REORASSO
ADAORD FILE=1,ACRABN=1000,NIRABN=2200,
ADAORD FILE=2,MAXISN=500000,
ADAORD FILE=4,ASSOPFAC=5

The Associator is to be reordered. The address converter allocation for file 1 is to begin with RABN
1,000. The normal index for file 1 is to begin with RABN 2,200. The MAXISN for file 2 is to be set to
500,000. The Associator block padding factor for file 4 is to be set to 5 percent. The Associator
information for all other database files is reordered according to each file’s current definition.

367

REORASSO: Reorder AssociatorAdabas Utilities

REORDATA: Reorder Data Storage
The REORDATA function reorders Data Storage for all files. Files not specified are reordered according
to their existing definitions.

This chapter covers the following topics:

Optional Parameters and Their Subparameters

Examples

Optional Parameters and Their Subparameters
ALLOCATION: Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameter DSRABN.

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameter fails,
the utility retries the allocation without the placement parameter.

DATAPFAC: Data Storage Padding Factor

DATAPFAC specifies the new Data Storage padding factor, which is the percentage of each
Data Storage block reserved for record expansion when the file is reordered. A value in the
range 1-90 may be specified (see the ADALOD LOAD DATAPFAC parameter discussion for
more information about setting the padding factor). If this parameter is omitted, the current
padding factor for the file is used.

368

Adabas UtilitiesREORDATA: Reorder Data Storage

DATAVOLUME: Data Storage Extent Volume

Note:
The value for the DATAVOLUME parameter must be enclosed in apostrophes.

DATAVOLUME specifies the volume on which the file’s Data Storage space (DS extents) are
allocated. If the number of blocks requested with DSSIZE cannot be found on the specified
volume, ADAORD allocates the remaining blocks on other volumes according to its default
allocation rules.

If DSRABN is specified, DATAVOLUME is ignored for the related file.

If DATAVOLUME is not specified, the Data Storage space is allocated based on the current
size of the file. The DSRELEASE parameter also affects the amount of space required.

DSDEV: Data Storage Device Type

DSDEV is the file’s Data Storage device type. The specified device type must already be
defined to Adabas, normally when the database was created or by the ADADBS utility’s ADD
function.

If DSDEV is not specified, ADAORD attempts to allocate the file on the device type used
before reordering.

DSRABN: Data Storage Starting RABN

The beginning RABN for the specified file’s Data Storage extent. If this parameter is omitted,
ADAORD assigns the starting RABN.

DSRELEASE: Release Unused Data Storage Blocks

Specifying DSRELEASE releases unused Data Storage (DS) blocks belonging to the specified
file. If DSRELEASE is not specified, ADAORD allocates at least the number of DS blocks that
were allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

DSSIZE: Data Storage Size

DSSIZE is the number of blocks or cylinders to be allocated for the file’s Data Storage (DS)
logical extent. If the value is blocks, it must be followed by "B" (for example, 2000B).

If this parameter is omitted, ADAORD computes the file extent size in proportion to any
increase or decrease in the DATAPFAC padding factor used.

FILE: File Number

FILE is the file to which the following parameters apply. Each specified file and its parameters
should be on a separate ADAORD statement following the ADAORD REORDATA statement.

369

REORDATA: Reorder Data StorageAdabas Utilities

For any file whose number is not specified, the file is reordered using the current physical
sequence, and the current Data Storage padding factor and space allocation are retained.

LIP: ISN Buffer Pool Size

The LIP parameter can be used to decrease the number of Associator I/O operations when
recreating the address converter. For best performance, specify a size that accepts all ISNs of the
largest file to be processed.

LIP specifies the size of the ISN pool for containing ISNs and their assigned Data Storage
RABNs. The value may be specified in bytes as a numeric value ("2048") or in kilobytes as a
value followed by "K" ("2K"). The default for LIP is 16384 bytes (or 16K).

The length of one input record is ISNSIZE + RABNSIZE. Thus the entry length is at least 6
bytes (the ISNSIZE of the file is 3 and the RABNSIZE of the database is 3) and at most 8 bytes
(the ISNSIZE is 4 and the RABNSIZE is 4).

LPB: Prefetch Buffer Size

LPB specifies the size, in bytes, of the internal prefetch buffer. The maximum value is 32760
bytes. The default depends on the ADARUN LU parameter. ADAORD may reduce a specified
LPB value if the LU value is too small.

MAXRECL: Maximum Compressed Record Length

Use the MAXRECL parameter to change the maximum record length, after compression,
permitted in the file. Specifying MAXRECL has two effects:

The DATA dataset for the file can be allocated only to devices that support the specified length.

If the file contains Data Storage records that exceed the specified length, ADAORD abends and
prints ERROR-126 "Data Storage record too long".

If MAXRECL is not specified, the maximum compressed record length does not change.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

RAID: Action to Follow Determination That File Does Not Exist

The RAID parameter instructs ADAORD to ignore any FILE parameters that refer to a file that
does not exist in the database.

If RAID is not specified (the default), ADAORD terminates with an error message when it
encounters a FILE parameter referring to a file that does not exist in the database.

370

Adabas UtilitiesREORDATA: Reorder Data Storage

The RAID parameter is provided for use in recovery jobs built by the Adabas Recovery Aid
(ADARAI).

SORTSEQ: Record Processing Sequence

SORTSEQ determines the sequence in which the file is to be processed. If this parameter is
omitted, the records are processed in physical sequence.

If a descriptor is specified, the file is processed in the logical sequence of the descriptor values.
Do not use a null-suppressed descriptor field, a hyperdescriptor, a phonetic descriptor, a
multiple-value field, or a descriptor contained in a periodic group.

Note:
Even when the descriptor field is not null suppressed, the record is not represented in the
inverted list if the descriptor field or a field following it has never been initialized (held a value).
Therefore, the record will be dropped when the utility is executed.

If ISN is specified, the file is processed in ascending ISN sequence. For the Adabas checkpoint
or security file, only SORTSEQ=ISN is allowed.

TEST: Test Syntax

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables.

Examples
Example 1:

ADAORD REORDATA

Data Storage for the entire database is to be reordered.

Example 2:

ADAORD REORDATA
ADAORD FILE=1,DSRABN=1000,DSSIZE=200B
ADAORD FILE=4,SORTSEQ=AA
ADAORD FILE=5,DATAPFAC=15

Data Storage is to be reordered. Data Storage for file 1 is to begin with RABN 1,000 with 200 blocks to be
allocated. File 4 is to be reordered using descriptor AA for sequence control. The Data Storage block
padding factor for file 5 is to be set to 15 percent. All other database files are reordered according to their
existing definitions.

371

REORDATA: Reorder Data StorageAdabas Utilities

REORDB: Reorder Database
The REORDB function reorders the entire Associator and Data Storage for a database. Files that are not
specified are reordered according to their existing definitions.

Note:
If the parameter MAXFILES or NEWDBID is specified, the nucleus automatically terminates at the end
of the REORDB function.

This chapter covers the following topics:

Optional Parameters and Subparameters

Examples

372

Adabas UtilitiesREORDB: Reorder Database

Optional Parameters and Subparameters
ACRABN: Starting RABN for Address Converter

The RABN with which the file’s address converter extent is to begin. If this parameter is
omitted, ADAORD assigns the starting RABN. The space requested must be available in one
extent.

ALLOCATION: Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameters ACRABN, DSRABN, NIRABN, or UIRABN.

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameters fails,
the utility retries the allocation without the placement parameter.

ASSOPFAC: Associator Padding Factor

The new Associator block padding factor. The number specified represents the percentage of
each Associator block not to be used during the reorder process. A value in the range 1-90 may
be specified. The remaining number of bytes after padding must be greater than the largest
descriptor value plus 10.

If this parameter is omitted, the current Associator padding factor in effect for the file is used.

ASSOVOLUME: Associator Extent Volume

Note:
The value for the ASSOVOLUME parameter must be enclosed in apostrophes.

ASSOVOLUME identifies the volume on which the file’s Associator space (that is, the AC, NI,
and UI extents) should be allocated. If the requested number of blocks cannot be found on the
specified volume, ADAORD allocates the remaining blocks on other volumes according to its
default allocation rules.

If ACRABN, UIRABN, or NIRABN is specified, ADAORD ignores the ASSOVOLUME value
when allocating the corresponding extent type.

If ASSOVOLUME is not specified, the file’s Associator space is allocated according to
ADAORD’s default allocation rules.

DATAPFAC: Data Storage Padding Factor

DATAPFAC specifies the new Data Storage padding factor, which is the percentage of each
Data Storage block reserved for record expansion when the file is reordered. A value in the
range 1-90 may be specified (see the ADALOD LOAD DATAPFAC parameter discussion for
more information about setting the padding factor). If this parameter is omitted, the current
padding factor for the file is used.

373

REORDB: Reorder DatabaseAdabas Utilities

DATAVOLUME: Data Storage Extent Volume

Note:
The value for the DATAVOLUME parameter must be enclosed in apostrophes.

DATAVOLUME specifies the volume on which the file’s Data Storage space (DS extents) are
allocated. If the requested number of blocks requested with DSSIZE cannot be found on the
specified volume, ADAORD allocates the remaining blocks on other volumes according to its
default allocation rules.

If DSRABN is specified, DATAVOLUME is ignored for the related file.

If DATAVOLUME is not specified, the Data Storage space is allocated according to
ADAORD’s default allocation rules.

DBINDEXCOMPRESSION: Compress Database Indexes

DBINDEXCOMPRESSION indicates whether the indexes of files are rebuilt in compressed or
uncompressed form. It applies to all files for which no INDEXCOMPRESSION parameter is
specified.

DBINDEXCOMPRESSION can be used to build compressed or uncompressed indexes for all
files of the database, making it unnecessary to specify index compression for each file.

DSDEV: Data Storage Device Type

DSDEV is the file’s Data Storage device type. The specified device type must already be
defined to Adabas, normally when the database was created or by the ADADBS utility’s ADD
function.

If DSDEV is not specified, ADAORD attempts to allocate the file on the device type used
before reordering.

DSRABN: Data Storage Starting RABN

The beginning RABN for the file’s Data Storage extent. If this parameter is omitted, ADAORD
assigns the starting RABN.

DSRELEASE: Release Unused Data Storage Blocks

Specifying DSRELEASE releases unused Data Storage (DS) blocks belonging to the specified
file. If DSRELEASE is not specified, ADAORD allocates at least the number of DS blocks that
were allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

DSSIZE: Data Storage Size

DSSIZE is the number of blocks or cylinders to be allocated for the file’s Data Storage (DS)
logical extent. If the value is blocks, it must be followed by "B" (for example, 2000B).

374

Adabas UtilitiesREORDB: Reorder Database

If this parameter is omitted, ADAORD computes the file extent size in proportion to any
increase or decrease in the DATAPFAC padding factor.

FILE: File Number

The file to which the following parameters apply. Each specified file must be on a separate
ADAORD statement following the ADAORD REORDB function statement, and must be
immediately followed by the applicable parameters for the file.

For any file whose number is not specified, the current Associator and Data Storage block
padding factors and MAXISN value are retained, and all Associator and Data Storage space
allocations remain the same.

INDEXCOMPRESSION: Compress File Index

INDEXCOMPRESSION indicates whether the index for the file is rebuilt in compressed or
uncompressed form. A compressed index usually requires less index space and improves the
efficiency of index operations in the Adabas nucleus.

If INDEXCOMPRESSION is not specified

but the DBINDEXCOMPRESSION parameter is specified for the database as a whole, the
default is the database value.

and DBINDEXCOMPRESSION is also not specified, the default is the current
compression form of the file.

ISNSIZE: 3- or 4-Byte ISN

ISNSIZE specifies whether ISNs in the file are to be 3 or 4 bytes long. The default is the value
currently used for the file; this value is stored in the file control block (FCB).

Note:
It is not possible to change the ISNSIZE of a physically coupled file using ADAORD.

LIP: ISN Buffer Pool Size

The LIP parameter can be used to decrease the number of Associator I/O operations when
recreating the address converter. For best performance, specify a size that accepts all ISNs of the
largest file to be processed.

LIP specifies the size of the ISN pool for containing ISNs and their assigned Data Storage
RABNs. The value may be specified in bytes as a numeric value ("2048") or in kilobytes as a
value followed by "K" ("2K"). The default for LIP is 16384 bytes (or 16K).

The length of one input record is ISNSIZE + RABNSIZE. Thus the entry length is at least 6
bytes (the ISNSIZE of the file is 3 and the RABNSIZE of the database is 3) and at most 8 bytes
(the ISNSIZE is 4 and the RABNSIZE is 4).

LPB: Prefetch Buffer Size

375

REORDB: Reorder DatabaseAdabas Utilities

LPB specifies the size, in bytes, of the internal prefetch buffer. The maximum value is 32,760
bytes. The default depends on the ADARUN LU parameter. ADAORD may reduce a specified LPB value
if the LU value is too small.

MAXFILES: Maximum Number of Files

MAXFILES specifies the maximum number of files that can be loaded into the database. The
minimum value for this parameter is 3. The highest value permitted is 5000 or one less than the
ASSOR1 blocksize, whichever is lower. For example, 2003 is the highest MAXFILES value for
a database whose ASSOR1 is stored on a 3380 DASD.

If this parameter is omitted, the current value for MAXFILES is retained.

When MAXFILES is specified, the nucleus terminates after the ADAORD REORDB function
is completed.

MAXISN: Highest ISN Permitted in the File

The highest ISN that can be allocated for the file. This value must be greater than the current
TOPISN value displayed in the ADAREP database report.

ADAORD uses the specified value to calculate the address converter space required. If this
parameter is omitted, the current MAXISN value for the file is retained.

MAXRECL: Maximum Compressed Record Length

Use the MAXRECL parameter to change the maximum record length, after compression,
permitted in the file. Specifying MAXRECL has two effects:

The file’s DATA dataset is allocated only to devices that support the specified length.

If the file contains Data Storage records that exceed the specified length, ADAORD abends
and prints the ERROR-126 message ("Data Storage record too long").

If MAXRECL is not specified, the maximum compressed record length does not change.

NEWDBID: Database Identifier

NEWDBID is the ID to be assigned to the database. A value in the range 1-65,535 may be used.
For systems using Adabas Online System Security, the value 999 is reserved. If this parameter is
omitted, the current database ID is retained.

When NEWDBID is specified, the nucleus terminates after the ADAORD REORDB function is
completed.

NEWDBNAME: Database Name

NEWDBNAME specifies the name to be assigned to the database. The name can contain up to
16 characters. If the name contains special characters or embedded blanks, it must be enclosed
in apostrophes (’...’); for example, ’JAN’’S DB’. If this parameter is omitted, the current
database name is retained.

376

Adabas UtilitiesREORDB: Reorder Database

NIRABN: Starting RABN for Normal Index

NIRABN specifies the RABN with which the file’s normal index extent is to begin. If this
parameter is omitted, ADAORD assigns the starting RABN.

NIRELEASE: Release Unused Normal Index Blocks

Specifying NIRELEASE releases unused normal index (NI) blocks belonging to the specified
file. If NIRELEASE is not specified, ADAORD allocates at least the number of NI blocks that
were allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

NISIZE: Normal Index Size

NISIZE specifies the number of blocks or cylinders to be allocated for the file’s normal index. A
block count must be followed by "B" (for example, 2000B).

If this parameter is omitted, ADAORD computes the file extent size in proportion to any
increase or decrease in the ASSOPFAC padding factor.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

RAID: Action to Follow Determination That File Does Not Exist

The RAID parameter instructs ADAORD to ignore any FILE parameters that refer to a file that
does not exist in the database.

If RAID is not specified (the default), ADAORD terminates with an error message when it
encounters a FILE parameter referring to a file that does not exist in the database.

The RAID parameter is provided for use in recovery jobs built by the Adabas Recovery Aid
(ADARAI).

SORTSEQ: File Processing Sequence

SORTSEQ determines the sequence in which the file is to be processed. If this parameter is
omitted, the records are processed in physical sequence.

If a descriptor is specified, the file is processed in the logical sequence of the descriptor values.
Do not use a null-suppressed descriptor field, a hyperdescriptor, a phonetic descriptor, a
multiple-value field, or a descriptor contained in a periodic group.

377

REORDB: Reorder DatabaseAdabas Utilities

Note:
Even when the descriptor field is not null suppressed, the record is not represented in the
inverted list if the descriptor field or a field following it has never been initialized (held a value).
Therefore, the record will be dropped when the utility is executed.

If ISN is specified, the file is processed in ascending ISN sequence. For the Adabas checkpoint
or security file, only SORTSEQ=ISN is allowed.

TEST: Text Syntax

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables.

UIRABN: Starting RABN for Upper Index

UIRABN defines the beginning RABN for the Associator’s upper index extent for the file. If
this parameter is omitted, ADAORD assigns the starting RABN.

UIRELEASE: Release Unused Upper Index Blocks

UIRELEASE releases unused upper index (UI) blocks belonging to the file. If UIRELEASE is
not specified, ADAORD allocates at least the number of UI blocks that were allocated before
the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

UISIZE: Upper Index Size

UISIZE specifies the number of blocks or cylinders to allocate for the upper index. A block
count must be followed by "B" (for example, 2000B). If UISIZE is omitted, ADAORD allocates
space in proportion to an increase or decrease in the ASSOPFAC padding factor.

Examples
Example 1:

ADAORD REORDB

The Associator and Data Storage are to be reordered. No changes are to be made to the current database
parameters.

Example 2:

ADAORD REORDB
ADAORD MAXFILES=200
ADAORD NEWDBID=6,NEWDBNAME=DATABASE-6

The Associator and Data Storage are to be reordered. A maximum of 200 files are permitted for the
database. The database ID and name are to be 6 and DATABASE-6, respectively. If the nucleus is active
during the REORDB operation, it will be stopped following the operation (NEWDBID was specified).

378

Adabas UtilitiesREORDB: Reorder Database

Example 3:

ADAORD REORDB
ADAORD FILE=1,ACRABN=1000,NIRABN=2200,SORTSEQ=ISN
ADAORD FILE=2,MAXISN=500000
ADAORD
FILE=4,ASSOPFAC=5,DATAPFAC=20,DSSIZE=5,DSRABN=1

The Associator and Data Storage are to be reordered. The address converter allocation for file 1 is to begin
with RABN 1,000. The normal index allocation for file 1 is to begin with RABN 2,200.

The Data Storage portion of file 1 is to be reordered in ascending ISN sequence. The MAXISN for file 2
is to be set to 500,000. The following assignments are made for file 4: the Associator block padding factor
is to be changed to 5 percent, the Data Storage block padding factor is set to 20 per cent, and a new
DSSIZE of 5 cylinders is assigned starting at RABN 1. All other files are reordered according to their
existing definitions.

Example 4:

ADAORD REORDB
ADAORD FILE=66
ADAORD DSRELEASE
ADAORD NIRELEASE
ADAORD UIRELEASE
ADAORD RAID

1. ADAORD reorders the entire database.

2. ADAORD releases all unused storage from the Data Storage, normal index, and upper index of file
66.

3. However, if file 66 does not exist in the database, ADAORD does not terminate with an error
message; rather, ADAORD ignores this condition and proceeds.

Example 5:

ADAORD REORDB
ADAORD DBINDEXCOMPRESSION=YES
ADAORD FILE=1
ADAORD FILE=2,INDEXCOMPRESSION=NO
ADAORD FILE=3

All files are reordered and rebuilt with compressed indexes, except for file 2, which is rebuilt with an
uncompressed index.

379

REORDB: Reorder DatabaseAdabas Utilities

REORFASSO: Reorder Associator for a
Single File
The REORFASSO function reorders the Associator for a single file. Associator information for
unspecified files is not reordered.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Examples

Essential Parameter
FILE: File Number

FILE specifies the file to be processed, and to which the parameters that follow in the statement
sequence apply. Several files and their related parameters may be specified within one
REORFASSO operation; see the examples at the end of this section. If a component file of an
Adabas expanded file is specified, only that file’s Associator is reordered; this has no adverse
effect on the other component files.

380

Adabas UtilitiesREORFASSO: Reorder Associator for a Single File

Optional Parameters
ACRABN: Starting RABN for Address Converter

ACRABN specifies the file’s starting address converter RABN. If this parameter is omitted,
ADAORD assigns the starting RABN. The space requested must be available in one extent.

ALLOCATION: Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameters ACRABN, NIRABN, or UIRABN.

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameters fails,
the utility retries the allocation without the placement parameter.

ASSOPFAC: Associator Padding Factor

ASSOPFAC defines the new Associator block padding factor, which is the percentage of each
Associator block not used during the reorder process. Specify a value in the range 1-90. The
number of bytes free after padding must be greater than the largest descriptor value plus 10.

If this parameter is omitted, the current padding factor in effect for the file is used.

ASSOVOLUME: Associator Extent Volume

Note:
The value for the ASSOVOLUME parameter must be enclosed in apostrophes.

ASSOVOLUME identifies the volume on which the file’s Associator space (that is, the AC, NI,
and UI extents) should be allocated. If the requested number of blocks cannot be found on the
specified volume, ADAORD allocates the remaining blocks on other volumes according to its
default allocation rules.

If ACRABN, UIRABN, or NIRABN is specified, ADAORD ignores the ASSOVOLUME value
when allocating the corresponding extent type.

If ASSOVOLUME is not specified, the file’s Associator space is allocated according to
ADAORD’s default allocation rules.

EXCLUDE: Exclude Specified Files from Reorder

EXCLUDE lists the numbers of the files to be excluded from REORDER processing; that is, the
files that are not to be reordered.

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

Files specified in the EXCLUDE parameter must also be specified in the FILE parameter.

381

REORFASSO: Reorder Associator for a Single FileAdabas Utilities

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

INDEXCOMPRESSION: Compress File Index

INDEXCOMPRESSION indicates whether the index for the file is rebuilt in compressed or
uncompressed form. A compressed index usually requires less index space and improves the
efficiency of index operations in the Adabas nucleus.

If INDEXCOMPRESSION is not specified, the default is the current form of the file.

ISNSIZE: 3- or 4-Byte ISN

ISNSIZE specifies whether ISNs in the file are to be 3 or 4 bytes long. The default is the value
currently used for the file; this value is stored in the file control block (FCB).

Note:
It is not possible to change the ISNSIZE of a physically coupled file using ADAORD.

LPB: Prefetch Buffer Size

LPB specifies the size, in bytes, of the internal prefetch buffer. The maximum value is 32,760
bytes. The default depends on the ADARUN LU parameter. ADAORD may reduce a specified
LPB value if the LU value is too small.

MAXISN: Highest ISN to Be Allocated

MAXISN is the highest ISN which may be allocated for the file. This value must be greater than
the current TOPISN value displayed in the ADAREP database report.

ADAORD uses the specified value to calculate the address converter space required. If this
parameter is omitted, the current MAXISN value for the file remains in effect.

NIRABN: Starting RABN for Normal Index

NIRABN is the starting RABN to be used for the normal index. If NIRABN is omitted,
ADAORD assigns the starting RABN.

NIRELEASE: Release Unused Normal Index Blocks

Specifying NIRELEASE releases unused normal index (NI) blocks belonging to the specified
file. If NIRELEASE is not specified, ADAORD allocates at least the number of NI blocks that
were allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

NISIZE: Normal Index Size

NISIZE specifies the number of blocks or cylinders to be allocated for the file’s normal index. A
block count must be followed by "B" (for example, 2000B).

382

Adabas UtilitiesREORFASSO: Reorder Associator for a Single File

If this parameter is omitted, ADAORD computes the file extent size in proportion to any
increase or decrease in the ASSOPFAC padding factor.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

If the file is password-protected, use this parameter to specify the password.

TEST: Test Syntax

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables.

UIRABN: Starting RABN for Upper Index

UIRABN is the starting RABN for the upper index. If this parameter is omitted, ADAORD
assigns the starting RABN.

UIRELEASE: Release Unused Upper Index Blocks

Specifying UIRELEASE releases unused upper index (UI) blocks belonging to the specified
file. If UIRELEASE is not specified, ADAORD allocates at least the number of UI blocks that
were allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

UISIZE: Upper Index Size

UISIZE specifies the number of blocks or cylinders to be allocated for the file’s upper index. A
block count must be followed by "B" (for example, 2000B).

If this parameter is omitted, ADAORD computes the file extent size in proportion to any
increase or decrease in the ASSOPFAC padding factor.

Examples
Example 1:

ADAORD REORFASSO FILE=9
ADAORD ASSOPFAC=5
ADAORD FILE=23
ADAORD UIRABN=3151,UISIZE=50B
ADAORD NIRABN=3201

383

REORFASSO: Reorder Associator for a Single FileAdabas Utilities

The Associator for files 9 and 23 is to be reordered; Associator data for other files is not changed.

The Associator padding factor is set to 5% for file 9. For file 23, the following Associator changes are
being made: the new upper index starting RABN is 3151, with a new upper index size of 50 blocks. The
new normal index starting RABN is 3201; the normal index size remains the same as before.

Example 2:

ADAORD REORFASSO FILE=104
ADAORD ASSOPFAC=5,NISIZE=5B,UISIZE=2B
ADAORD ACRABN=10000,NIRABN=10510,UIRABN=10515
ADAORD FILE=105

The Associator for files 104 and 105 is to be reordered; Associator information for all other files is
unchanged.

For file 104, the Associator padding factor is to be set to 5. The sizes of the normal index and upper index
are to be 5 blocks and 2 blocks respectively. The starting RABN for the address converter is to be 10000.
The starting RABN for the normal index is to be 10510. The starting RABN for the upper index is to be
10515. Information for file 105 is reordered according to the file’s existing definition.

384

Adabas UtilitiesREORFASSO: Reorder Associator for a Single File

REORFDATA: Reorder Data Storage for a
Single File
The REORFDATA function reorders Data Storage for a single file. Data Storage for unspecified files is
not reordered.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Examples

Essential Parameter
FILE: File Number

FILE specifies the file to be processed, and to which the parameters that follow in the statement
sequence apply. Several files and their related parameters may be specified within one
REORFDATA operation; see the examples at the end of this section.

Optional Parameters
ALLOCATION: Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameter DSRABN.

385

REORFDATA: Reorder Data Storage for a Single FileAdabas Utilities

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameter.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameter fails,
the utility retries the allocation without the placement parameter.

DATAPFAC: Data Storage Padding Factor

DATAPFAC specifies the new Data Storage padding factor, which is the percentage of each
Data Storage block reserved for record expansion when the file is reordered. A value in the
range 1-90 may be specified (see the ADALOD LOAD DATAPFAC parameter discussion for
more information about setting the padding factor). If this parameter is omitted, the current
padding factor for the file is used.

DATAVOLUME: Data Storage Extent Volume

Note:
The value for the DATAVOLUME parameter must be enclosed in apostrophes.

DATAVOLUME specifies the volume on which the file’s Data Storage space (DS extents) are
allocated. If the number of blocks requested with DSSIZE cannot be found on the specified
volume, ADAORD allocates the remaining blocks on other volumes according to its default
allocation rules.

If DSRABN is specified, DATAVOLUME is ignored for the related file.

If DATAVOLUME is not specified, the Data Storage space is allocated according to
ADAORD’s default allocation rules.

DSDEV: Data Storage Device Type

DSDEV is the file’s Data Storage device type. The specified device type must already be
defined to Adabas, normally when the database was created or by the ADADBS utility’s ADD
function.

If DSDEV is not specified, ADAORD attempts to allocate the file on the device type used
before reordering.

DSRABN: Data Storage Starting RABN

DSRABN is the beginning RABN for the file’s Data Storage extent. If this parameter is omitted,
ADAORD assigns the starting RABN.

DSRELEASE: Release Unused Data Storage Blocks

Specifying DSRELEASE releases unused Data Storage (DS) blocks belonging to the file. If
DSRELEASE is not specified, ADAORD allocates at least the number of DS blocks that were
allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

386

Adabas UtilitiesREORFDATA: Reorder Data Storage for a Single File

DSSIZE: Data Storage Size

DSSIZE specifies the number of blocks or cylinders to be allocated for the Data Storage. A
block count must be followed by "B" (for example, 2000B).

If this parameter is omitted, ADAORD computes the file extent size in proportion to any
increase or decrease in the DATAPFAC padding factor.

EXCLUDE: Exclude Specified Files from Reorder

EXCLUDE lists the numbers of the files to be excluded from REORDER processing; that is, the
files that are not to be reordered.

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

Files specified in the EXCLUDE parameter must also be specified in the FILE parameter.

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

LIP: ISN Buffer Pool Size

The LIP parameter can be used to decrease the number of Associator I/O operations when
recreating the address converter. For best performance, specify a size that accepts all ISNs of the
largest file to be processed.

LIP specifies the size of the ISN pool for containing ISNs and their assigned Data Storage
RABNs. The value may be specified in bytes as a numeric value ("2048") or in kilobytes as a
value followed by "K" ("2K"). The default for LIP is 16384 bytes (or 16K).

The length of one input record is ISNSIZE + RABNSIZE. Thus the entry length is at least 6
bytes (the ISNSIZE of the file is 3 and the RABNSIZE of the database is 3) and at most 8 bytes
(the ISNSIZE is 4 and the RABNSIZE is 4).

LPB: Prefetch Buffer Size

LPB specifies the size, in bytes, of the internal prefetch buffer. The maximum value is 32,760
bytes. The default depends on the ADARUN LU parameter. ADAORD may reduce a specified
LPB value if the LU value is too small.

MAXRECL: Maximum Compressed Record Length

Use the MAXRECL parameter to change the maximum record length, after compression,
permitted in the file. Specifying MAXRECL has two effects:

The DATA dataset for the file can be allocated only to devices that support the specified
length.

If the file contains Data Storage records that exceed the specified length, ADAORD abends
and prints the ERROR-126 message ("Data Storage record too long").

387

REORFDATA: Reorder Data Storage for a Single FileAdabas Utilities

If MAXRECL is not specified, the maximum compressed record length does not change.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

If the file is password-protected, use this parameter to specify the password.

SORTSEQ: File Reordering Sequence

SORTSEQ determines the sequence in which the file is to be processed. If this parameter is
omitted, the records are processed in physical sequence.

If a descriptor is specified, the file is processed in the logical sequence of the descriptor values.
Do not use a null-suppressed descriptor field, a hyperdescriptor, a phonetic descriptor, a
multiple-value field, or a descriptor contained in a periodic group.

Note:
Even when the descriptor field is not null suppressed, the record is not represented in the
inverted list if the descriptor field or a field following it has never been initialized (held a value).
Therefore, the record will be dropped when the utility is executed.

If ISN is specified, the file is processed in ascending ISN sequence. For the Adabas checkpoint
or security file, only SORTSEQ=ISN is allowed.

TEST: Test Syntax

This parameter tests the operation syntax without actually performing the operation. Note that
the validity of values and variables cannot be tested: only the syntax of the specified parameters
can be tested.

Examples
Example 1:

ADAORD REORFDATA FILE=16

The Data Storage for file 16 is to be reordered. No other files are affected.

Example 2:

ADAORD REORFDATA FILE=246
ADAORD DATAPFAC=5,DSSIZE=10,SORTSEQ=MZ
ADAORD FILE=247

388

Adabas UtilitiesREORFDATA: Reorder Data Storage for a Single File

The Data Storage for files 246 and 247 is to be reordered. No other files’ Data Storage will be reordered.

For file 246, the Data Storage padding factor is to be set to 5. Data Storage for file 247 is reordered
according to the file’s existing definition.

389

REORFDATA: Reorder Data Storage for a Single FileAdabas Utilities

REORFILE: Reorder File
The REORFILE function reorders the Associator and Data Storage for a single file. Associator and Data
Storage for other files are not affected.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Examples

Essential Parameter
FILE: File Number

390

Adabas UtilitiesREORFILE: Reorder File

FILE specifies the file to be processed, and to which the parameters that follow in the statement
sequence apply. Several files and their related parameters may be specified within one REORFILE
operation; see the examples at the end of this section. If a component file of an Adabas expanded file is
specified, only that file’s Associator and Data Storage are reordered; this has no adverse effect on the
other component files.

Optional Parameters
ACRABN: Starting RABN for Address Converter

ACRABN is the beginning RABN for the file’s address converter extent. If this parameter is
omitted, ADAORD assigns the starting RABN. The space requested must be available in one
extent.

ALLOCATION: Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameters ACRABN, DSRABN, NIRABN, or UIRABN.

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameters fails,
the utility retries the allocation without the placement parameter.

ASSOPFAC: Associator Padding Factor

ASSOPFAC specifies the new Associator block padding factor. The number specified
represents the percentage of each Associator block not to be used during the reorder process. A
value in the range 1-90 may be specified. The remaining number of bytes after padding must be
greater than the largest descriptor value plus 10.

If this parameter is omitted, the current Associator padding factor in effect for the file is used.

ASSOVOLUME: Associator Extent Volume

Note:
The value for the ASSOVOLUME parameter must be enclosed in apostrophes.

ASSOVOLUME identifies the volume on which the file’s Associator space (that is, the AC, NI,
and UI extents) should be allocated. If the requested number of blocks cannot be found on the
specified volume, ADAORD allocates the remaining blocks on other volumes according to its
default allocation rules.

If ACRABN, UIRABN, or NIRABN is specified, ADAORD ignores the ASSOVOLUME value
when allocating the corresponding extent type.

If ASSOVOLUME is not specified, the file’s Associator space is allocated according to
ADAORD’s default allocation rules.

DATAPFAC: Data Storage Padding Factor

391

REORFILE: Reorder FileAdabas Utilities

DATAPFAC specifies the new Data Storage padding factor, which is the percentage of each
Data Storage block reserved for record expansion when the file is reordered. A value in the range 1-90
may be specified (see the ADALOD LOAD DATAPFAC parameter discussion for more information
about setting the padding factor). If this parameter is omitted, the current padding factor for the file is
used.

DATAVOLUME: Data Storage Extent Volume

Note:
The value for the DATAVOLUME parameter must be enclosed in apostrophes.

DATAVOLUME specifies the volume on which the file’s Data Storage space (DS extents) are
allocated. If the number of blocks requested with DSSIZE cannot be found on the specified
volume, ADAORD allocates the remaining blocks on other volumes according to its default
allocation rules.

If DSRABN is specified, DATAVOLUME is ignored for the related file.

If DATAVOLUME is not specified, the Data Storage space is allocated according to
ADAORD’s default allocation rules.

DSDEV: Data Storage Device Type

DSDEV specifies the device type to be used for the file’s Data Storage. The specified device
type must already be defined to Adabas, normally when the database was created or by the
ADADBS utility’s ADD function.

If this parameter is not specified, ADAORD attempts to allocate the file on the device type used
before reordering.

DSRABN: Data Storage Starting RABN

DSRABN specifies the beginning RABN for the file’s Data Storage extent. If the DSRABN
parameter is omitted, ADAORD assigns the starting RABN.

DSRELEASE: Release Unused Data Storage Blocks

Specifying DSRELEASE releases unused Data Storage (DS) blocks belonging to the file. If
DSRELEASE is not specified, ADAORD allocates at least the number of DS blocks that were
allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

DSSIZE: Data Storage Size

DSSIZE specifies the number of blocks or cylinders to be allocated for the Data Storage. A
block count must be followed by "B" (for example, 2000B).

If this parameter is omitted, ADAORD calculates the file extent size in proportion to any
increase or decrease in the DATAPFAC padding factor.

392

Adabas UtilitiesREORFILE: Reorder File

EXCLUDE: Exclude Specified Files from Reorder

EXCLUDE lists the numbers of the files to be excluded from REORDER processing; that is, the
files that are not to be reordered.

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

Files specified in the EXCLUDE parameter must also be specified in the FILE parameter.

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

INDEXCOMPRESSION: Compress File Index

INDEXCOMPRESSION indicates whether the index for the file is rebuilt in compressed or
uncompressed form. A compressed index usually requires less index space and improves the
efficiency of index operations in the Adabas nucleus.

If INDEXCOMPRESSION is not specified, the default is the current form of the file.

ISNSIZE: 3- or 4-Byte ISN

ISNSIZE specifies whether ISNs in the file are to be 3 or 4 bytes long. The default is the value
currently used for the file; this value is stored in the file control block (FCB).

Note:
It is not possible to change the ISNSIZE of a physically coupled file using ADAORD.

LIP: ISN Buffer Pool Size

The LIP parameter can be used to decrease the number of Associator I/O operations when
recreating the address converter. For best performance, specify a size that accepts all ISNs of the
largest file to be processed.

LIP specifies the size of the ISN pool for containing ISNs and their assigned Data Storage
RABNs. The value may be specified in bytes as a numeric value ("2048") or in kilobytes as a
value followed by "K" ("2K"). The default for LIP is 16384 bytes (or 16K).

The length of one input record is ISNSIZE + RABNSIZE. Thus the entry length is at least 6
bytes (the ISNSIZE of the file is 3 and the RABNSIZE of the database is 3) and at most 8 bytes
(the ISNSIZE is 4 and the RABNSIZE is 4).

LPB: Prefetch Buffer Size

LPB specifies the size, in bytes, of the internal prefetch buffer. The maximum value is 32760
bytes. The default depends on the ADARUN LU parameter. ADAORD may reduce a specified
LPB value if the LU value is too small.

MAXISN: Highest ISN Permitted for the File

MAXISN is the highest ISN which may be allocated for the file. This value must be greater than
the current TOPISN value displayed in the ADAREP database report.

393

REORFILE: Reorder FileAdabas Utilities

ADAORD uses the specified value to calculate the address converter space required. If this
parameter is omitted, the current MAXISN value for the file is retained.

MAXRECL: Maximum Compressed Record Length

Use the MAXRECL parameter to change the maximum record length, after compression,
permitted in the file. Specifying MAXRECL has two effects:

The DATA dataset for the file can be allocated only to devices that support the specified
length.

If the file contains Data Storage records that exceed the specified length, ADAORD abends
and prints ERROR-126 "Data Storage record too long".

If MAXRECL is not specified, the maximum compressed record length does not change.

NIRABN: Starting RABN for Normal Index

NIRABN is the beginning RABN for the normal index extent. If this parameter is omitted,
ADAORD assigns the starting RABN.

NIRELEASE: Release Unused Normal Index Blocks

Specifying NIRELEASE releases unused normal index (NI) blocks belonging to the file. If
NIRELEASE is not specified, ADAORD allocates at least the number of NI blocks that were
allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

NISIZE: Normal Index Size

NISIZE specifies the number of blocks or cylinders to be allocated for the file’s normal index. A
block count must be followed by "B" (for example, 2000B).

If this parameter is omitted, ADAORD computes the file extent size in proportion to any
increase or decrease in the ASSOPFAC padding factor.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

If the file is password-protected, use this parameter to specify the password.

394

Adabas UtilitiesREORFILE: Reorder File

SORTSEQ: Reorder Sequence

SORTSEQ determines the sequence in which the file is to be processed. If this parameter is
omitted, the records are processed in physical sequence.

If a descriptor is specified, the file is processed in the logical sequence of the descriptor values.
Do not use a null-suppressed descriptor field, a hyperdescriptor, a phonetic descriptor, a
multiple-value field, or a descriptor contained in a periodic group.

Note:
Even when the descriptor field is not null suppressed, the record is not represented in the
inverted list if the descriptor field or a field following it has never been initialized (held a value).
Therefore, the record will be dropped when the utility is executed.

If ISN is specified, the file is processed in ascending ISN sequence. For the Adabas checkpoint
or security file, only SORTSEQ=ISN is allowed.

TEST: Test Syntax

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables.

UIRABN: Starting RABN for Upper Index

UIRABN is the beginning RABN for the file’s upper index extent. If this parameter is omitted,
ADAORD assigns the starting RABN.

UIRELEASE: Release Unused Upper Index Blocks

Specifying UIRELEASE releases unused upper index (UI) blocks belonging to the file. If
UIRELEASE is not specified, ADAORD allocates at least the number of UI blocks that were
allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

UISIZE: Index Size for Upper Index

UISIZE specifies the number of blocks or cylinders to be allocated for the upper index. A block
count must be followed by "B" (for example, 2000B).

If this parameter is omitted, ADAORD computes the file extent size in proportion to any
increase or decrease in the ASSOPFAC padding factor.

Examples
Example 1:

ADAORD REORFILE FILE=16

395

REORFILE: Reorder FileAdabas Utilities

Associator and Data Storage for file 16 are to be reordered. All current extent sizes and padding factors
for the file are to be retained. No other files are reordered.

Example 2:

ADAORD REORFILE FILE=246
ADAORD DATAPFAC=5,DSSIZE=10B,SORTSEQ=MZ
ADAORD ASSOPFAC=20,MAXISN=5000
ADAORD FILE=20

File 246 is to be reordered; the Associator and Data Storage for all other files remain unchanged. The Data
Storage padding factor is to be set to 5. A new Data Storage size of 10 cylinders is to be used. The Data
Storage is to be reordered in the logical sequence of descriptor MZ. The new Associator padding factor is
20. The highest ISN which may be assigned is 5000. File 20 is to be reordered with no changes to its
current parameters.

Example 3:

ADAORD REORFILE FILE=9
ADAORD ASSOPFAC=5,DATAPFAC=15
ADAORD FILE=23
ADAORD DSRABN=24032
ADAORD UIRABN=3151,UISIZE=50B
ADAORD NIRABN=3201

The Associator for files 9 and 23 is to be reordered; other files are not changed.

The Associator padding factor is set to 5% and the Data Storage padding factor to 15% for files 9, 10, and
12. For file 23, the new starting Data Storage RABN is 24032. In addition, the following Associator
changes are being made for file 23: the new upper index starting RABN is 3151, with a new upper index
size of 50 blocks. The new normal index starting RABN is 3201; the size remains the same.

396

Adabas UtilitiesREORFILE: Reorder File

RESTRUCTUREDB: Restructure Database
The RESTRUCTUREDB function unloads an entire database to a sequential dataset, which can be used as
input to the STORE function to load the data into a new database. The target database may be located on a
physical device type different from the source database.

This chapter covers the following topics:

Optional Parameters and Subparameters

Examples

Optional Parameters and Subparameters
ASSODEV: Associator Device Type

ASSODEV specifies the device type to be used in the new database for the file’s ASSO dataset.
This parameter is required only when the device type to be used is different from the default
device type. The default device type is specified by the DBASSODEV parameter; if
DBASSODEV is not specified, the default is the device type specified by the ADARUN
DEVICE parameter. These parameters have no effect on the data written to the DDFILEA/
FILEA dataset.

ASSOPFAC: Associator Padding Factor

ADAORD uses the ASSOPFAC value to calculate the space required to perform the STORE
function for the specified file. Valid values are 1-90. The number of AC, NI, and UI blocks is
calculated for the device type specified by ASSODEV and the padding factor specified by
ASSOPFAC. These parameters have no effect on the data written to DDFILEA. If ASSOPFAC
is not specified, the current padding factor for the file is used.

397

RESTRUCTUREDB: Restructure DatabaseAdabas Utilities

DATADEV: Data Storage Device Type

DATADEV specifies the device type to be used for the specified file’s new DATA dataset. This
parameter is required only when the device type to be used is different from the default device
type. The default device type is specified by the DBDATADEV parameter; if DBDATADEV is
not specified, the default is the device type specified by the ADARUN DEVICE parameter.
These parameters have no effect on the data written to DDFILEA.

DATAPFAC: Data Storage Padding Factor

ADAORD uses DATAPFAC to calculate the space required to perform the STORE function for
the specified file. Valid values are 1-90 (see the ADALOD LOAD DATAPFAC parameter
discussion for more information about setting the padding factor). The number of Data Storage
blocks is calculated for the device type specified by DATADEV and the padding factor
specified by DATAPFAC. If DATAPFAC is not specified, the current padding factor for the file
is used. These parameters have no effect on the data written to DDFILEA.

DBASSODEV: Default Associator Device Type

DBASSODEV specifies a default device type for the new ASSO dataset. ADAORD uses the
device type specified here to calculate the ASSO space requirements for each restructured file.
If DBASSODEV is not specified, the default is the device type specified by the ADARUN
DEVICE parameter.

To override the default device type for a file, use the FILE and ASSODEV parameters.

DBDATADEV: Default Data Storage Device Type

DBDATADEV specifies a default device type for the new DATA dataset. ADAORD uses the
device type specified here to calculate the DATA space requirements for each restructured file.
If DBDATADEV is not specified, the default is the device type specified by the ADARUN
DEVICE parameter.

To override the default device type for a file, use the FILE and DATADEV parameters.

DBINDEXCOMPRESSION: Calculate Index Sizes for Database

DBINDEXCOMPRESSION indicates for all files whether the index space calculation
performed and displayed by ADAORD is based on compressed or uncompressed indexes. It
applies to all files for which no INDEXCOMPRESSION parameter is specified.

DBINDEXCOMPRESSION can be used to calculate the sizes of compressed or uncompressed
indexes for all files of the database, making it unnecessary to calculate the sizes for each file.

FILE: File Number

FILE specifies the file to which the following parameters apply. The records for all files not
specified by this parameter are unloaded in physical sequence, by file.

If an Adabas checkpoint or security file is specified, do not specify the SORTSEQ parameter.

INDEXCOMPRESSION: Calculate Index Sizes for File

398

Adabas UtilitiesRESTRUCTUREDB: Restructure Database

INDEXCOMPRESSION indicates for its associated file whether the index space calculation
performed and displayed by ADAORD is based on a compressed or uncompressed index.

If INDEXCOMPRESSION is not specified

but the DBINDEXCOMPRESSION parameter is specified for the database as a whole, the
default is the database value.

and DBINDEXCOMPRESSION is also not specified, the default is the current
compression form of the file.

ISNSIZE: 3- or 4-Byte ISN

ISNSIZE specifies whether ISNs in the file are to be 3 or 4 bytes long. The default is the value
currently used for the file; this value is stored in the file control block (FCB).

Note:
It is not possible to change the ISNSIZE of a physically coupled file using ADAORD.

LPB: Prefetch Buffer Size

LPB specifies the size, in bytes, of the internal prefetch buffer. The maximum value is 32760
bytes. The default depends on the ADARUN LU parameter. ADAORD may reduce a specified
LPB value if the LU value is too small.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

SORTSEQ: File Processing Sequence

SORTSEQ determines the sequence in which the file is to be processed. If this parameter is
omitted, the records are processed in physical sequence.

If a descriptor is specified, the file is processed in the logical sequence of the descriptor values.
Do not use a null-suppressed descriptor field, a hyperdescriptor, a phonetic descriptor, a
multiple-value field, or a descriptor contained in a periodic group.

Note:
Even when the descriptor field is not null suppressed, the record is not represented in the
inverted list if the descriptor field or a field following it has never been initialized (held a value).
Therefore, the record will be dropped when the utility is executed.

If ISN is specified, the file is processed in ascending ISN sequence. For the Adabas checkpoint
or security file, only SORTSEQ=ISN is allowed.

TEST: Test Syntax

399

RESTRUCTUREDB: Restructure DatabaseAdabas Utilities

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables.

Examples
Example 1:

ADAORD RESTRUCTUREDB

The RESTRUCTUREDB function is to be executed. All files are to be unloaded in physical sequence.

Example 2:

ADAORD RESTRUCTUREDB FILE=146,SORTSEQ=MZ
ADAORD FILE=151,SORTSEQ=TF

The RESTRUCTUREDB function is to be executed. File 146 is to be unloaded in the sequence of
descriptor MZ. File 151 is to be unloaded in the sequence of descriptor TF. All other files are to be
unloaded in physical sequence.

400

Adabas UtilitiesRESTRUCTUREDB: Restructure Database

RESTRUCTUREF: Restructure Single Files
The RESTRUCTUREF function unloads one or more files to a sequential dataset, which can be used as
input to the STORE function to load the files into another database. The target database may be located on
a physical device type different from the originating database.

This chapter covers the following topics:

Essential Parameter

Optional Parameters

Examples

Essential Parameter
FILE: File Number

FILE specifies the file to be restructured. A separate ADAORD FILE statement must be
provided for each file to be processed, followed by ADAORD statements containing the
relevant parameters for that file.

If you specify a file that is either coupled or part of an expanded file, the related files are
automatically added to the file list. A message indicating the files added appears in DDPRINT.

Optional Parameters
ASSODEV: Associator Device Type

401

RESTRUCTUREF: Restructure Single FilesAdabas Utilities

ASSODEV specifies the device type to be used for the specified file’s new ASSO dataset. This
parameter is required only when the device type to be used is different from the default device type. The
default device type is specified by the DBASSODEV parameter; if DBASSODEV is not specified, the
default is the device type specified by the ADARUN DEVICE parameter. These parameters have no effect
on the data written to the DDFILEA/ FILEA dataset.

ASSOPFAC: Associator Padding Factor

ADAORD uses ASSOPFAC to calculate the space required to perform the STORE function for
the specified file. Valid values are 1-90. The number of AC, NI, and UI blocks is calculated for
the device type specified by ASSODEV and the padding factor specified by ASSOPFAC. If
ASSOPFAC is not specified, the current padding factor for the file is used. These parameters
have no effect on the data written to DDFILEA.

DATADEV: Data Storage Device Type

DATADEV specifies the device type to be used for the specified file’s new DATA dataset. This
parameter is required only when the device type to be used is different from the default device
type. The default device type is specified by the DBDATADEV parameter; if DBDATADEV is
not specified, the default is the device type specified by the ADARUN DEVICE parameter.
These parameters have no effect on the data written to DDFILEA.

DATAPFAC: Data Storage Padding Factor

ADAORD uses DATAPFAC to calculate the space required to perform the STORE function for
the specified file. Valid values are 1-90 (see the ADALOD LOAD DATAPFAC parameter
discussion for more information about setting the padding factor). The number of Data Storage
blocks is calculated for the device type specified by DATADEV and the padding factor
specified by DATAPFAC. If DATAPFAC is not specified, the current padding factor for the file
is used. These parameters have no effect on the data written to DDFILEA.

DBASSODEV: Default Associator Device Type

DBASSODEV specifies a default device type for the new ASSO dataset. ADAORD uses the
device type specified here to calculate the ASSO space requirements for each restructured file.
If DBASSODEV is not specified, the default is the device type specified by the ADARUN
DEVICE parameter.

To override the default device type for a file, use the FILE and ASSODEV parameters.

DBDATADEV: Default Data Storage Device Type

DBDATADEV specifies a default device type for the new DATA dataset. ADAORD uses the
device type specified here to calculate the DATA space requirements for each restructured file.
If DBDATADEV is not specified, the default is the device type specified by the ADARUN
DEVICE parameter.

To override the default device type for a file, use the FILE and DATADEV parameters.

INDEXCOMPRESSION: Calculate Index Sizes for File

402

Adabas UtilitiesRESTRUCTUREF: Restructure Single Files

INDEXCOMPRESSION indicates for its associated file whether the index space calculation
performed and displayed by ADAORD is based on a compressed or uncompressed index.

If INDEXCOMPRESSION is not specified

but a compression value is specified for the database as a whole, the default is the database
value.

and no compression value is specified for the database, the default is the current
compression form of the file.

ISNSIZE: 3- or 4-Byte ISN

ISNSIZE specifies whether ISNs in the file are to be 3 or 4 bytes long. The default is the value
currently used for the file; this value is stored in the file control block (FCB).

Note:
It is not possible to change the ISNSIZE of a physically coupled file using ADAORD.

LPB: Prefetch Buffer Size

LPB specifies the size, in bytes, of the internal prefetch buffer. The maximum size is 32,760
bytes. The default depends on the ADARUN LU parameter. ADAORD may reduce a specified
LPB value if the LU value is too small.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

If the file is password-protected, use this parameter to specify the password.

SORTSEQ: File Processing Sequence

SORTSEQ determines the sequence in which the file is to be processed. If this parameter is
omitted, the records are processed in physical sequence.

If a descriptor is specified, the file is processed in the logical sequence of the descriptor values.
Do not use a null-suppressed descriptor field, a hyperdescriptor, a phonetic descriptor, a
multiple-value field, or a descriptor contained in a periodic group.

Note:
Even when the descriptor field is not null suppressed, the record is not represented in the
inverted list if the descriptor field or a field following it has never been initialized (held a value).
Therefore, the record will be dropped when the utility is executed.

403

RESTRUCTUREF: Restructure Single FilesAdabas Utilities

If ISN is specified, the file is processed in ascending ISN sequence. For the Adabas checkpoint
or security file, only SORTSEQ=ISN is allowed.

TEST: Test Syntax

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not that the validity of values and variables.

Examples
Example 1:

ADAORD RESTRUCTUREF FILE=15

The RESTRUCTUREF function is to be executed. File 15 is to be unloaded in physical sequence. No
other files are to be unloaded.

Example 2:

ADAORD RESTRUCTUREF FILE=25,SORTSEQ=KL
ADAORD FILE=40,SORTSEQ=J3

The RESTRUCTUREF function is to be executed. Files 25 and 40 are to be unloaded. File 25 is to be
unloaded in the sequence of descriptor KL. File 40 is to be unloaded in the sequence of descriptor J3. No
other files are to be unloaded.

404

Adabas UtilitiesRESTRUCTUREF: Restructure Single Files

STORE: Store Files
The STORE function loads one or more files into an existing database using output produced by the
RESTRUCTURE functions.

If the ALLFILES parameter is specified, all files contained on the input dataset are stored. If ALLFILES
is not specified, only those files specified by FILE parameters are stored.

One or more files may be specified with FILE parameter statements, even when ALLFILES is also
specified. The STORE function loads each file specified with a FILE statement according to the definition
contained in any subparameters immediately following that file’s FILE statement. All other files are
loaded according to their existing definitions.

If existing files in the database are to be overwritten, the OVERWRITE parameter must be supplied.

Notes:

1. Storing restructured ADAM files on a device with a smaller DATA blocking factor than before can
result in utility ERROR 103 if the ADAM file previously used the overflow area. To relocate an
ADAM file to a different device, use ADAULD and ADALOD.

2. Checkpoint and security files from Adabas version 5.1 or 5.2 cannot be stored due to internal
structure changes to the files in version 5.3.

405

STORE: Store FilesAdabas Utilities

This chapter covers the following topics:

Optional Parameters and Subparameters

Examples

Optional Parameters and Subparameters
ACRABN: Starting RABN for Address Converter

ACRABN specifies the beginning RABN for the file’s address converter extent. If this
parameter is omitted, ADAORD assigns the starting RABN. The space requested must be
available in one extent.

ALLFILES: Select All Files for Storing

ALLFILES causes all files in the input dataset to be stored in the database. If ALLFILES is not
supplied, only those files are stored for which FILE parameters have been specified.

406

Adabas UtilitiesSTORE: Store Files

If the input dataset contains files that are coupled or part of an expanded file and the related files
are not in the dataset, ERROR-138 is returned indicating an inconsistent file list. You must add the related
files before the STORE function will execute successfully.

ALLOCATION: Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameters ACRABN, DSRABN, NIRABN, or UIRABN.

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameters fails,
the utility retries the allocation without the placement parameter.

ASSOPFAC: Associator Padding Factor

ASSOPFAC specifies the new Associator block padding factor. The number specified
represents the percentage of each Associator block not to be used during the reorder process. A
value in the range 1-90 may be specified. The remaining number of bytes after padding must be
greater than the largest descriptor value plus 10.

If this parameter is omitted, the current Associator padding factor in effect for the file is used.

ASSOVOLUME: Associator Extent Volume

Note:
The value for the ASSOVOLUME parameter must be enclosed in apostrophes.

ASSOVOLUME identifies the volume on which to allocate the file’s Associator space (the AC,
NI, and UI extents). If the requested number of blocks cannot be found on the specified volume,
ADAORD allocates the remaining blocks on other volumes according to its default allocation
rules.

If ACRABN, UIRABN, or NIRABN is specified, ADAORD ignores the ASSOVOLUME value
when allocating the corresponding extent type.

If ASSOVOLUME is not specified, the file’s Associator space is allocated according to
ADAORD’s default allocation rules.

CHECKPOINT: Store the Checkpoint File

If either ALLFILES is specified or the FILE parameter specifies the checkpoint file,
CHECKPOINT stores the checkpoint file from the DDFILEA/FILEA tape in the database,
making that file the new checkpoint file. The new checkpoint file must have the same file
number as the old checkpoint file.

If the CHECKPOINT parameter is not specified, the checkpoint file on the FILEA/DDFILEA
tape is not stored in the database, even though the checkpoint file was specified by a FILE
parameter or the ALLFILES parameter was specified.

DATAPFAC: Data Storage Padding Factor

407

STORE: Store FilesAdabas Utilities

DATAPFAC specifies the new Data Storage padding factor, which is the percentage of each
Data Storage block reserved for record expansion when the file is reordered. A value in the range 1-90
may be specified (see the ADALOD LOAD DATAPFAC parameter discussion for more information
about setting the padding factor). If this parameter is omitted, the current padding factor for the file is
used.

DATAVOLUME: Data Storage Extent Volume

Note:
The value of the DATAVOLUME parameter must be enclosed in apostrophes.

DATAVOLUME specifies the volume on which the file’s Data Storage space (DS extents) are
allocated. If the number of blocks requested with DSSIZE cannot be found on the specified
volume, ADAORD allocates the remaining blocks on other volumes according to its default
allocation rules.

If DSRABN is specified, DATAVOLUME is ignored for the related file.

If DATAVOLUME is not specified, the Data Storage space is allocated according to
ADAORD’s default allocation rules.

DSDEV: Data Storage Device Type

DSDEV specifies the device type to be used for the file’s Data Storage. The specified device
type must already be defined to Adabas, normally when the database was created or by the
ADADBS utility’s ADD function.

If this parameter is not specified, ADAORD attempts to allocate the file on the device type used
before restructuring.

DSRABN: Data Storage Starting RABN

The beginning RABN for the Data Storage extent for the specified file. If this parameter is
omitted, ADAORD assigns the starting RABN.

DSRELEASE: Release Unused Data Storage Blocks

Specifying DSRELEASE releases unused Data Storage (DS) blocks belonging to the specified
file. If DSRELEASE is not specified, ADAORD allocates at least the number of DS blocks that
were allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

DSSIZE: Data Storage Size

DSSIZE specifies the number of blocks or cylinders to be allocated for the Data Storage. A
block count must be followed by "B" (for example, 2000B).

If this parameter is omitted, ADAORD will compute the file extent size (in blocks) in proportion
to an increase or decrease in the DATAPFAC padding factor used.

408

Adabas UtilitiesSTORE: Store Files

EXCLUDE: Exclude Specified Files from Store

EXCLUDE lists the numbers of the files to be excluded from STORE processing; that is, the
files that are not to be stored.

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

The EXCLUDE parameter may be specified only if ALLFILES is also specified.

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

FILE: File Number

FILE specifies the file to be stored. A separate statement must be provided for each file to be
processed, followed by ADAORD statements containing the relevant parameters for that file.

If you specify a file that is coupled or part of an expanded file and you do not also specify the
related files, ERROR-138 is returned indicating an inconsistent file list. You must add the
related files before the STORE function will execute successfully.

INDEXCOMPRESSION: Compress File Index

INDEXCOMPRESSION indicates whether the index for the file is rebuilt in compressed or
uncompressed form. A compressed index usually requires less index space and improves the
efficiency of index operations in the Adabas nucleus.

If INDEXCOMPRESSION is not specified, the default is the form of the file at the time of the
corresponding restructure operation.

ISNSIZE: 3- or 4-Byte ISN

ISNSIZE specifies whether ISNs in the file are to be 3 or 4 bytes long. The default is the value
currently used for the file; this value is stored in the file control block (FCB).

Note:
It is not possible to change the ISNSIZE of a physically coupled file using ADAORD.

LIP: ISN Buffer Pool Size

The LIP parameter can be used to decrease the number of Associator I/O operations when
recreating the address converter. For best performance, specify a size that accepts all ISNs of the
largest file to be processed.

LIP specifies the size of the ISN pool for containing ISNs and their assigned Data Storage
RABNs. The value may be specified in bytes as a numeric value ("2048") or in kilobytes as a
value followed by "K" ("2K"). The default for LIP is 16384 bytes (or 16K).

The length of one input record is ISNSIZE + RABNSIZE. Thus the entry length is at least 6
bytes (the ISNSIZE of the file is 3 and the RABNSIZE of the database is 3) and at most 8 bytes
(the ISNSIZE is 4 and the RABNSIZE is 4).

409

STORE: Store FilesAdabas Utilities

MAXISN: Highest ISN Permitted for the File

MAXISN specifies the highest ISN which may be allocated for the file. This value must be
greater than the current TOPISN value displayed in the ADAREP database report.

ADAORD uses the specified value to calculate the address converter space required. If this
parameter is omitted, the current MAXISN value for the file is retained.

MAXRECL: Maximum Compressed Record Length

Use the MAXRECL parameter to change the maximum record length, after compression,
permitted in the file. Specifying MAXRECL has two effects:

The DATA dataset for the file can be allocated only to devices that support the specified
length.

If the file contains Data Storage records that exceed the specified length, ADAORD abends
and prints ERROR-126 "Data Storage record too long".

If MAXRECL is not specified, there are two possibilities for the default value:

If the maximum compressed record length before the file was restructured was the default
ADALOD MAXRECL value, then DATA is allocated to a device arbitrarily, and the new
maximum record length is derived from the device type;

Otherwise, the maximum compressed record length does not change.

NIRABN: Starting RABN for Normal Index

The beginning RABN for the file’s normal index extent. If this parameter is omitted, ADAORD
assigns the starting RABN.

NIRELEASE: Release Unused Normal Index Blocks

Specifying NIRELEASE releases unused normal index (NI) blocks belonging to the file. If
NIRELEASE is not specified, ADAORD allocates at least the number of NI blocks that were
allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

NISIZE: Normal Index Size

The number of blocks or cylinders to be allocated for the normal index. The specified value
cannot be larger than the largest single contiguous RABN area available; specifying blocks (a
number of blocks followed by "B") is therefore recommended.

If this parameter is omitted, ADAORD computes the file extent size (in blocks) in proportion to
an increase or decrease in the ASSOPFAC padding factor used.

If this parameter is omitted and the INDEXCOMPRESSION parameter is specified, the
ADAORD index size calculation does not consider the change in index size because ADAORD
has no knowledge of the compression rate to be expected. Thus, ADAORD may allocate an

410

Adabas UtilitiesSTORE: Store Files

index smaller than required causing secondary index extent allocations; or larger than necessary.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 034 (with a dump) or user ABEND 035 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

OVERWRITE: Overwrite Existing File

If a file to be stored already exists in the database, ADAORD terminates with an error message
unless the OVERWRITE parameter has been specified.

SECURITY: Store the Security File

SECURITY stores the security file from the DDFILEA/ FILEA tape, making that file the new
security file for the database. The new file must have the same number as the old security file.

If SECURITY is omitted, the security file on the FILEA/ DDFILEA tape is not stored in the
database, even if it is specified by a FILE parameter or the ALLFILES parameter is specified.

TEST: Test Syntax

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables.

TRIGGER: Store the Trigger File

Specify the TRIGGER parameter to store the trigger file from the DDFILEA/FILEA tape as the
new trigger file for the database. The new trigger file must have the same file number as the old
trigger file.

When the TRIGGER parameter is not specified, the trigger file on the DDFILEA/FILEA tape is
not stored in the database, even if it is specified by the FILE or ALLFILES parameter.

UIRABN: Starting RABN for Upper Index

UIRABN specifies the beginning RABN for the upper index extent of the file. If this parameter
is omitted, ADAORD assigns the starting RABN.

UIRELEASE: Release Unused Upper Index Blocks

Specifying UIRELEASE releases unused upper index (UI) blocks belonging to the file. If
UIRELEASE is not specified, ADAORD allocates at least the number of UI blocks that were
allocated before the file was reordered.

Note:
Adabas calculates the file extent size using any changed padding factor or blocksize values
before the file is reordered.

411

STORE: Store FilesAdabas Utilities

UISIZE: Upper Index Size

UISIZE specifies the number of blocks or cylinders to be allocated for the upper index. A block
count must be followed by "B" (for example, 2000B).

If this parameter is omitted, ADAORD computes the file extent size (in blocks) in proportion to
an increase or decrease in the ASSOPFAC padding factor used.

If this parameter is omitted and the INDEXCOMPRESSION parameter is specified, the
ADAORD index size calculation does not consider the change in index size because ADAORD
has no knowledge of the compression rate to be expected. Thus, ADAORD may allocate an
index smaller than required causing secondary index extent allocations; or larger than necessary.

Examples
Example 1:

ADAORD STORE FILE=14,OVERWRITE

File 14, as unloaded by one of the RESTRUCTURE or the REORDB functions, is to be stored into an
existing database. If the file already exists, it is deleted before being stored.

Example 2:

ADAORD STORE FILE=1,OVERWRITE
ADAORD FILE=2,OVERWRITE
ADAORD FILE=3,OVERWRITE

Files 1, 2 and 3 are written to the existing database. Old files 1, 2 and 3 are deleted.

Example 3:

ADAORD STORE OVERWRITE,ALLFILES
ADAORD FILE=1,ACRABN=1000,NIRABN=2200
ADAORD FILE=2,MAXISN=500000
ADAORD
FILE=4,ASSOPFAC=5,DATAPFAC=20,DSSIZE=5B,DSRABN=1

All files unloaded by the RESTRUCTURE function are to be stored into an existing database. The address
converter for file 1 is to begin with RABN 1000. The normal index for file 1 is to begin with RABN 2200.
The MAXISN for file 2 is to be set to 500,000. The following assignments are made for file 4: the
Associator block padding factor is set to 5 percent; the Data Storage block padding factor is set to 20 per
cent; a new DSSIZE of 5 cylinders is assigned starting at RABN 1.

All other files contained in the input dataset are restored with their default values. If a file already exists, it
is deleted before the new file is stored.

Example 4:

ADAORD STORE ALLFILES,CHECKPOINT
ADAORD EXCLUDE=20,10

All files from the input dataset (including the checkpoint file) are stored. However, files 10 and 20 are
excluded; that is, not stored.

412

Adabas UtilitiesSTORE: Store Files

Example 5:

ADAORD STORE ALLOCATION=NOFORCE
ADAORD FILE=10
ADAORD DSRABN=12345

File 10 is stored in the database. Its data storage is allocated beginning at RABN 12,345. If this allocation
is not possible because the space is occupied by another file, ADAORD retries the allocation anywhere in
the database’s data storage.

413

STORE: Store FilesAdabas Utilities

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADAORD with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

Note:
When running with the optional Recovery Aid (ADARAI) for RESTRUCTURExx or STORE functions,
all temporary datasets must also be cataloged in the job control.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Intermediate storage DDFILEA tape/ disk

Recovery log (RLOG) DDRLOGR1 disk Required when using
the
ADARAI option

ADARUN parameters SYSDTA/ DDCARD Operations

ADAORD parameters SYS/DTA/DDKARTE

ADARUN messages SYSOUT/ DDPRINT Messages and Codes

ADAORD messages SYSLST/ DDDRUCK Messages and Codes

ADAORD JCL Examples (BS2000)

Reorder File Data Storage, Reorder File, Reorder Data, Reorder Database

In SDF Format:

/.ADAORD LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A O R D REORDER FILE DATA, REORDER FILE, REORDER DATA
 /REMARK * REORDER DATABASE
 /REMARK *
 /DELETE-FILE ADAyyyyy.FILEA
 /SET-JOB-STEP

414

Adabas UtilitiesJCL/JCS Requirements and Examples

 /CREATE-FILE ADAyyyyy.FILEA,PUB(SPACE=(4800,480))
 /SET-JOB-STEP
 /ASS-SYSLST L.ORD.DATA
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
 /SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK,SHARE-UPD=YES
 /SET-FILE-LINK DDFILEA,ADAyyyyy.FILEA
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAORD,DB=yyyyy,IDTNAME=ADABAS5B
 ADAORD REORDATA FILE=1,DSSIZE=80,DATAPFAC=30
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADAORD LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A O R D REORDER FILE DATA, REORDER FILE, REORDER DATA
 /REMARK * REORDER DATABASE
 /REMARK *
 /SYSFILE SYSLST=L.ORD.DATA
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
 /FILE ADAyyyyy.WORK ,LINK=DDWORKR1,SHARUPD=YES
 /FILE ADAyyyyy.FILEA ,LINK=DDFILEA ,SPACE=(4800,480)
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAORD,DB=yyyyy,IDTNAME=ADABAS5B
 ADAORD REORDATA FILE=1,DSSIZE=80,DATAPFAC=30
 /LOGOFF NOSPOOL

Reorder Associator

In SDF Format:

/.ADAORD LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A O R D REORDER FILE ASSO, REORDER ASSO
 /REMARK *
 /DELETE-FILE ADAyyyyy.FILEA
 /SET-JOB-STEP
 /CREATE-FILE ADAyyyyy.FILEA,PUB(SPACE=(4800,480))
 /SET-JOB-STEP
 /ASS-SYSLST L.ORD.REOR
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
 /SET-FILE-LINK DDFILEA,ADAyyyyy.FILEA
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAORD,DB=yyyyy,IDTNAME=ADABAS5B
 ADAORD REORFASSO
 ADAORD FILE=1,MAXISN=20000,NISIZE=300B
 ADAORD FILE=3,NISIZE=400B,ASSOPFAC=2
 /LOGOFF SYS-OUTPUT=DEL

415

JCL/JCS Requirements and ExamplesAdabas Utilities

In ISP Format:

/.ADAORD LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A O R D REORDER FILE ASSO, REORDER ASSO
 /REMARK *
 /SYSFILE SYSLST=L.ORD.REOR
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
 /FILE ADAyyyyy.FILEA ,LINK=DDFILEA ,SPACE=(4800,480)
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAORD,DB=yyyyy,IDTNAME=ADABAS5B
 ADAORD REORFASSO
 ADAORD FILE=1,MAXISN=20000,NISIZE=300B
 ADAORD FILE=3,NISIZE=400B,ASSOPFAC=2
 /LOGOFF NOSPOOL

Restructure

In SDF Format:

/.ADAORD LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A O R D RESTRUCTURE
 /REMARK *
 /DELETE-FILE ADAyyyyy.FILEA
 /SET-JOB-STEP
 /CREATE-FILE ADAyyyyy.FILEA,PUB(SPACE=(4800,480))
 /SET-JOB-STEP
 /ASS-SYSLST L.ORD.REST
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDRLOGR1,ADAyyyyy.RLOGR1,SHARE-UPD=YES
 /SET-FILE-LINK DDFILEA,ADAyyyyy.FILEA
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAORD,DB=yyyyy,IDTNAME=ADABAS5B
 ADAORD RESTRUCTUREF
 ADAORD FILE=1,DATADEV=dddd
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADAORD LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A O R D RESTRUCTURE
 /REMARK *
 /SYSFILE SYSLST=L.ORD.REST
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.RLOGR1 ,LINK=DDRLOGR1,SHARUPD=YES
 /FILE ADAyyyyy.FILEA ,LINK=DDFILEA ,SPACE=(4800,480)
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAORD,DB=yyyyy,IDTNAME=ADABAS5B
 ADAORD RESTRUCTUREF
 ADAORD FILE=1,DATADEV=dddd
 /LOGOFF NOSPOOL

416

Adabas UtilitiesJCL/JCS Requirements and Examples

Store

In SDF Format:

/.ADAORD LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A O R D STORE
 /REMARK *
 /DELETE-FILE ADAyyyyy.FILEA
 /SET-JOB-STEP
 /CREATE-FILE ADAyyyyy.FILEA,PUB(SPACE=(4800,480))
 /SET-JOB-STEP
 /ASS-SYSLST L.ORD.STOR
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
 /SET-FILE-LINK DDRLOGR1,ADAyyyyy.RLOGR1,SHARE-UPD=YES
 /SET-FILE-LINK DDFILEA,ADAyyyyy.FILEA
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAORD,DB=yyyyy,IDTNAME=ADABAS5B
 ADAORD STORE
 ADAORD FILE=1,DSSIZE=80,DATAPFAC=30,DSRABN=1234
 ADAORD MAXISN=200000
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADAORD LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A O R D STORE
 /REMARK *
 /SYSFILE SYSLST=L.ORD.STOR
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
 /FILE ADAyyyyy.RLOGR1 ,LINK=DDRLOGR1,SHARUPD=YES
 /FILE ADAyyyyy.FILEA ,LINK=DDFILEA ,SPACE=(4800,480)
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAORD,DB=yyyyy,IDTNAME=ADABAS5B
 ADAORD STORE
 ADAORD FILE=1,DSSIZE=80,DATAPFAC=30,DSRABN=1234
 ADAORD MAXISN=200000
 /LOGOFF NOSPOOL

OS/390 or z/OS

417

JCL/JCS Requirements and ExamplesAdabas Utilities

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk Not used for
REORASSO or
REORFASSO

Intermediate storage DDFILEA tape/ disk

Recovery log (RLOG) DDRLOGR1 disk Required when using
the ADARAI option

ADARUN parameters DDCARD reader Operations

ADAORD parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADAORD messages DDDRUCK printer Messages and Codes

ADAORD JCL Examples (OS/390 or z/OS)

Reorder File Associator

//ADAORDA JOB
//*
//* ADAORD: REORDER FILE ASSO,
//* REORDER ASSO
//*
//ORD EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDFILEA DD DSN=&&DDFILEA,DISP=(,PASS), <===INTERMEDIATE
// UNIT=SYSDA,VOL=SER=vvvvvv,SPACE=(CYL,NN) STORAGE
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAORD,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAORD REORFASSO
ADAORD FILE=1,ASSOPFAC=15,MAXISN=10000
/*

Refer to ADAORDA in the MVSJOBS dataset for this example.

Reorder File Data Storage, Reorder File, Reorder Data, Reorder Database

//ADAORDD JOB
//*
//* ADAORD: REORDER DATA STORAGE
//*
//ORD EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDFILEA DD DSN=DDFILEA, <=== INTERMEDIATE

418

Adabas UtilitiesJCL/JCS Requirements and Examples

// UNIT=TAPE,VOL=SER=vvvvvv,DISP=(,PASS) FILE
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X

//DDCARD DD *
ADARUN PROG=ADAORD,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAORD REORDATA
ADAORD FILE=1,DSSIZE=80,DATAPFAC=30
/*

Refer to ADAORDD in the MVSJOBS dataset for this example.

Restructure

//ADAORDR JOB
//*
//* ADAORD: RESTRUCTURE
//*
//ORD EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <== DATA
//DDFILEA DD DSN=FILEA, <== INTERMEDIATE
// UNIT=TAPE,VOL=SER=vvvvvv,DISP=(,KEEP) <== FILE
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAORD,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAORD RESTRUCTUREF
ADAORD FILE=1,DATADEV=eeee
/*

Refer to ADAORDR in the MVSJOBS dataset for this example.

Store

//ADAORDS JOB
//*
//* ADAORD: STORE INTO A DIFFERENT DATABASE
//* AFTER ADAORD RESTRUCTURE
//*

//ORD EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDFILEA DD DSN=FILE1, <=== INTERMEDIATE
// UNIT=TAPE,VOL=SER=vvvvvv,DISP=OLD STORAGE
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAORD,SVC=xxx,DEVICE=dddd,DBID=yyyyy <=== DBID
/*

419

JCL/JCS Requirements and ExamplesAdabas Utilities

//DDKARTE DD *
ADAORD STORE
ADAORD FILE=1,DSSIZE=80,DATAPFAC=30,DSRABN=1234,MAXISN=200000
/*

Refer to ADAORDS in the MVSJOBS dataset for this example.

VM/ESA or z/VM

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Intermediate storage DDFILEA tape/ disk

Recovery log (RLOG) DDRLOGR1 disk Required when using
the ADARAI option

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADAORD parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADAORD messages DDDRUCK disk/ terminal/ printer Messages and Codes

ADAORD JCL Examples (VM/ESA or z/VM)

Reorder Associator

DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDFILEA,DSN=ADAORD.FILEA,MODE=A
DATADEF DDPRINT,DSN=ADAORD.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAORD.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNORD.CONTROL,MODE=A
DATADEF DDKARTE,DSN=REORASSO.CONTROL,MODE=A
ADARUN

Contents of RUNORD CONTROL A1

ADARUN PROG=ADAORD,DEVICE=dddd,DB=yyyyy

Contents of REORASSO CONTROL A1

ADAORD REORFASSO
ADAORD FILE=1,MAXISN=20000,ASSOPFAC=20
ADAORD FILE=3,NISIZE=400B,ASSOPFAC=20

Reorder Data Storage

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDFILEA,DSN=ADAORD.FILEA,MODE=A
DATADEF DDPRINT,DSN=ADAORD.DDPRINT,MODE=A
DATADEF DUMP,DUMMY

420

Adabas UtilitiesJCL/JCS Requirements and Examples

DATADEF DDDRUCK,DSN=ADAORD.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNORD.CONTROL,MODE=A
DATADEF DDKARTE,DSN=REORDATA.CONTROL,MODE=A
ADARUN

Contents of RUNORD CONTROL A1

ADARUN PROG=ADAORD,DEVICE=dddd,DB=yyyyy

Contents of REORDATA CONTROL A1

ADAORD REORDATA
ADAORD FILE=1,DSSIZE=80,DATAPFAC=30

Restructure

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDFILEA,DSN=ADAORD.FILEA,MODE=A
DATADEF DDRLOGR1,DSN=ADABVv.RLOGR1,VOL=RLOGV1
DATADEF DDPRINT,DSN=ADAORD.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAORD.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNORD.CONTROL,MODE=A
DATADEF DDKARTE,DSN=RESTRUCT.CONTROL,MODE=A
ADARUN

Contents of RUNORD CONTROL A1

ADARUN PROG=ADAORD,DEVICE=dddd,DB=yyyyy

Contents of RESTRUCT CONTROL A1

ADAORD RESTRUCTREF
ADAORD FILE=1,DATADEV=eeee

Store

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDRLOGR1,DSN=ADABVv.RLOGR1,VOL=RLOGV1
DATADEF DDFILEA,DSN=ADAORD.FILEA,MODE=A
DATADEF DDPRINT,DSN=ADAORD.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAORD.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNORD.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ORDSTORE.CONTROL,MODE=A
ADARUN

Contents of RUNORD CONTROL A1

ADARUN PROG=ADAORD,DEVICE=dddd,DB=yyyyy

Contents of ORDSTORE CONTROL A1

ADAORD STORE
ADAORD FILE=1,DSSIZE=80,DATAPFAC=30,DSRABN=1234
ADAORD MAXISN=200000

421

JCL/JCS Requirements and ExamplesAdabas Utilities

VSE/ESA

File Symbolic Name Storage Logical Unit More
Information

Associator ASSORn disk *

Data Storage DATARn disk *

Intermediate
Storage

FILEA tape
disk

SYS010
*

Recovery log
(RLOG)

RLOGR1 disk Required when
using the
ADARAI option

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
*

ADAORD
parameters

 reader SYSIPT

ADARUN
messages

 printer SYSLST Messages and
Codes

ADAORD
messages

 printer SYS009 Messages and
Codes

* Any programmer logical unit may be used.

ADAORD JCS Examples (VSE/ESA)

See Procedures for VSE/ESA Examples for a description of the VSE/ESA procedures (PROCs).

Refer to the following members for these examples:

Example Member

Reorder File Associator ADAORDA.X

Reorder File Data Storage ADAORDD.X

Restructure ADAORDR.X

Store Files ADAORDS.X

Reorder File Associator

* $$ JOB JNM=ADAORDA,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAORDA
* REORDER THE ASSOCIATOR.
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS010,DISK,VOL=DISK01,SHR
// DLBL FILEA,’ADABAS.Vvr.TEMP’
// EXTENT SYS010,DISK01,1,0,sssss,nnnnn

422

Adabas UtilitiesJCL/JCS Requirements and Examples

// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAORD,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAORD REORFASSO
ADAORD FILE=1,ASSOPFAC=15,MAXISN=10000
/*
/&
* $$ EOJ

Reorder File Data Storage, Reorder File, Reorder Data, Reorder Database

* $$ JOB JNM=ADAORDD,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAORDD
* REORDER DATA STORAGE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS010,TAPE,D0
// PAUSE MOUNT SCRATCH TAPE ON TAPE cuu
// MTC REW,SYS010
// MTC WTM,SYS010,5
// MTC REW,SYS010
// TLBL FILEA,’ADABAS.Vvr.TEMP’
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAORD,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAORD REORDATA
ADAORD FILE=1,DSSIZE=80,DATAPFAC=30
/*
/&
* $$ EOJ

Restructure

* $$ JOB JNM=ADAORDR,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAORDR
* RESTRUCTURE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS010,TAPE,D0
// PAUSE MOUNT SCRATCH TAPE ON TAPE cuu
// MTC REW,SYS010
// MTC WTM,SYS010,5
// MTC REW,SYS010
// TLBL FILEA,’ADABAS.Vvr.TEMP’
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAORD,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAORD RESTRUCTUREF
ADAORD FILE=1,DATADEV=eeee
/*
/&
* $$ EOJ

Store Files

* $$ JOB JNM=ADAORDS,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAORDS
* STORE
// EXEC PROC=ADAVvLIB

423

JCL/JCS Requirements and ExamplesAdabas Utilities

// EXEC PROC=ADAVvFIL
// ASSGN SYS010,TAPE,D0
// PAUSE MOUNT SCRATCH TAPE ON TAPE cuu
// MTC REW,SYS010
// MTC WTM,SYS010,5
// MTC REW,SYS010
// TLBL FILEA,’ADABAS.Vvr.TEMP’
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAORD,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAORD STORE
ADAORD FILE=1,DSSIZE=80,DATAPFAC=30,DSRABN=1234,MAXISN=200000
/*
/&
* $$ EOJ

424

Adabas UtilitiesJCL/JCS Requirements and Examples

ADAPLP: Protection Log/Work Print
This chapter covers the following topics:

Functional Overview

Print Protection Data

JCL/JCS Requirements and Examples

425

ADAPLP: Protection Log/Work PrintAdabas Utilities

Functional Overview
The ADAPLP utility prints data protection records contained on the Adabas Work dataset or the Adabas
data protection log.

426

Adabas UtilitiesFunctional Overview

Print Protection Data
The following diagram shows the ADAPLP syntax for specifying sequential intermediate (IPLOGPRI),
multiple (PLOG..) or sequential (SPLOG..) protection logs, or Work printing:

where type is one of the following:

The IPLOGPRI function is used to print the sequential intermediate datasets created from the PLOG
merge process. Input to ADAPLP IPLOGPRI must be a MERGINTI/MERGINTO dataset created by the
ADARES utility and is specified in the DDPLOG DD JCL statement. Operation is similar to the
SPLOGPRI function.

This chapter covers the following topics:

427

Print Protection DataAdabas Utilities

Optional Parameters and Subparameters

Examples

Optional Parameters and Subparameters
DEVICE: Device Type

DEVICE specifies device type on which the multiple protection dataset to be printed is
contained. This parameter is required only if the device type is different from the standard
ADARUN device.

FILE: File for Which Data is to Be Printed

The FILE parameter can be used to limit printing to those protection records containing
information about the specified Adabas file.

The FILE parameter cannot be specified with the RABN parameter, or when TYPE=C1, C5,
ET, EEKZ, SAVO, or VEKZ is specified. Do not specify ISN with the RABN parameter.

ISN: ISN for Which Data is to Be Printed

This parameter may be used to limit printing to the protection record identified by the specified
ISN. The ISN parameter cannot be specified when the RABN parameter is specified, nor when
TYPE=C1, C5, ET, EEKZ, SAVO, or VEKZ is specified.

LAYOUT: Print Format

Controls the output format of the protection log record requested by the PRINT parameter.
Specify either layout 1 (the default), 2, or 3:

LAYOUT=1 (the Default)

LAYOUT=2/3

428

Adabas UtilitiesPrint Protection Data

LAYOUT=3 presents the same format as LAYOUT=2, and also includes an explanation of each
PLOG record type.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

NUMBER: Multiple Protection Log Dataset Number

NUMBER specifies the one of multiple (two through eight) protection log (PLOG) datasets to
be printed. Specifying "2" selects the DD/PLOGR2 dataset; specifying "3" selects the
DD/PLOGR3 dataset, etc. The default of "1" selects DD/PLOGR1.

PRINT: Print Entire Data Protection Record

The PRINT parameter prints the entire data protection log record. If this parameter is omitted,
only the protection log record header is printed.

RABN: Print Only Updates for the Specified Data Storage Block

The RABN parameter can be used to track all updates to a particular Data Storage block that
might be in error.

The parameter limits printing to the protection records that describe the before and after images
of Data Storage records that have been removed from, updated in, or added to the specified Data
Storage block.

The RABN parameter can be specified for TYPE=ALL (the default) or TYPE=DATA
functions; that is, those that select data storage protection records.

SKIPRABN: Number of Blocks to Be Skipped

SKIPRABN specifies the number of blocks to be skipped before printing starts. Counting for the
number of blocks to be printed (see STOPRABN parameter) begins after the number of blocks
specified with this parameter have been skipped.

STOPRABN: Number of Blocks to Be Printed

429

Print Protection DataAdabas Utilities

STOPRABN limits the number of blocks to be printed. If this parameter is omitted, all blocks up
to the end of the protection log are printed. In addition to the RABN count specified by STOPRABN,
RABN 1 is also printed; therefore, the total number of printed RABNs is always one more than the value
specified by STOPRABN.

TYPE: Type of Record to Be Printed

TYPE specifies the type of protection records to be selected for printing. The following values
may be specified:

ALL all protection records-the default

ASSO Associator protection records

DATA Data Storage protection records

C1 records resulting from Adabas C1 commands

C5 records resulting from Adabas C5 commands

EEKZx records written at completion of a nucleus buffer flush

ET records resulting from Adabas ET commands

REPR Work dataset records used by autorestart to repair the index

SAVO online SAVE database/file records

VEKZ records written at completion of update commands

Note:
The number of protection records is reduced further by specifying the FILE, ISN, or RABN
parameters.

Examples
Example 1:

ADAPLP WORKPRI PRINT,TYPE=ALL,STOPRABN=40

41 data protection records from the Adabas Work are to be printed.

Example 2:

ADAPLP WORKPRI PRINT,TYPE=ASSO,STOPRABN=10

11 Associator data protection blocks from the Adabas Work are to be printed.

Example 3:

ADAPLP PLOGPRI PRINT

All data protection blocks contained on one of multiple protection log datasets are to be printed.

430

Adabas UtilitiesPrint Protection Data

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADAPLP with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Associator DDASSORn disk Required for
WORKPRI.

Work DDWORKR1 disk Required for
WORKPRI.

Sequential protection log DDPLOG tape/ disk Required for
SPLOGPRI or
IPLOGPRI.

Multiple protection log DDPLOGR1 disk Required for
PLOGPRI if
NUMBER=1 (the
default).

Multiple protection log DDPLOGRn disk Required for
PLOGPRI if
NUMBER=n.

ADARUN parameters SYSDTA/ DDCARD Operations

ADAPLP parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT DDPRINT Messages and Codes

ADAPLP messages SYSLST DDDRUCK Messages and Codes

ADAPLP JCL Examples (BS2000)

431

JCL/JCS Requirements and ExamplesAdabas Utilities

Print Sequential Protection Log

In SDF Format:

/.ADAPLP LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A P L P PRINT SEQUENTIAL PROTECTION LOG
 /REMARK *
 /ASS-SYSLST L.PLP.SPLO
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDPLOG,ADAyyyyy.PLOG
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAPLP,DB=yyyyy,IDTNAME=ADABAS5B
 ADAPLP SPLOGPRI PRINT
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADAPLP LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A P L P PRINT SEQUENTIAL PROTECTION LOG
 /REMARK *
 /SYSFILE SYSLST=L.PLP.SPLO
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.PLOG,LINK=DDPLOG
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAPLP,DB=yyyyy,IDTNAME=ADABAS5B
 ADAPLP SPLOGPRI PRINT
 /LOGOFF NOSPOOL

Print Sequential Intermediate Protection Log

In SDF Format:

/.ADAPLP LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A P L P PRINT SEQUENTIAL PROTECTION LOG
 /REMARK *
 /ASS-SYSLST L.PLP.SPLO
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDPLOG,ADAyyyyy.PLOG
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAPLP,DB=yyyyy,IDTNAME=ADABAS5B
 ADAPLP IPLOGPRI PRINT
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

432

Adabas UtilitiesJCL/JCS Requirements and Examples

/.ADAPLP LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A P L P PRINT SEQUENTIAL PROTECTION LOG
 /REMARK *
 /SYSFILE SYSLST=L.PLP.SPLO
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.PLOG,LINK=DDPLOG
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAPLP,DB=yyyyy,IDTNAME=ADABAS5B
 ADAPLP IPLOGPRI PRINT
 /LOGOFF NOSPOOL

Print One of Multiple Protection Log Datasets

In SDF Format:

/.ADAPLP LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A P L P PRINT MULTIPLE PROTECTION LOG
 /REMARK *
 /ASS-SYSLST L.PLP.PLOG
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDPLOGR1,ADAyyyyy.PLOG
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAPLP,DB=yyyyy,IDTNAME=ADABAS5B
 ADAPLP PLOGPRI PRINT
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADAPLP LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A P L P PRINT MULTIPLE PROTECTION LOG
 /REMARK *
 /SYSFILE SYSLST=L.PLP.PLOG
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.PLOG,LINK=DDPLOGR1
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAPLP,DB=yyyyy,IDTNAME=ADABAS5B
 ADAPLP PLOGPRI PRINT
 /LOGOFF NOSPOOL

Print Work

In SDF Format:

/.ADAPLP LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A P L P PRINT ADABAS WORK
 /REMARK *
 /ASS-SYSLST L.PLP.WORK
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK,SHARE-UPD=YES

433

JCL/JCS Requirements and ExamplesAdabas Utilities

 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAPLP,DB=yyyyy,IDTNAME=ADABAS5B
 ADAPLP WORKPRI PRINT,TYPE=ASSO
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADAPLP LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A P L P PRINT ADABAS WORK
 /REMARK *
 /SYSFILE SYSLST=L.PLP.WORK
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.WORK ,LINK=DDWORKR1,SHARUPD=YES
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAPLP,DB=yyyyy,IDTNAME=ADABAS5B
 ADAPLP WORKPRI PRINT,TYPE=ASSO
 /LOGOFF NOSPOOL

OS/390 or z/OS

Dataset DD Name Storage More Information

Associator DDASSORn disk Required for
WORKPRI.

Work DDWORKR1 disk Required for
WORKPRI.

Sequential protection log DDPLOG tape/ disk Required for
SPLOGPRI or
IPLOGPRI.

Multiple protection log DDPLOGR1 disk Required for
PLOGPRI if
NUMBER=1 (the
default).

Multiple protection log DDPLOGRn disk Required for
PLOGPRI if
NUMBER=n.

ADAPLP messages DDDRUCK printer Messages and Codes

ADARUN messages DDPRINT printer Messages and Codes

ADARUN parameters DDCARD reader Operations

ADAPLP parameters DDKARTE reader

ADAPLP JCL Examples (OS/390 or z/OS)

Refer to the MVSJOBS dataset for the following example jobs:

434

Adabas UtilitiesJCL/JCS Requirements and Examples

Job Member Description

ADAPLP Print protection log (from multiple dataset PLOG)

ADAPLPS Print protection log (from sequential PLOG)

ADAPLPW Print Adabas Work

These jobs are listed in the following sections.

Print One of Multiple Protection Log Datasets

//ADAPLP JOB
//*
//* ADAPLP: PROTECTION LOG PRINT (FROM MULTIPLE PLOG)
//*
//PLP EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDPLOGR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR1 <=== PLOG
DATASET
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAPLP,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAPLP PLOGPRI
/*

Print Sequential Protection Log

//ADAPLPS JOB
//*
//* ADAPLP: PROTECTION LOG PRINT (FROM SEQUENTIAL PLOG)
//*
//PLP EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDPLOG DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOG, <=== PLOG DATASET
// UNIT=TAPE,VOL=SER=PLOG5
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X

//DDCARD DD *
ADARUN PROG=ADAPLP,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAPLP SPLOGPRI
/*

435

JCL/JCS Requirements and ExamplesAdabas Utilities

Print Sequential Intermediate Protection Log

//ADAPLPS JOB
//*
//* ADAPLP: PROTECTION LOG PRINT (FROM SEQUENTIAL PLOG)
//*
//PLP EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDPLOG DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOG, <=== PLOG DATASET
// UNIT=TAPE,VOL=SER=PLOG5
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X

//DDCARD DD *
ADARUN PROG=ADAPLP,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAPLP IPLOGPRI
/*

Print Adabas Work

//ADAPLPW JOB
//*
//* ADAPLP: PRINT ADABAS WORK
//*
//PLP EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAPLP,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAPLP WORKPRI PRINT
/*

VM/ESA or z/VM

436

Adabas UtilitiesJCL/JCS Requirements and Examples

Dataset DD Name Storage More Information

Associator DDASSORn disk Required for
WORKPRI.

Work DDWORKR1 disk Required for
WORKPRI.

Sequential protection log DDPLOG tape/ disk Required for
SPLOGPRI or
IPLOGPRI.

Multiple protection log DDPLOGR1 disk Required for
PLOGPRI if
NUMBER=1
(default).

Multiple protection log DDPLOGRn disk Required for
PLOGPRI if
NUMBER=n.

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADAPLP parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADAPLP messages DDDRUCK disk/ terminal/ printer Messages and Codes

ADAPLP Examples (VM/ESA or z/VM)

Print Sequential Protection Log

DATADEF DDPLOG,DSN=ADABASVv.SIBA,MODE=A
DATADEF DDPRINT,DSN=ADAPLP.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAPLP.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNPLP.CONTROL,MODE=A
DATADEF DDKARTE,DSN=PLPSPLOG.CONTROL,MODE=A
ADARUN

Contents of RUNPLP CONTROL A1:

ADARUN PROG=ADAPLP,DEVICE=dddd,DB=yyyyy

Contents of PLPSPLOG CONTROL A1:

ADAPLP SPLOGPRI PRINT

Print Sequential Intermediate Protection Log

DATADEF DDPLOG,DSN=ADABASVv.SIBA,MODE=A
DATADEF DDPRINT,DSN=ADAPLP.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAPLP.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNPLP.CONTROL,MODE=A
DATADEF DDKARTE,DSN=PLPSPLOG.CONTROL,MODE=A
ADARUN

437

JCL/JCS Requirements and ExamplesAdabas Utilities

Contents of RUNPLP CONTROL A1:

ADARUN PROG=ADAPLP,DEVICE=dddd,DB=yyyyy

Contents of PLPSPLOG CONTROL A1:

ADAPLP IPLOGPRI PRINT

Print One of Multiple Protection Log Datasets

DATADEF DDPLOG,DSN=ADABASVv.PLOG2,VOL=PLOGV2
DATADEF DDPRINT,DSN=ADAPLP.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDPLOGR1,DSN=ADAPLP.DDPLOG,MODE=A
DATADEF DDDRUCK,DSN=ADAPLP.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNPLP.CONTROL,MODE=A
DATADEF DDKARTE,DSN=PLPDPLOG.CONTROL,MODE=A
ADARUN

Contents of RUNPLP CONTROL A1:

ADARUN PROG=ADAPLP,DEVICE=dddd,DB=yyyyy

Contents of PLPDPLOG CONTROL A1:

ADAPLP PLOGPRI PRINT

Print Work

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDWORKR1,DSN=ADABASVv.WORK,VOL=WORKV1
DATADEF DDPRINT,DSN=ADAPLP.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAPLP.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNPLP.CONTROL,MODE=A
DATADEF DDKARTE,DSN=PLPWORK.CONTROL,MODE=A
ADARUN

Contents of RUNPLP CONTROL A1:

ADARUN PROG=ADAPLP,DEVICE=dddd,DB=yyyyy

Contents of PLPWORK CONTROL A1:

ADAPLP WORKPRI PRINT,TYPE=ASSO

VSE/ESA

438

Adabas UtilitiesJCL/JCS Requirements and Examples

File Symbolic Name Storage Logical Unit More
Information

Associator ASSORn disk * Required for
WORKPRI.

Work WORKR1 disk * Required for
WORKPRI.

Sequential
protection log

PLOG tape
disk

SYS014
*

Required for
SPLOGPRI or
IPLOGPRI.

Multiple
protection log

PLOGR1 disk * Required for
PLOGPRI if
NUMBER=1
(default).

Multiple
protection log

PLOGRn disk * Required for
PLOGPRI if
NUMBER=n.

ADAPLP report printer SYS009

ADARUN
messages

 printer SYSLST

ADARUN
parameters

SYSRDR CARD reader/tape/ disk Operations

ADAPLP
parameters

SYSIPT reader

* Any programmer logical unit may be used.

ADAPLP JCS Examples (VSE/ESA)

See Procedures for VSE/ESA Examples for a description of the VSE/ESA procedures (PROCs).

Refer to the following members for these examples:

Example Member

Print sequential protection log ADAPLPS.X

Print multiple protection log ADAPLP.X

Print Adabas Work ADAPLPW.X

Print Sequential Protection Log

* $$ JOB JNM=ADAPLPS,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAPLPS
* PROTECTION LOG PRINT (FROM SEQUENTIAL PLOG)
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS014,cuu

439

JCL/JCS Requirements and ExamplesAdabas Utilities

// PAUSE MOUNT LOAD INPUT FILE ON TAPE cuu
// TLBL PLOG,’EXAMPLE.DByyyyy.PLOG’
// MTC REW,SYS014
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAPLP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAPLP SPLOGPRI
/*
/&
* $$ EOJ

Print Sequential Intermediate Protection Log

* $$ JOB JNM=ADAPLPS,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAPLPS
* PROTECTION LOG PRINT (FROM SEQUENTIAL PLOG)
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS014,cuu
// PAUSE MOUNT LOAD INPUT FILE ON TAPE cuu
// TLBL PLOG,’EXAMPLE.DByyyyy.PLOG’
// MTC REW,SYS014
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAPLP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAPLP IPLOGPRI
/*
/&
* $$ EOJ

Print One of Multiple Protection Log Datasets

* $$ JOB JNM=ADAPLP,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAPLP
* PROTECTION LOG PRINT (FROM MULTIPLE PLOG)
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAPLP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAPLP PLOGPRI
/*
/&
* $$ EOJ

Print Adabas Work

* $$ JOB JNM=ADAPLPW,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAPLPW
* PRINT ADABAS WORK
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAPLP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAPLP WORKPRI PRINT
/*
/&
* $$ EOJ

440

Adabas UtilitiesJCL/JCS Requirements and Examples

ADAPRI: Print Selected Adabas Blocks
This chapter covers the following topics:

Functional Overview

Print Blocks

JCL/JCS Requirements and Examples

441

ADAPRI: Print Selected Adabas BlocksAdabas Utilities

Functional Overview
The ADAPRI utility prints the contents of a block (or range of blocks) contained in the Associator
(ASSO..), Data Storage (DATA..), Work (WORK..), temp (TEMP..), sort (SORT..), multiple dataset
command log (CLOG), multiple dataset protection log (PLOG), or the recovery log (RLOG)) dataset.
More than one dataset may be printed during a single ADAPRI execution.

442

Adabas UtilitiesFunctional Overview

Print Blocks

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Examples

Essential Parameters
FROMRABN/ TORABN: Range of Blocks to Be Printed

The beginning and ending numbers of the RABNs to be printed. Both values must be specified;
there are no defaults.

Printing begins with the block number specified with the FROMRABN parameter and ends with
the block number specified with the TORABN parameter. Each block in the range is printed in
hexadecimal format.

Optional Parameters
BATCH: Output Format

Controls the line length of the printed output. If BATCH is not specified, the default line size is
80 characters. If BATCH is specified, the output line size is 120 characters.

DEVICE: Device Type

The device type that contains the dataset to be printed. This parameter is required if the device
type is different from the standard device type assigned by the ADARUN DEVICE parameter.

443

Print BlocksAdabas Utilities

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

NUMBER: Command/ Protection Log Dataset Number

The number of the multiple (two through eight) command log (CLOG) or protection log
(PLOG) dataset from which the blocks are to be printed. NUMBER can only be specified when
CLOGPRI or PLOGPRI is specified. When NUMBER=2 is specified, DD/CLOGR2 blocks are
printed; if the CLOGPRI or PLOGPRI function is specified without NUMBER, the blocks are
taken from DD/CLOGR1 (the default).

Examples
Example 1:

ADAPRI ASSOPRI FROMRABN=1,TORABN=1

Block 1 of the Associator (which contains the general control block) is printed.

Example 2:

ADAPRI DATAPRI FROMRABN=8000,TORABN=8120

Blocks 8000 to 8120, inclusively, of Data Storage are printed.

Example 3:

ADAPRI WORKPRI FROMRABN=1,TORABN=100,BATCH

Blocks 1 to 100 of the Adabas Work are to be printed. The output line size to be used is 120.

Example 4:

ADAPRI CLOGPRI FROMRABN=1,TORABN=80,BATCH,NUMBER=2

Blocks 1 to 100 of the command log dataset DD/CLOGR2 are printed in 120-character-wide format.

Example 5:

ADAPRI DSIMPRI FROMRABN=1,TORABN=1

Block 1 only of the DSIM dataset is printed. The DSIM dataset is only used if Adabas Delta Save Facility
is installed.

444

Adabas UtilitiesPrint Blocks

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADAPRI with BS2000, OS/390 or z/OS,
VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Dataset containing
blocks to print

DDASSORn
DDDATARn
DDWORKR1
DDTEMPR1
DDSORTRn
DDCLOGRn
DDPLOGRn
DDDSIMR1

disk
disk
disk
disk
disk
disk
disk
disk

Associator Data
Storage* Work*
Temp Sort Multiple
command log
Multiple protection
log DSIM dataset

Recovery log (RLOG) DDRLOGR1 disk Required when using
ADARAI.

ADARUN parameters SYSDTA/ DDCARD reader Operations

ADAPRI parameters SYSIPT/ DDKARTE reader

ADARUN messages SYSOUT printer Messages and Codes

ADAPRI messages SYSLST printer Messages and Codes

* When printing blocks from Data Storage or Work, the link name for the Associator must also be present.

ADAPRI JCL Example (BS2000)

In SDF Format:

/.ADAPRI LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A P R I ALL FUNCTIONS
 /REMARK *
 /ASS-SYSLST L.PRI
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES

445

JCL/JCS Requirements and ExamplesAdabas Utilities

 /SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAPRI,DB=yyyyy,IDTNAME=ADABAS5B
 ADAPRI DATAPRI FROMRABN=27,TORABN=34
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADAPRI LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A P R I ALL FUNCTIONS
 /REMARK *
 /SYSFILE SYSLST=L.PRI
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAPRI,DB=yyyyy,IDTNAME=ADABAS5B
 ADAPRI DATAPRI FROMRABN=27,TORABN=34
 /LOGOFF NOSPOOL

OS/390 or z/OS

Dataset DD Name Storage More Information

Dataset containing the
blocks print

DDASSORn
DDDATARn
DDWORKR1
DDTEMPR1
DDSORTR1
DDCLOGRn
DDPLOGRn
DDDSIMR1

disk
disk
disk
disk
disk
disk
disk
disk

Associator Data
Storage* Work*
Temp Sort Multiple
command log
Multiple protection
log DSIM dataset

Recovery log (RLOG) DDRLOGR1 disk Required when using
ADARAI.

ADARUN parameters DDCARD reader Operations

ADAPRI parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADAPRI messages DDDRUCK printer Messages and Codes

* When printing blocks from Data Storage or Work, the DD statement for the Associator must also be
present.

ADAPRI JCL Example (OS/390 or z/OS)
//ADAPRI JOB
//*
//* ADAPRI:
//* MAINTENANCE PRINT
//*
//PRI EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD

446

Adabas UtilitiesJCL/JCS Requirements and Examples

//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDTEMPR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.TEMPR1 <=== TEMP
//DDSORTR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.SORTR1 <=== SORT
//DDPLOGR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR1 <=== PLOG 1
//DDPLOGR2 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR2 <=== PLOG 2
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAPRI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAPRI ASSOPRI DEVICE=eeee,FROMRABN=1,TORABN=1
/*

Refer to ADAPRI in the MVSJOBS dataset for this example.

VM/ESA or z/VM

Dataset DD Name Storage More Information

Dataset containing the
blocks to print

DDASSORn
DDDATARn
DDWORKR1
DDTEMPR1
DDSORTR1
DDCLOGRn
DDPLOGRn
DDDSIMR1

disk
disk
disk
disk
disk
disk
disk
disk

Associator Data
Storage* Work*
Temp Sort Multiple
command log
Multiple protection
log DSIM dataset

Recovery log (RLOG) DDRLOGR1 disk Required when using
ADARAI.

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADAPRI parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADAPRI messages DDDRUCK disk/ terminal/ printer Messages and Codes

* When printing blocks from Data Storage or Work, the DD statement for the Associator must also be
present.

ADAPRI Example (VM/ESA or z/VM)
DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDPRINT,DSN=ADAPRI.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAPRI.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNPRI.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADAPRI.CONTROL,MODE=A
ADARUN

447

JCL/JCS Requirements and ExamplesAdabas Utilities

Contents of RUNPRI CONTROL A1:

ADARUN PROG=ADAPRI,DEVICE=dddd,DB=yyyyy

Contents of ADAPRI CONTROL A1:

ADAPRI DATAPRI FROMRABN=27,TORABN=34

VSE/ESA

File Symbolic Name Storage More Information

Files containing the
blocks to be printed

ASSORn
DATARn
WORKR1
TEMPR1
SORTR1
CLOGRn
PLOGRn
SIMR1

disk
disk
disk
disk
disk
disk
disk
disk

Associator Data Storage*
Work* Temp Sort Multiple
command log Multiple
protection log DSIM dataset

Recovery log (RLOG) RLOGR1 disk Required when using ADARAI

ADARUN messages SYSLST printer Messages and Codes

ADAPRI messages SYS009 printer Messages and Codes

ADARUN parameters SYSRDR CARD reader tape/ disk Operations

ADAPRI parameters SYSIPT reader

* When printing blocks from Data Storage or Work, the JCS statement for the Associator must also be
present.

ADAPRI JCS Example (VSE/ESA)

See Procedures for VSE/ESA Examples for descriptions of the VSE/ESA procedures (PROCs).

* $$ JOB JNM=ADAPRI,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAPRI
* MAINTENANCE PRINT
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAPRI,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAPRI ASSOPRI DEVICE=eeee,FROMRABN=1,TORABN=1
/*
/&
* $$ EOJ

Refer to member ADAPRI.X for this example.

448

Adabas UtilitiesJCL/JCS Requirements and Examples

ADARAI: Adabas Recovery Aid
The following functions are available for use with ADARAI:

Functional Overview

CHKDB: Check the Database Status

DISABLE: Deactivate Recovery Logging

LIST: Display Current RLOG Generations

PREPARE: Initialize and Start the RLOG

RECOVER: Build a Recovery Job Stream

REMOVE: Remove the Recovery Aid

JCL/JCS Requirements and Examples

449

ADARAI: Adabas Recovery AidAdabas Utilities

Function Overview
The ADARAI utility prepares the recovery log (RLOG), lists the information contained in the RLOG,
creates the job control statements to recover the database, and disables ADARAI logging.

"Transaction" recovery is provided whenever an Adabas session is abnormally terminated. The Adabas
autobackout routine, which is automatically invoked at the beginning of every Adabas session, removes
the effects of all interrupted transactions from the database. See the restart/recovery information in the
Adabas Operations documentation.

However, when a database dataset (ASSO, DATA, or WORK) is destroyed, it is necessary to restore and
regenerate the database to recover the lost data.

The Adabas Recovery Aid utility ADARAI can be used to automate and optimize "database" recovery. It
records and reports all information needed to recover the database and builds the recovery job stream
(JCL/JCS), which is the basis for reexecuting the jobs performed from the time of the last SAVE to the
point of failure and error.

Note:
The job stream generation function is not yet available under VSE/ESA or VM/ESA.

Concepts and Components
The Adabas Recovery Aid comprises two components:

an interface (ADARAC) to collect information as relevant events occur against the database; and

a utility (ADARAI) to list the information collected, generate jobs to recover the database or files on
the database, or deactivate recovery logging.

The Collection Interface

The collection interface is called by the nucleus and by all utilities to record information about each event
that occurs; for example, a nucleus stop/start, a utility execution, or an event generated by the Adabas
Online System.

Recovery Log (RLOG)

The interface records all event information into a recovery log file (RLOG) for use by the utility
component. The RLOG stores the information about datasets, utility parameters, and protection logs
needed to build the recovery job control. The RLOG dataset is DD/RLOGR1.

In a nucleus cluster environment, all nuclei use the same RLOG. Concurrent updates to the RLOG are
controlled by a lock.

Notes:

1. Sequential datasets used by the utilities whose runs are logged on the RLOG must be kept and
available for any recovery operation; for example, the DD/EBAND input to an ADALOD LOAD
operation.

450

Adabas UtilitiesFunction Overview

2. ADADBS file changes are now recorded on the RLOG dataset.
3. Information recorded in the RLOG generally exceeds that required for recovery; it can also be used

as a record of events that have occurred on a database over a period of time.

Generation: The Unit of Recovery

Information is stored on the RLOG by generation, the logical unit used for recovery.

A "generation" includes all activity between consecutive operations of

ADASAV SAVE/RESTORE (database),

RESTORE GCB, and/or

SAVE DELTA/RESTORE DELTA (database).

The first generation includes the first operation and extends to (but excludes) the second. A new
generation is started when a database can be recovered in full after the previous operation.

Generations may be normal, restricted, or erroneous:

A generation is labelled "normal" if a full save was available when it started and no unusual events
occurred while activities were being logged in it.

A generation is labelled "restricted" when certain events occur during the logging cycle that make it
impossible for ADARAI to rebuild the database without user intervention. ADARAI generates a job,
but the job will not run without help from the user. For example, if the Work dataset is decreased in
size, the user must create a Work dataset with the original size so that the recovery job can run
correctly up to the point where the Work dataset size was decreased.

A generation is labelled "erroneous" when errors occur during the logging cycle, for whatever reason.
ADARAI generates a job, but the job will not run without changes.

Note:
When a generation becomes restricted or erroneous, Software AG recommends that you start a new
generation as soon as possible by performing an on- or off-line save of the database. If the Delta Save
Facility is installed, a SAVE DELTA will start a new generation.

Retaining Noncurrent Generations

Noncurrent generations provide a history of operations that have affected the database for use in problem
resolution or for audit purposes.

Access to noncurrent generations is essential if an attempt to recover a database fails after the RESTORE
step in the recovery job is executed. At this point, the generation being recovered becomes the current
generation. If it then becomes necessary to rebuild the recovery job, the generation being recovered will
be an older generation.

The RLOG retains the number of generations specified by the MINGENS parameter during the ADARAI
PREPARE step. ADARAI recycles generations when the number stored on the RLOG reaches the number
specified by the MINGENS parameter.

451

Function OverviewAdabas Utilities

When a new generation plus those already stored exceed the available RLOG space, one of two events
will occur:

if the minimum number of generations as specified by MINGENS can be maintained, the oldest
generation is overwritten; otherwise

the RLOG is placed "out of service" by setting a flag in the RLOG control block. In this case, data is
no longer logged.

452

Adabas UtilitiesFunction Overview

CHKDB: Check the Database Status

The ADARAI CHKDB function checks for the specified recovery nucleus status (active-the default, or
inactive) by issuing a command to the nucleus and testing the nucleus response code.

If the command does not provide the expected response code, CHKDB reissues another command after
ten seconds. Up to ten commands are issued. If the desired nucleus status (active/inactive) does not occur
after ten tries, ADARAI terminates with error 158.

Example:

ADARAI CHKDB

Tests the recovery nucleus for active status.

453

CHKDB: Check the Database StatusAdabas Utilities

DISABLE: Deactivate Recovery Logging

The ADARAI DISABLE function disables recovery logging by setting the RLOG table (control block) to
inactive status.

Note:
ADARAI DISABLE must be executed with the database inactive.

Following DISABLE, information is no longer recorded in the RLOG and the current generation is ended.
The content of the RLOG before DISABLE is maintained and can still be listed or otherwise used for
recovery purposes.

Recovery logging can be started again by starting a new generation. See Generation: The Unit of
Recovery .

Example:

ADARAI DISABLE

Deactivates all Recovery Aid logging.

454

Adabas UtilitiesDISABLE: Deactivate Recovery Logging

LIST: Display Current RLOG Generations
Note:
Adabas version 6 RLOGs cannot be listed; only version 7 and above RLOGs are supported.

The ADARAI LIST function is used to view the RLOG contents in table form:

generations are listed in numerical order;

RLOG block ranges are listed for each generation; and

the stop/start dates and times covered by each generation are listed.

The following information is provided for each entry on the RLOG including utility executions and
nucleus session start and session stop entries:

name of the event for which the RLOG entry was written;

date and time the information was written to the RLOG;

PLOG number associated with the event (if any);

PLOG block containing an associated checkpoint (if any);

parameters specified for the logged event to the DD/CARD and DD/KARTE statements; and

details of any files written or read during the logged event.

In a nucleus cluster environment, the PLOG datasets are also listed on nucleus session start entries. The
cluster nucleus ID (NUCID) is also listed.

Example:

*** 2001-08-21 11:37:08 NUCLEUS PLOG NUMBER=4
*** START NUCLEUS SESSION NUCID 40002

SYNC PLOG BLOCK NUMBER = 1
ACTIVE PLOG DATA SET NAMES: EXAMPLE.DBddddd.PLOGR21
 EXAMPLE.DBddddd.PLOGR22

This chapter covers the following topics:

Additional LIST Information on BS2000

Syntax

Optional Parameters

Examples

455

LIST: Display Current RLOG GenerationsAdabas Utilities

Additional LIST Information on BS2000
On BS2000 systems, LIST also provides the following information:

file or file generation group (FGG) characteristics and physical location (tape, disk, etc.);

existence and condition of each dataset (written and erased; overwritten; written as a temporary file)
needed by the ADARAI RECOVER function; and

error or warning message for incompatible coded file ID (CFID) comparison.

Since nonmatching coded file IDs (CFIDs) are a reliable indication of overwritten datasets in BS2000,
LIST compares CFIDs to determine whether any datasets have been overwritten. For lost or overwritten
datasets, LIST provides an error or warning indication for the following conditions:

An "ERROR" is indicated when the dataset was written to

disk, and was then erased;

disk, and then was overwritten (CFIDs do not match). Both the original and the catalog entry are
reported;

a temporary disk dataset.

A "WARNING" is indicated when the dataset was written to

tape, and the catalog entry has been erased;

tape, and then was overwritten (CFIDs do not match). Both the original and the catalog entry are
reported;

a temporary tape dataset.

The section Output Examples provides examples of the operating-system-dependent results provided by
the LIST function.

Syntax

456

Adabas UtilitiesLIST: Display Current RLOG Generations

Optional Parameters
GENS: Generation Print Control

GENS determines whether generation information is listed. GENS=NO lists only the RLOG
control information. GENS=YES (the default) lists generation information also.

RELGEN: Relative Recovery Generation Number

RELGEN specifies the relative generation number (or range of generation numbers) to be listed.
The current generation is always coupled with relative generation "0" (zero). The last completed
generation is coupled with relative generation 1; "two generations ago", the generation before
the last completed generation, is specified as relative generation "2".

Example:

To list the generations ranging from three generations ago to the last complete generation
(inclusive), specify RELGEN=3-1.

If the first generation number specified is lower than the second generation number, ADRAI
reduces the second generation number to match the first.

Example:

If you specify RELGEN=2-3, ADARAI changes it to RELGEN=2-2.

If RELGEN is not specified, all generations are printed.

The specified generation must currently be in the RLOG. Note, however, that instead of a
relative number, each listed generation has an ascending order number, beginning with 1 (the
first generation following the start of RLOG operation).

Example:

RELGEN=0 is equivalent to generation number 690; RELGEN=3-2 is equivalent to the
generation numbers 687 and 688.

I GEN- I BLOCK I DATE /TIME I
I NUMBER I FROM TO I FROM TO I
I--------I-----------------I--I
I 690 I 715 715 I 2001-08-20 02:07:13 2001-08-20 08:51:19 I
I 689 I 714 714 I 2001-08-17 18:24:49 2001-08-20 02:03:21 I
I 688 I 713 713 I 2001-08-16 18:24:26 2001-08-17 16:48:16 I
I 687 I 712 712 I 2001-08-15 18:29:09 2001-08-16 12:54:28 I
I 686 I 711 711 I 2001-08-14 18:24:30 2001-08-15 17:45:44 I
I 685 I 710 710 I 2001-08-13 18:32:07 2001-08-14 15:46:25 I
I 684 I 709 709 I 2001-08-13 02:07:15 2001-08-13 18:00:18 I
I 683 I 708 708 I 2001-08-10 18:25:59 2001-08-13 02:03:23 I
I 682 I 707 707 I 2001-08-09 18:36:39 2001-08-10 10:24:14 I

RLOGDEV: RLOG Alternate Device

RLOGDEV specifies the device type containing the RLOG file. If the RLOG file is located on
the device type specified by the ADARUN DEVICE parameter (the default device type), you do
not need to specify RLOGDEV.

457

LIST: Display Current RLOG GenerationsAdabas Utilities

Examples

Input Examples
ADARAI LIST

This example lists all generations in the RLOG.

ADARAI LIST RELGEN=15-1

LIST displays the last 15 generations (if they are available in the RLOG), not including the current
generation (0).

Output Examples

BS2000

The following example shows LIST output for a single BS2000 disk dataset:

LINK=DDSAVE1 PATHNAME=:A:$GEB.RAI.vv.SAVE.012
SIZE=6387 SEC-ALLO=96 LPP=6336
FCBTYPE=SAM RECFORM=V BLKSIZE=(STD,16) RECSIZE=32748 BLKCNTRL=PAMKEY
VSN/DEV PUBA00/D3480 /AC PUBA01/D3480 /AC
VSN/DEV PUBA02/D3480 /AC

The following example shows LIST output for a BS2000 file-generation group (FGG):

FGG INDEX BASE=10 CURRENT=10 FIRST=1 MAX=255 DISP=DEL
LINK=DDSAVE1 PATHNAME=:A:$GEB.RAI.vv.SAVE.TAPE.01(*0010)
TAPE DEVICE=TAPE=C1 (B5) FSEQ=1 BLKCOUNT=4000
FCBTYPE=SAM RECFORM=V BLKSIZE=32760 RECSIZE=32756 BLKCNTRL=NO
VOLUMES GEBR11 GEBR12 GEBR13 GEBR17 GEBR19

The following examples are of ADARAI LIST error/warning output. The first is for a lost disk dataset,
and the second for an overwritten tape dataset:

LINK=DDSAVE1 DISC DATASET NOT PRESENT - E R R O R
ORIGINAL CATALOG ENTRY:
LINK=DDSAVE1 PATHNAME=:A:$GEB.RAI.vv.SAVE.012
SIZE=6387 SEC-ALLO=96 LPP=6336
FCBTYPE=SAM RECFORM=V BLKSIZE=(STD,16) RECSIZE=32748 BLKCNTRL=PAMKEY
VSN/DEV PUBA00/D3480 /AC PUBA01/D3480 /AC
VSN/DEV PUBA02/D3480 /AC

LINK=DDSAVE1 CFID MISMATCH - W A R N I N G
ORIGINAL 379949EE NOW: 379972F0
ORIGINAL CATALOG ENTRY:
LINK=DDSAVE1 PATHNAME=:A:$GEB.RAI.vv.SAVE.012
TAPE DEVICE=TAPE=C1 (B5) FSEQ=1 BLKCOUNT=4000
FCBTYPE=SAM RECFORM=V BLKSIZE=32760 RECSIZE=32756 BLKCNTRL=NO
CREATION DATE yyyy-mm-dd 11:44:35
VOLUMES GEBR11 GEBR12 GEBR13 GEBR17 GEBR19
ACTUAL CATALOG ENTRY:
LINK=DDSAVE1 PATHNAME=:A:$GEB.RAI.vv.SAVE.012
TAPE DEVICE=TAPE=C1 (B5) FSEQ=1 BLKCOUNT=3900
FCBTYPE=SAM RECFORM=V BLKSIZE=32760 RECSIZE=32756 BLKCNTRL=NO
CREATION DATE yyyy-mm-dd 12:34:56
VOLUMES GEBR23 GEBR65 GEBR66 GEBR67 GEBR68

458

Adabas UtilitiesLIST: Display Current RLOG Generations

OS/390 or z/OS

A D A R A I Vv.v SMv DBID = 00203 STARTED yyyy-mm-dd hh:mm:ss

PARAMETERS:

 ADARAI LIST RELGEN=0
 RECOVERY LOG FILE FOR DATABASE 203

 START RABN FOR LOG DATA AREA IS 21
 HIGHEST LOG AREA RABN IS 633
 CURRENT VALUE FOR ROTATING RABN IS 23

I GEN- I I BLOCK I DATE /TIME I
I NUMBER I S I FROM TO I FROM TO I
I--------I---I-----------------I--I
I 3 I N I 23 23 I yyyy-01-13 16:06:28 yyyy-01-13 16:11:35 I
I 2 I N I 22 22 I yyyy-01-09 16:07:10 yyyy-01-13 16:04:13 I
I 1 I N I 21 21 I yyyy-01-09 16:04:41 yyyy-01-09 16:06:16 I
I 0 I R I 20 20 I yyyy-01-09 16:04:07 yyyy-01-09 16:04:30 I
I--------I---I-----------------I--I

*** yyyy-01-13 16:06:28
*** SAVE DATABASE OFFLINE

 DELTA SAVE ID IS AS FOLLOWS:
 FULL SAVE...............2
 LOW DELTA SAVE NUMBER...0
 HIGH DELTA SAVE NUMBER..0
 DATE WRITTEN............yyyy-01-13
 TIME WRITTEN............16:12:03

 FILES = 1,2,3,19

 ADARUN DBID=203,SVC=249,DEVICE=3390,PLOGRQ=YES
 ADARUN NCLOG=2,CLOGDEV=3390,CLOGSIZE=150
 ADARUN NPLOG=2,PLOGSIZE=1350
 ADARUN PLOGDEV=3390
 ADARUN DSF=YES
 ADARUN UEX2=USEREX2M
 ADARUN PROG=ADASAV

 ADASAV SAVE

 //DDSAVE1 DD DSN=EXAMPLE.ADASAV.FULL.G0058V00,
 // UNIT=3390,SPACE=(TRK,(5,5)),DISP=NEW,
 // DCB=(RECFM=VB,BLKSIZE=27998,LRECL=27994),
 // VOL=SER=(SMS018)

DDSAVE1 VOLSER=SMS018 FROM BLOCK=1 (ASSO) TO BLOCK =1598 VOLUME IS
ASSOCIATED WITH PLOG NO. 6

 DDSAVE1 VOLSER=SMS018 FROM BLOCK=1 (DATA)
 TO BLOCK =750
 VOLUME IS ASSOCIATED WITH PLOG NO. 6

*** yyyy-01-13 16:07:09 NUCLEUS PLOG NUMBER=7
*** START NUCLEUS SESSION [NUCID=nnnnn]

 SYNC PLOG BLOCK NUMBER = 5
 [ACTIVE PLOG DATASET NAMES: EXAMPLE.DBddddd.PLOGR21

459

LIST: Display Current RLOG GenerationsAdabas Utilities

 EXAMPLE.DBddddd.PLOGR22]

 ADARUN DBID=203,SVC=249,DEVICE=3390,PLOGRQ=YES
 ADARUN NCLOG=2,CLOGSIZE=150,CLOGDEV=3390
 ADARUN NPLOG=2,PLOGSIZE=1350
 ADARUN PLOGDEV=3390
 ADARUN DSF=YES
 ADARUN UEX2=USEREX2M
 ADARUN PROG=ADANUC
 ADARUN MODE=MULTI
 ADARUN LOCAL=YES
 ADARUN SPT=NO
 ADARUN LWP=480000
 ADARUN LP=200
 ADARUN TT=1800
 ADARUN TNAE=1800
 ADARUN LBP=80000
 ADARUN NH=500
 ADARUN LFP=60000
 ADARUN LU=65525
 ADARUN NAB=45
 ADARUN LQ=12000
 ADARUN LI=20000
 ADARUN NT=10
 ADARUN NC=300
 ADARUN NU=300
 ADARUN LS=20000
 ADARUN TNAX=1800
 ADARUN CT=300
 ADARUN OPENRQ=NO
 ADARUN LOGGING=NO
 ADARUN LOGCB=NO
 ADARUN LOGSB=NO
 ADARUN LOGFB=NO

 ADARUN IGNDIB=NO
 ADARUN FORCE=NO

*** yyyy-01-13 16:07:18 NUCLEUS PLOG NUMBER=7
*** END NUCLEUS SESSION

 HIGHEST PLOG BLOCK WRITTEN = 7

*** yyyy-01-13 16:07:22
*** COPY MULTIPLE PROTECTION LOG DATASET FOR PLOG 7

 ADARUN DBID=203,SVC=249,DEVICE=3390,PLOGRQ=YES
 ADARUN NCLOG=2,CLOGSIZE=150,CLOGDEV=3390
 ADARUN NPLOG=2,PLOGSIZE=1350
 ADARUN PLOGDEV=3390
 ADARUN DSF=YES
 ADARUN UEX2=USEREX2M
 ADARUN PROG=ADARES,MODE=MULTI

 ADARES PLCOPY OPENOUT
 ADARES DSIMSIZE=5

 //DDSIAUS1 DD DSN=EXAMPLE.PLOG.G0243V00,UNIT=3390,
 // SPACE=(TRK,(10,1)),DISP=NEW,DCB=(RECFM=VB,
 // BLKSIZE=27998,LRECL=27994),
 // VOL=SER=(SMS018)

460

Adabas UtilitiesLIST: Display Current RLOG Generations

 DDSIAUS1 VOLSER=SMS018 FROM BLOCK=1
 TO BLOCK =7
 FROM DATE =yyyy-01-13 17:07:09
 TO DATE =yyyy-01-13 17:07:18
 VOLUME IS ASSOCIATED WITH PLOG NO. 7

*** yyyy-01-13 16:07:39 NUCLEUS PLOG NUMBER=8
*** START NUCLEUS SESSION [NUCID=nnnnn]

 SYNC PLOG BLOCK NUMBER = 3
 [ACTIVE PLOG DATASET NAMES: EXAMPLE.DBddddd.PLOGR21
 EXAMPLE.DBddddd.PLOGR22]

 ADARUN DBID=203,SVC=249,DEVICE=3390,PLOGRQ=YES
 ADARUN NCLOG=2,CLOGSIZE=150,CLOGDEV=3390
 ADARUN NPLOG=2,PLOGSIZE=1350
 ADARUN PLOGDEV=3390
 ADARUN DSF=YES

 ADARUN UEX2=USEREX2M
 ADARUN PROG=ADANUC
 ADARUN MODE=MULTI
 ADARUN LOCAL=YES
 ADARUN SPT=NO
 ADARUN LWP=480000
 ADARUN LP=200
 ADARUN TT=1800
 ADARUN TNAE=1800
 ADARUN LBP=80000
 ADARUN NH=500
 ADARUN LFP=60000
 ADARUN LU=65525
 ADARUN NAB=45
 ADARUN LQ=12000
 ADARUN LI=20000
 ADARUN NT=10
 ADARUN NC=300
 ADARUN NU=300
 ADARUN LS=20000
 ADARUN TNAX=1800
 ADARUN CT=300
 ADARUN OPENRQ=NO
 ADARUN LOGGING=NO
 ADARUN LOGCB=NO
 ADARUN LOGSB=NO
 ADARUN LOGFB=NO
 ADARUN IGNDIB=NO
 ADARUN FORCE=NO

*** yyyy-01-13 16:09:16 NUCLEUS CHECKPOINT
ENCOUNTERED

 CHECKPOINT IS ON PLOG NUMBER 8 BLOCK NUMBER 4
 SYNS-CHECKPOINT IS ’DELETE FILE’
 FILES = 1

*** yyyy-01-13 16:09:16 NUCLEUS CHECKPOINT ENCOUNTERED

 CHECKPOINT IS ON PLOG NUMBER 8 BLOCK NUMBER 5
 SYNS-CHECKPOINT IS ’DELETE FILE’

461

LIST: Display Current RLOG GenerationsAdabas Utilities

 FILES = 2

*** yyyy-01-13 16:10:27 NUCLEUS PLOG NUMBER=8
*** ADABAS UTILITY RUN

 SYNP-CHECKPOINT ID IS ’ADALOD - LOAD’
 SYNP-CHECKPOINT IS FOUND ON PLOG 8 IN BLOCK NO. 6
 FILES = 1

 ADARUN DBID=203,SVC=249,DEVICE=3390,PLOGRQ=YES
 ADARUN NCLOG=2,CLOGSIZE=150,CLOGDEV=3390
 ADARUN NPLOG=2,PLOGSIZE=1350
 ADARUN PLOGDEV=3390
 ADARUN DSF=YES
 ADARUN UEX2=USEREX2M
 ADARUN PROG=ADALOD,MODE=MULTI

 ADALOD LOAD FILE=1
 ADALOD NAME=’EMPLOYEES’
 ADALOD MAXISN=1500,DSSIZE=1
 ADALOD TEMPSIZE=15,SORTSIZE=15

 //DDEBAND DD
DSN=ADABAS.Vvrs.EMPL,UNIT=3390,DISP=OLD,
 // VOL=SER=(ADA001)

*** yyyy-01-13 16:11:21 NUCLEUS PLOG NUMBER=8
*** ADABAS UTILITY RUN

 SYNP-CHECKPOINT ID IS ’ADALOD - LOAD’
 SYNP-CHECKPOINT IS FOUND ON PLOG 8 IN BLOCK NO. 7
 FILES = 2

 ADARUN
PROG=ADALOD,MODE=SINGLE,SVC=249,DEVICE=3390,DBID=203

 ADALOD LOAD FILE=2
 ADALOD NAME=’VEHICLES’
 ADALOD MAXISN=1000,DSSIZE=1
 ADALOD TEMPSIZE=15,SORTSIZE=15

 //DDEBAND DD
DSN=ADABAS.Vvrs.VEHI,UNIT=3390,DISP=OLD,
 // VOL=SER=(ADA001)

*** yyyy-01-13 16:11:31 NUCLEUS PLOG NUMBER=8
*** END NUCLEUS SESSION

 HIGHEST PLOG BLOCK WRITTEN = 9

*** yyyy-01-13 16:11:35
*** COPY MULTIPLE PROTECTION LOG DATASET FOR PLOG 8

 ADARUN DBID=203,SVC=249,DEVICE=3390,PLOGRQ=YES
 ADARUN NCLOG=2,CLOGSIZE=150,CLOGDEV=3390
 ADARUN NPLOG=2,PLOGSIZE=1350
 ADARUN PLOGDEV=3390
 ADARUN DSF=YES
 ADARUN UEX2=USEREX2M
 ADARUN PROG=ADARES,MODE=MULTI

462

Adabas UtilitiesLIST: Display Current RLOG Generations

 ADARES PLCOPY OPENOUT
 ADARES DSIMSIZE=5

 //DDSIAUS1 DD DSN=EXAMPLE.PLOG.G0244V00,UNIT=3390,
 // SPACE=(TRK,(10,1)),DISP=NEW,DCB=(RECFM=VB,
 // BLKSIZE=27998,LRECL=27994),
 // VOL=SER=(SMS018)

 DDSIAUS1 VOLSER=SMS018 FROM BLOCK=1
 TO BLOCK =9
 FROM DATE =yyyy-01-13 17:07:39
 TO DATE =yyyy-01-13 17:11:30
 VOLUME IS ASSOCIATED WITH PLOG NO. 8

A D A R A I TERMINATED NORMALLY yyyy-01-13 16:12:03

VSE/ESA
A D A R A I Vv.v SMv DBID = 00059 STARTED yyyy-mm-dd hh:mm:ss

PARAMETERS:

ADARAI LIST

18:45:04 ADAI64 FILE RLOGR1 HAS BEEN OPENED IN ECKD MODE
18:45:04 ADAI64 FILE RLOGM1 HAS BEEN OPENED IN ECKD MODE

RECOVERY LOG FILE FOR DATABASE 59

START RABN FOR LOG DATA AREA IS 26
HIGHEST LOG AREA RABN IS 633
CURRENT VALUE FOR ROTATING RABN IS 26

I GEN- I I BLOCK I DATE /TIME I
I NUMBER I S I FROM TO I FROM TO I
I--------I---I-----------------I--I
I 1 I N I 26 26 I yyyy-08-30 17:06:51 yyyy-08-30 18:44:35 I
I 0 I R I 25 25 I yyyy-08-30 17:01:02 yyyy-08-30 17:05:05 I
I--------I---I-----------------I--I

*** yyyy-08-30 17:06:51
*** SAVE DATABASE OFFLINE NON INCREMENTAL

SAVE DATASET PLOG NUMBER = 1966
ADASAV SAVE
// TLBL SAVE1,’PMIG.ADAvrs.SAVE1’,0,ADES01

DDSAVE1 VOLSER=XXXXXX FROM BLOCK=1
 TO BLOCK =6192
 VOLUME IS ASSOCIATED TO PLOG NO. 1966
FILE=001,002,003,004,005,006,008,009,010,011,012,013,014,015
FILE=016,017,019,021,022,023,025,027

DDSAVE1 VOLSER=XXXXXX FROM BLOCK=1
 TO BLOCK =31961
 VOLUME IS ASSOCIATED TO PLOG NO. 1966
FILE=001,002,003,004,005,006,008,009,010,011,012,013,014,015
FILE=016,017,019,021,022,023,025,027

463

LIST: Display Current RLOG GenerationsAdabas Utilities

*** yyyy-08-30 17:08:12 NUCLEUS PLOG NUMBER=1967
*** START NUCLEUS SESSION

*** yyyy-08-30 17:10:15 NUCLEUS PLOG NUMBER=1967
*** ADABAS UTILITY RUNSYNP-CHECKPOINT ID IS 35 (UNLOAD FILE)
SYNP-CHECKPOINT IS FOUND ON PLOG 1967 IN BLOCK NO. 5
FILE=001
ADAULD FILE=1 NUMRECS=100
// DLBL OUT1,’VSESP.SAPLB.ULD2’,7,SD
// EXTENT SYS034,SYSWK1,1,0,16365,30

*** yyyy-08-30 17:14:28 NUCLEUS PLOG NUMBER=1967
*** ADABAS UTILITY RUN

SYNP-CHECKPOINT ID IS 35 (UNLOAD FILE)
SYNP-CHECKPOINT IS FOUND ON PLOG 1967 IN BLOCK NO. 8
FILE=001
ADAULD FILE=1 NUMRECS=100
// DLBL OUT1,’VSESP.SAPLB.ULD2’,7,SD
// EXTENT SYS034,SYSWK1,1,0,16365,30

*** yyyy-08-30 18:44:35 NUCLEUS PLOG NUMBER=1967
*** ADABAS UTILITY RUN

SYNP-CHECKPOINT ID IS 30 (LOAD FILE)
SYNP-CHECKPOINT IS FOUND ON PLOG 1967 IN BLOCK NO. 12
FILE=004
ADALOD LOAD FILE=4,ISNREUSE=YES,SORTSIZE=5,TEMPSIZE=5,DSSIZE=50B
ADALOD
MAXISN=10,NAME=’TESTFILE’,DSREUSE=YES,LWP=1000000,LIP=500
ADALOD NUMREC=5,NISIZE=5B,UISIZE=5B
// DLBL EBAND,’VSESP.SAPLB.ULD2’,7,SD
// EXTENT SYS011,SYSWK1,1,0,16365,30

ADAI03 RLOGR1 3 READS 0 WRITES
ADAI03 RLOGM1 1 READS 0 WRITES

A D A R A I TERMINATED NORMALLY yyyy-08-30 18:45:03

464

Adabas UtilitiesLIST: Display Current RLOG Generations

PREPARE: Initialize and Start the RLOG
The recovery log (RLOG) must be prepared before it can be used. The following steps are required to start
the RLOG file:

Step 1. Format the RLOG file using the ADAFRM RLOGFRM function.

Before running ADARAI PREPARE, the RLOG dataset must be formatted using the RLOGFRM function
of the ADAFRM utility. If it is not, an error 159 is returned.

Step 2. Run the ADARAI PREPARE function to prepare the RLOG.

ADARAI PREPARE must be executed with the database inactive.

The ADARAI PREPARE function is used to define

the size of the RLOG (the size must be the same as the value of the SIZE parameter of the ADAFRM
RLOGFRM function);

the minimum number of generations to retain (4 is the default); and

the device type (the default is the device type specified by the ADARUN DEVICE parameter).

Step 3. Run the ADASAV SAVE (database) function to begin the first log generation.

After the PREPARE function executes, logging begins for the initial generation; however, this generation
has a "restricted" status because it has not been started by a full database save or restore.

See the Adabas Operations documentation for more information about generation statuses.

This chapter covers the following topics:

Syntax

Essential Parameter

Optional Parameters

Examples

Syntax

465

PREPARE: Initialize and Start the RLOGAdabas Utilities

Essential Parameter
RLOGSIZE: RLOG Area Size

RLOGSIZE defines the size of the RLOG file in cylinders or blocks. This value must be the
same as that defined by the SIZE parameter of the ADAFRM RLOGFRM function. RLOGSIZE
must be specified; there is no default.

Note:
The RLOG dataset is limited to 16,777,215 (x’FFFFFF’) blocks/RABNs.

Optional Parameters
MINGENS: RLOG Generation Count

MINGENS specifies the number of logging generations to hold in the RLOG. The RLOG
numbers the generations in ascending order starting with "0". The minimum is 4 generations
(the default); the maximum is 32.

RLOGDEV: RLOG Device Type

RLOGDEV specifies the device type containing the RLOG file. If the RLOG file is located on
the device type specified by the ADARUN DEVICE parameter (the default device type), you do
not need to specify RLOGDEV.

Important:
If you choose a device type for the RLOG dataset that is different from the default, you must
specify the RLOGDEV parameter for all ADARES PLCOPY and COPY executions as well.

Examples
Example 1:

ADARAI PREPARE MINGENS=4,RLOGSIZE=5

This ADARAI PREPARE function defines and initializes the RLOG to hold the minimum of four
generations in a log size of five cylinders. The RLOG device defaults to that specified by the ADARUN
DEVICE parameter.

Example 2:

ADARAI PREPARE
RLOGSIZE=20,MINGENS=20,RLOGDEV=3390

This example defines a larger RLOG size (20 cylinders) to hold as many as 20 generations on a 3390
device type.

466

Adabas UtilitiesPREPARE: Initialize and Start the RLOG

RECOVER: Build a Recovery Job Stream
Note:
The RECOVER function is currently available for BS2000 and OS/390 or z/OS systems only. Support for
VM/ESA, z/VM, and VSE/ESA systems is planned.

The ADARAI RECOVER function builds the job control information (recovery job stream) for
recovering the Adabas database or selected database files. The RECOVER function

reads the PLOG information to determine if a PLCOPY is needed; and

reads the RLOG to build the recovery job stream from the skeleton job control.

ADARAI RECOVER builds the job stream necessary to restore the database or files to the condition
before the RECOVER function was run. The completed job stream is sent to the DD/JCLOUT dataset.

Where appropriate, ADARAI includes error or information messages in the generated job stream. You
must then manually correct the errors before submitting the job. The existence of messages in the job
stream is indicated by a nonzero return code from ADARAI RECOVER.

For BS2000 systems, RECOVER additionally

performs, when generating the job control, the same checks performed by the LIST function for
BS2000; and

includes BS2000 /REMARK statements in the created job control for checks that produce errors.

Note:
When such errors occur, the job control must be corrected manually.

This chapter covers the following topics:

Recovery Processing

Optimized Recovery Processing

Requirements

Restrictions

Input Needed for Recovery

Output from the Recovery Operation

Executing the RECOVER Function

File-Level Recovery

Syntax

Optional Parameters and Subparameters

467

RECOVER: Build a Recovery Job StreamAdabas Utilities

Examples

Skeleton Job Control

User Exit to Change JCL

Prerecovery Checking

Restarting the RECOVER Function or Recovery Job Stream

Recovery Processing
The ADARAI RECOVER function builds a job based on the exact sequence it finds in the generation to
be recovered:

it restores the database from the datasets created by the operation that started the generation;

it regenerates PLOGs up to the next utility checkpoint found;

it generates a job step to reexecute the utility and start the regeneration after that checkpoint.

This sequence continues until all utilities have been replayed and the last PLOG block in the generation
has been regenerated.

The following diagram illustrates the functioning of ADARAI where

a database is saved to start a new generation at A.

the database runs and at various times during the generation

an update is run against file 1;

a reorder is run against file 2;

an invert is run against file 3; and

a load is run against file 5.

468

Adabas UtilitiesRECOVER: Build a Recovery Job Stream

Given the above, the order of the recovery is as follows:

1. A full save or full save plus delta saves are restored to return the database to the status at A.

2. A database regenerate runs from the first checkpoint at A up to the update checkpoint at B. The
regenerate job then terminates.

3. The update utility runs for file 1 and a database regenerate runs between the checkpoint at B and the
invert checkpoint at C.

4. The invert utility runs for file 3 and a database regenerate runs between checkpoint C and the load
checkpoint at D.

5. The load utility runs for file 5 and a database regenerate runs between checkpoint D and the reorder
checkpoint at E.

6. The reorder runs for file 3 and a database regenerate runs between checkpoint E and the most
up-to-date level of the database at F.

Optimized Recovery Processing
The OPT parameter for the RECOVER function of ADARAI is used to identify operations or sequences
that would minimize the time required to recover a large database.

For example, it a file with 10,000 updates is deleted or reloaded, it should be possible to avoid restoring
the file from the start, replaying the 10,000 updates, and then throwing it all away when the delete or load
operation occurs.

469

RECOVER: Build a Recovery Job StreamAdabas Utilities

When optimization is selected, ADARAI does not restore the example file in the main restore for the job.
Regeneration for the file occurs only after the file has been deleted or created by the load:

a deleted file has no more updates;

for a file created by a load, only updates subsequent to the load are important.

When an optimized job stream is used, the recovered database is rebuilt in a way that is different from the
original build. Because optimized recovery jobs do not replay in exactly the same way as the original jobs,
problems may occur in the recovery; for example, insufficient space may be available on the database. In
most cases, however, the risk is minimal compared with the potential benefits of optimizing the database
recovery. Each situation must be examined for potential problems.

Requirements
To generate a recovery job that will run successfully, ADARAI imposes the following conditions:

the database must be run with dual or multiple protection logging active.

sequential datasets input to utility functions that update files in the database must be retained.

sequential output datasets created by SAVE or MERGE functions must be retained. This applies to
SAVE FILE functions only if RESTFILE=YES is used for ADARAI RECOVER.

retained datasets must keep their original names; ADARAI cannot track copies with different names.

Software AG recommends that retained datasets be cataloged.

Restrictions
Shadow Databases

If "shadow" databases or copies of normal production databases are built by restoring the delta
save output and DSIM dataset for a save of the original database, ADARAI has no knowledge
of the PLOG activity that occurred during the delta save on the original database and therefore
cannot rebuild the DSIM dataset if a restore operation becomes necessary on the shadow
database.

If, however, the DSIM dataset and the delta save dataset are merged to create a new "off-line"
delta save dataset and the new merged dataset is restored to the shadow database, ADARAI has
all the information needed to recover the shadow database since the PLOG is not necessary in
this case.

Restoring Delta Saves with a DSIM Dataset

In general, ADARAI handles RESTORE DELTA processing without problems. However, if the
RESTORE DELTA uses a DSIM dataset (which is essentially a "working" dataset), the DSIM
dataset may not be intact if an ADARAI RECOVER becomes necessary. ADARAI therefore
records the COPY or PLCOPY requests used to create a DSIM dataset and emits a job step to
rebuild the dataset before attempting to replay such a RESTORE DELTA during RECOVER
processing.

470

Adabas UtilitiesRECOVER: Build a Recovery Job Stream

ADARAI searches the entire RLOG for appropriate entries. If the entries cannot be found,
ADARAI cannot rebuild the DSIM dataset prior to the RESTORE step and therefore cannot replay the
RESTORE DELTA.

DD/FILEA File

In a generated recovery job, ADARAI writes the DD/FILEA file of the ADAORD utility. This
cannot be avoided because the REORDER functions must be replayed and they require that the
DD/FILEA file be written.

In this case, the following restrictions apply:

ADAORD STORE processing simply reads the same DD/FILEA read when the utility was
originally run as part of the generation being recovered.

A temporary file (DISP=(NEW,DELETE), which is deleted after the step is executed) can
be used for DD/FILEA because the recovery job creates and deletes the file again when it
is executed.

An existing file (DISP=OLD) can be used for DD/FILEA. If it still exists when the
recovery job is run, ADARAI simply allocates the file with the disposition it had when the
original job was run.

If a new file (DISP=NEW,CATLG) is allocated for DD/FILEA and retained in the original
ADAORD REORDER step, and if it still exists when the recovery job comes to the
REORDER step (which is normal), ADARAI attempts to create the same file again, which
causes the job to fail.

If a GDG is used, the ADARAI recovery job sees only the name of the actual dataset
created by the generation. If the dataset already exists (which is normal), ADARAI
arrempts to create the same file again, which causes the job to fail.

Input Needed for Recovery
The following datasets are input to the ADARAI RECOVER function:

DD/RLOGR1, the recovery log.

DD/PLOGR1 and DD/PLOGRn, the multiple protection logs, which are required when the ADARAI
RECOVER parameter FEOFPL=YES (the default) is used.

DD/JCLIN, which provides site-dependent skeleton job control statements. The RECOVER
operation merges these statements with the RLOG information to create a complete database
recovery job stream.

On BS2000 systems, DDJCLIN is a SAM dataset with variable record format. EDT can be used to create
and edit this dataset. See the section Skeleton Job Control for more information.

On OS/390 or z/OS systems, the DDJCLIN dataset must be defined with RECFM=FB, LRECL=80, and a
BLKSIZE that is a multiple of 80 bytes.

471

RECOVER: Build a Recovery Job StreamAdabas Utilities

Output from the Recovery Operation
The ADARAI RECOVER output is an execution-ready job stream for recovering the database. This
recovery job stream is written to the DD/JCLOUT file. If a possible error condition is detected during the
RECOVER operation, ADARAI issues a warning message and ends with a condition code of 4. See the
section Prerecovery Checking.

On BS2000 systems, DDJCLOUT and DDJCLCON are SAM datasets with variable record format. They
conform to the BS2000 job control conventions.

On OS/390 or z/OS systems, the DDJCLOUT DD statement must point to a dataset defined with
RECFM=FB, LRECL=80, and a BLKSIZE that is a multiple of 80 bytes.

The recovery job stream includes job steps to start the nucleus

before the first regenerate job step; and

after any utility operation that causes the nucleus to terminate automatically.

ADARAI RECOVER jobs replay all utilities with the database active, whether the utility was originally
run in single-user mode or not. Utilities originally run in single-user mode are replayed in multiuser mode.
These job steps are described in the sections Building the Recovery Job Stream and Skeleton Job Control.

Executing the RECOVER Function
The RECOVER function is executed a generation at a time under control of the RELGEN parameter. If
RELGEN is not specified, the default is the current generation.

RECOVER can be executed with the nucleus active or inactive. It can be executed more than once for the
same generation because it does not change the RLOG information for that generation.

However, if RECOVER is rerun after a failure while running a DD/JCLOUT recovery job stream, the new
recovery job stream produced may be different from the original recovery job stream. The reason is that
the original recovery job stream may execute utilities against the database that updates the RLOG. The
new RECOVER operation then builds a recovery job stream for the utilities that ran as part of the failed
recovery job stream.

Also, if the recovery job stream failed after executing an ADASAV RESTORE, a new generation is
created. In this case, execute RECOVER using the RELGEN=1 parameter setting to obtain the original
generation.

Processing the PLOG

At the start of execution, if ADARAI RECOVER FEOFPL=YES, RECOVER reads the PLOGs,
looking for information that must be copied. If necessary, it calls the nucleus to force a PLOG
switch. If the nucleus is inactive, it invokes user exit 2.

Reading the Recovery Log

Next, RECOVER reads the skeleton job control into storage and reads the RLOG in
chronological order, starting at the beginning of the generation specified by the RELGEN
parameter. See Generation: The Unit of Recovery for a definition of generation.

472

Adabas UtilitiesRECOVER: Build a Recovery Job Stream

If the entire database is being recovered, RECOVER uses the ADASAV SAVE or RESTORE
information to create a new RESTORE/RESTONL database operation. For file-level recovery, it uses the
SAVE/RESTORE database information to create a RESTORE FILE=... function.

Building the Recovery Job Stream

After creating a job stream for restoring the database or file, RECOVER creates a job step for
starting the nucleus, using the %%JCL-STARTNUC statement.

RECOVER then creates the first regenerate job step. This job step does not contain a FROM
checkpoint (FROMCP) unless an online SAVE (or DELTA SAVE) was the basis for starting the
generation. In that case, the regenerate starts at the end checkpoint (SYN2) of the online save.

All PLOGs up to and including the next utility checkpoint (at which the REGENERATE must
stop) are included and appropriate parameters are provided to the ADARES REGENERATE
function. If more than 99 PLOGs are to be regenerated, ADARAI generates multiple
REGENERATE job steps, each one processing up to 99 input PLOG datasets.

Once the PLOGs are regenerated up to the next utility execution, the utility job step is generated
into the output recovery job. ADARAI then inserts another REGENERATE job step that
includes all PLOGs up to and including the next utility checkpoint.

The recovery job continues inserting REGENERATE steps and utility steps until it detects the
end of the generation specified by the RELGEN parameter. At this point, the completed job
stream is sent to the DD/JCLOUT file.

File-Level Recovery
Recovery can be made on a file level by specifying the RECOVER function’s FILE parameter. The
file-level recovery process is essentially the same as the database-level recovery process, but is restricted
to the files specified using the FILE parameter.

ADARAI produces a file-specific result in DD/JCLOUT by adding parameters to utility execution
statements. For example, assume that the following statement was in the original ADASAV RESTORE
statement:

ADASAV RESTORE FMOVE=2,3,NIRABN=100,1000,DSSIZE=550B,20

In this case, RECOVER FILE=3 produces the following DD/JCLOUT statement:

ADASAV RESTORE FMOVE=2,3,NIRABN=100,1000,DSSIZE=550B,20
ADASAV EXCLUDE=2

Note:
If a file to be recovered is part of an expanded file chain or is coupled, all files in the chain or the coupled
list must be recovered together. If all coupled files or expanded file chains are not recovered together,
ADARAI detects this and the ADARAI RECOVER function fails.

The Adabas nucleus must be active before executing a file-level recovery job. This is different from the
database-level recovery job, which starts the database itself.

473

RECOVER: Build a Recovery Job StreamAdabas Utilities

A file-level RECOVER operation does not create job control for utilities that were executed on the whole
database (for example, ADADEF NEWWORK). The exceptions to this are utilities that can be reexecuted
for individual files as well as the complete database. An example is ADASAV RESTORE (database),
which provides a DD/SAVE input dataset that can be used to create ADASAV RESTORE FILE=... job
control.

Syntax

Optional Parameters and Subparameters
AUTOBACKOUT: Back Out Uncompleted Transactions

AUTOBACKOUT may only be specified for file-level recovery.

If AUTOBACKOUT is specified, transactions that were not complete at the end of the last
REGENERATE function in the recovery job are backed out. Only completed transactions are
left on the database.

If AUTOBACKOUT is not specified, incomplete transactions are left on the database.

For database-level recovery, incomplete transactions at the end of the last REGENERATE
function are always backed out.

DRIVES: ADASAV Restore Input Drive Volumes

DRIVES is the number of input datasets to be used as input to the RESTORE step of the
recovery job being generated.

The specified DRIVES parameter must be equal to or less than the DRIVES parameter on the
job that started the generation. For example, if the generation was started with a database save
with DRIVE=4, the RECOVER DRIVES parameter may only be specified as 1, 2, 3, or 4.

When you specify a lower number of DRIVES for the RESTORE step, ADARAI RECOVER
allocates only the DD/RESTn DD/DLBLs required and allocates an equal number of input
datasets for each DD/RESTn DD/DLBL.

474

Adabas UtilitiesRECOVER: Build a Recovery Job Stream

DSIMDEV: DSIM Dataset Device Type

DSIMDEV specifies the DSIM dataset device type if different from that specified by the
ADARUN DEVICE parameter, which is the default.

DSIMSIZE: Size of the DSIM Dataset

The size is specified in cylinders.

When the Adabas Delta Save Facility is active on the database being recovered, this parameter
must be specified so that ADARAI can specify the DSIMSIZE parameter for any ADARES
COPY operations it may have to generate.

FEOFPL: Synchronize Multiple PLOGs

If FEOFPL=YES (the default), ADARAI ensures that protection log (PLOG) data from all of
the multiple PLOG datasets has been copied:

If the nucleus is active, ADARAI forces a protection log switch. The nucleus then calls
user exit 12, which copies the log data; ADARAI waits until the copying is completed.
Note that the ADARUN parameter UEX12 must therefore be specified whenever
FEOFPL=YES is specified.

If the nucleus is not active, ADARAI itself calls user exit 12, which in turn copies the log
data.

In a nucleus cluster environment, FEOFPL=YES functions differently:

If at least one Adabas nucleus is available, ADARAI calls the nucleus to switch the
PLOGs.

If no Adabas nucleus is available, ADARAI generates a job that must be executed
manually.

In either case, ADARAI must be restarted with FEOFPL=NO.

FILE: File Number

FILE specifies one or more database files to be included when the recovery job stream is built.
Specifying FILE causes file- rather than database-level recovery; only those files specified are
involved in the RECOVER operation. If FILE is not specified, all database files are included
(the default).

JCLLOG: User-Supplied Job Control

JCLLOG controls listing of the user-supplied input job control (the JCL in DDJCLIN or the JCS
in JCLIN). If JCLLOG=YES is specified, the user-supplied input job control elements are
printed in the utility log. The default is no listing of input job control statements (NO).

OPT: Optimize Recovery Job for a Generation

When OPT=YES is specified, ADARAI attempts to optimize the recovery job it produces for a
given generation; that is, it attempts to leave out steps that are not required to bring the database
or file back to its original logical state.

475

RECOVER: Build a Recovery Job StreamAdabas Utilities

When OPT=NO is specified, the recovery job is not optimized.

Note:
When space on the database is limited, an optimized recovery job may fail due to the fact that
the database is not built in exactly the same way as it originally was. If this occurs, a recovery job
generated without optimization should be used or the size of the database increased before recovery is
attempted.

PLOGDEV: Multiple PLOG Device Type

The PLOGDEV value is only used when FEOFPL=YES is specified.

PLOGDEV specifies a PLOG device type different from that specified by the ADARUN
DEVICE parameter, which is the default.

RELGEN: Relative Recovery Generation Number

RELGEN specifies the relative generation number to be used for recovery. The current
generation is always coupled with relative generation "0" (zero), which is also the default. "Two
generations ago", or the generation before the last completed generation, is specified as relative
generation "2".

The generation specified must currently be in the RLOG. Use the ADARAI LIST function to
see the current RLOG generations available. Note, however, that the listed generations are
numbered in ascending order, beginning with generation "1", the first generation following the
start of RLOG operation.

RESTFILE: Create Restore File Jobstep

When RESTFILE=NO (the default), the DDJCLOUT recovery job stream does not include
ADASAV RESTORE FILE=... job steps for logged ADASAV SAVE FILE= runs. Such job
steps are not included because ADARES REGENERATE does not stop at ADASAV SAVE
FILE=... checkpoints.

When RESTFILE=YES, ADARAI RECOVER creates an ADASAV RESTORE FILE=... job
step in the recovery job stream for every ADASAV SAVE FILE=... utility execution logged.

Note:
When using RESTFILE=YES, you must retain the file save datasets that are created in the
generation.

When both RESTFILE=YES and OPT=YES are specified, the created RESTORE FILE= steps
can speed the recovery process because restored files up to the RESTORE step are ignored.

When RESTFILE=YES and OPT=NO are specified, an unnecessary RESTORE step is included
in the recovery job. You may wish to generate the recovery job in this way and then manually
remove all steps prior to the RESTORE steps for the file(s) that are of interest.

RLOGDEV: RLOG Alternate Device

RLOGDEV specifies the device type containing the RLOG file. If the RLOG file is located on
the device type specified by the ADARUN DEVICE parameter (the default device type), you do
not need to specify RLOGDEV.

476

Adabas UtilitiesRECOVER: Build a Recovery Job Stream

Examples
Example 1:

ADARAI RECOVER,DRIVES=3

The RECOVER function builds a recovery job stream based on the current generation (0, the default). The
SAVE RESTORE portion of the job stream includes statements for three input datasets: DDREST1,
DDREST2, and DDREST3.

Example 2:

ADARAI RECOVER FILE=3,4,7,8,11
ADARAI RELGEN=2, JCLLOG=YES

The recovery job stream is based on the third oldest generation; it includes activity for database files 3, 4,
7, 8, and 11 only; and creates a file-level job control. RECOVER also adds the user-supplied job control
from dataset DDJCLIN to the utility log.

Example3:

ADARAI RECOVER,RELGEN=1,OPT=Y

The RECOVER function builds a recovery job stream based on the last generation (i.e. the one preceding
the current generation). ADARAI removes any unnecessary processing in order to speed up the recovery
job.

Skeleton Job Control
Skeleton job control is contained in the DD/JCLIN file and is read as input to the RECOVER function.
RECOVER merges it with the RLOG information to create the recovery job stream. Skeleton job control
usually remains stable and is specific to your operating environment.

Each function in the skeleton job control is identified by a statement with the following format:

%%name

The name is specific to the function, such as %%JCL-ADASAV or %%JCL-STARTNUC. The job
control statements follow the %% name statement; they are ended by the next %%JCL statement. Each
skeleton section can contain any valid job control statement, including comments or program execution.
This ability provides flexibility for the recovery process.

ADARAI does not check the validity of the statements in the skeleton job control. Invalid statements are
first apparent when a job control error occurs during execution of the recovery job stream.

Job Header: %%JCL-JOB-HEADER

Job header statements are placed at the beginning of the recovery job stream before any other
job control statements.

This job control relates to the complete recovery job and includes statements such as JOB and
JOBLIB statements for OS or POWER JCL and JOB statements for VSE.

477

RECOVER: Build a Recovery Job StreamAdabas Utilities

Job Trailer: %%JCL-JOB-TRAILER

Job trailer statements are placed at the end of the recovery job stream.

If the nucleus was started with the ADARUN UTIONLY=YES parameter as recommended in
the %%JCL-STARTNUC section, you may want to provide a statement to execute an ADADBS
OPERCOM UTIONLY=NO function in this section to make the database available after the
recovery operation (see the skeleton job control examples later in this document).

Step Trailer: %%JCL-STEP-TRAILER

Step trailer statements are placed after each step in the recovery job stream.

DD/KARTE Job Control: %%JCL-DDKARTE

The operating-system-dependent DD/KARTE statements are included in each job step before
DD/KARTE parameters generated by ADARAI from the RLOG.

For OS/390, z/OS, and VSE, these statements should indicate that the DD/KARTE parameters
are contained in the job stream.

DD/FILEA Job Control: %%JCL-DDFILEA

This (optional) JCL card is provided to avoid problems with ADAORD REORDER processing.
As a placeholder, it may be specified to provide a different DD/DLBL statement to the original
DD/FILEA statement in the job. If specified, it will be inserted instead of the original
DD/FILEA statement when an ADAORD REORDER is subsequently encountered.

Utility Job Control: %%JCL- utility

These skeleton sections are used to create utility job steps in the recovery job stream. The
following utility jobs should be available in DD/JCLIN:

%%JCL-ADADEF %%JCL-ADAORD

%%JCL-ADAINV %%JCL-ADARES

%%JCL-ADALOD %%JCL-ADASAV

Each of the sections should contain the following:

The database files; for example, DD/ASSOR1, DD/DATAR1, DD/WORKR1,
DD/SORTR1, DD/TEMPR1, and so on, as needed for the utility execution;

DD/FILEA for ADALOD if used as a DD/TEMPR1 overflow file;

A DD/PRINT and DD/DRUCK statement or assignment;

A DD/CARD statement or assignment and all required ADARUN parameters; for example,
DBID, DEVICE, PROG, SVC, and so on;

Information needed about the Adabas library or other library.

478

Adabas UtilitiesRECOVER: Build a Recovery Job Stream

It is possible to use a procedure or partitioned dataset (PDS) member for the DD/CARD
parameters, database files, or libraries.

Job Control to Start the Nucleus: %%JCL-STARTNUC

This job control comprises all the statements needed to start the Adabas nucleus. The
RECOVER function uses this job control to create a job step for starting the nucleus before the
first regenerate job step and, if the nucleus is not already active, before each call to a utility that
requires an active nucleus.

The entire nucleus job must be included in this job control, including

job statements;

program execution statements;

library definitions;

database file definitions; and

DD/CARD information, including the ADARUN parameters.

This section also requires a method for submitting the nucleus job control to the appropriate job
entry system, such as EDT in procedure mode for BS2000 and IEBGENER for MVS. For
examples of this job control, see the %%JCL-STARTNUC sections in the examples of skeleton
job control later in this document.

It is also important that this job control contain a way to stop execution of the recovery job
stream until the nucleus is actually active. For example, a program can be created to issue a CL
(close) command to the database; if a response code 148 indicates that the database is not active,
the program can wait a specified time and reissue the CL command. The program continues
until response code 0 occurs, and then ends to allow the next recover step to be performed. You
can use the ADARAI CHKDB ACTIVE function for this purpose.

Job Control to Stop the Nucleus: %%JCL-ENDNUC

Whenever it detects a utility that requires an inactive nucleus, RECOVER inserts the
%%JCL-ENDNUC job control in the job stream to ADAEND the Adabas nucleus. The
ADADBS OPERCOM ADAEND function can also be used to stop the nucleus. If ADADBS
OPERCOM is used, these job control statements must contain all necessary statements for
running the ADADBS OPERCOM function. Like the Start Nucleus skeleton job control, a
method to stop execution of the recovery job stream until the nucleus becomes inactive is also
needed; the ADARAI CHKDB INACTIVE function can be used for this purpose.

Special Job Control Statements

The following special keywords/statements are used in the DD/JCLIN skeleton job control to
control the generation of the DD/JCLOUT recovery job stream:

479

RECOVER: Build a Recovery Job StreamAdabas Utilities

%STEP When the (optional) %STEP keyword is included on the
program execution statement, it generates a step number in
the job stream for each job step that also includes the %STEP
keyword. The step numbers run in ascending sequence,
beginning with 1.

%SEQUENTIAL Must be included in each %% skeleton section that generates
a sequential file job control statement. ADARAI creates the
necessary sequential job control statement in place of the
%SEQUENTIAL statement. If this statement is not included,
an error occurs during processing.

%KARTE Must be included in each %% skeleton section where Adabas
DD/KARTE parameters are generated. ADARAI creates the
necessary DD/KARTE parameters in place of the %KARTE
statement. If this statement is not included, an error occurs
during processing.

%DBID When the (optional) %DBID keyword is included on the
program execution statement, it generates the five-digit
database ID number. If the database number has less than
five digits, the number is padded with leading zeros.

User Exit to Change JCL
ADARAI provides the user exit UEXRAI so that users may change an automatically generated recovery
job before submitting it. Changes required might include the device type or the volume name.

UEXRAI obtains control of a JCL record immediately before it is written to DDJCLOUT.

The user exit is called with the following registers set:

R1 JCL record line that is about to be written to DDJCLOUT.

R13 standard 72-byte register save area

R14 return address

R15 entry point

Prerecovery Checking
Check the status of the recovery database and the recovery job stream before starting the recovery job
stream.

For database-level recovery, check that

the existing nucleus session has ended.

the session entry has been deleted from the ID table.

480

Adabas UtilitiesRECOVER: Build a Recovery Job Stream

Note:
Any remaining DIB entry or pending nucleus session autorestart can be ignored; it is handled
automatically by the initial RESTORE step.

all required database components (ASSO, DATA, etc.) have been formatted at least once.

Allocate and format any components changed during the generation to be recovered to the sizes
and device types valid at the beginning of the generation.

Allocate and format any components that have changed size to the largest size used during the
generation to be recovered.

For file-level recovery, check that

the nucleus is active. The recovery job created by ADARAI does not start the nucleus automatically.

Restarting the RECOVER Function or Recovery Job Stream
If the ADARAI RECOVER function is interrupted, it can be restarted from the beginning, since the
RECOVER function only reads the RLOG and does not change it.

The DD/JCLOUT recovery job stream created by the RECOVER function can be restarted as in a normal
restore/regenerate process. However, the job stream may need to be edited to remove steps for the utility
operations that were successfully completed. Following this, the recovery process can continue (providing
the cause of the interruption has been removed), beginning with the failed utility operation.

It is always possible to restart an interrupted recovery job from the beginning. It may also be possible to
restart the recovery job at the job step that failed or a few steps earlier, depending on the cause of the error
and the job step that contained the error.

481

RECOVER: Build a Recovery Job StreamAdabas Utilities

REMOVE: Remove the Recovery Aid
ADARAI REMOVE is functionally the same as the old ADARAI NORAI function; either REMOVE or
NORAI can be specified.

Note:
ADARAI REMOVE/NORAI must be executed with the database inactive.

The ADARAI REMOVE function disables recovery logging by updating the Associator GCB to indicate
that recovery logging (that is, the Recovery Aid) is no longer active in the database, and that information
will no longer be recorded in the RLOG.

Existing RLOG information is maintained and available for listing or recovery operation following
REMOVE, up until the next PREPARE operation is performed. Once the ADARAI PREPARE function is
executed, all existing RLOG data is lost.

To restart recovery logging after using the REMOVE function, execute the ADARAI PREPARE function
followed by an ADASAV SAVE/RESTORE database, RESTORE GCB, and/or SAVE
DELTA/RESTORE DELTA (database) function to start a new generation. See the discussion of ADARAI
PREPARE for information about preparing the RLOG.

Example
ADARAI REMOVE

Stops all Recovery Aid logging.

482

Adabas UtilitiesREMOVE: Remove the Recovery Aid

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADARAI with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000
This section describes additional considerations and requirements for using ADARAI on a BS2000
system.

Dataset Link Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk Required for
RECOVER

Work DDWORKR1 disk Required for
RECOVER

Data protection log DDPLOGRn tape/ disk Required for
RECOVER

Recovery log (RLOG) DDRLOGR1 disk

Job stream input DDJCLIN disk Required for
RECOVER

Recovery job output DDJCLOUT disk Required for
RECOVER

Recovery job output
(JCL for console
subtask)

DDJCLCON disk Optional; used only
for
RECOVER

ADARUN parameters SYSDTA/ DDCARD Operations

ADARAI parameters SYSDTA/ DDKARTE Operations

ADARUN messages SYSOUT DDPRINT Messages and Codes

ADARAI messages SYSLST DDDRUCK Messages and Codes

483

JCL/JCS Requirements and ExamplesAdabas Utilities

BS2000 Datasets

Handling Sequential Disk Datasets

There are no restrictions for sequential datasets on "public" disks.

Sequential datasets on "private" disks must not be exported; this means that the catalog entry must not be
erased and that the recovery job control will not contain /IMPORT-FILE commands for datasets on
private disks.

Handling Sequential Tape Datasets

Software AG recommends not removing catalog entries for sequential datasets on tapes from the system’s
catalog. If RECOVER does not find a catalog entry for a sequential dataset on tape or cartridge, it includes
the following statement in the job stream:

/IMPORT-FILE FILE-NAME= tempfile ,...

where tempfile has the following structure:

#ADARAI.RECOVER.TAPE.nnnnn

Using File Generation Groups (FGGs)

There are no restrictions when using FGGs for sequential datasets, whether on disk or on tape.

Input Datasets

ADARAI tries to access sequential BS2000 datasets using the original catalog entries. If a sequential
dataset is in a file generation group (FGG), ADARAI assigns the absolute member; ADARAI does not use
or change the base pointer.

If sequential datasets are read-protected by passwords, the %%JCL-JOB-HEADER section in the skeleton
job control must contain these passwords.

ADARAI neither exports nor erases datasets. If catalog entries for tape datasets no longer exist, ADARAI
creates temporary datasets with the names #ADARAI.RECOVER.TAPE.nnnnn, where "nnnnn" equals
00001, 00002, and so on.

ADARAI JCL Examples (BS2000)

Begin Recovery Logging (ADARAI PREPARE)

In SDF Format:

/.ADARAI LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK *A D A R A I START RECOVERY LOGGING
/REMARK *
/ASS-SYSLST L.RAI.DATA
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,DB.yyyyy.ASSO
/SET-FILE-LINK DDRLOGR1,DB.yyyyy.RLOGR1,OPEN-MODE=OUTIN,BUFF-LEN=STD(2)

484

Adabas UtilitiesJCL/JCS Requirements and Examples

/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADARAI,DBID=yyyyy,MODE=MULTI
ADARAI PREPARE RLOGSIZE=5,RLOGDEV=dddd,MINGENS=5
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADARAI LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK *A D A R A I START RECOVERY LOGGING
/REMARK *
/REMARK *
/SYSFILE SYSLST=L.RAI.DATA
/FILE ADAvrs.MOD,LINK=DDLIB
/FILE DB.yyyyy.ASSO ,LINK=DDASSOR1
/FILE DB.yyyyy.RLOGR1,LINK=DDRLOGR1,OPEN=OUTIN,BLKSIZE=(STD,2)
/EXEC (ADARUN,ADAvrs.MOD)
ADARUN PROG=ADARAI,DBID=yyyyy,MODE=MULTI
ADARAI PREPARE RLOGSIZE=5,RLOGDEV=dddd,MINGENS=5
/LOGOFF NOSPOOL

List the RLOG (ADARAI LIST)

In SDF Format:

/.ADARAI LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK *A D A R A I LIST RECOVERY LOGS
/REMARK *
/ASS-SYSLST L.RAI.DATA
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,DB.yyyyy.ASSO
/SET-FILE-LINK DDRLOGR1,DB.yyyyy.RLOGR1
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADARAI,DBID=yyyyy,MODE=MULTI
ADARAI LIST GENS=NO,RLOGDEV=dddd,RELGEN=1
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADARAI LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK *A D A R A I LIST RECOVERY LOGS
/REMARK *
/REMARK *
/SYSFILE SYSLST=L.RAI.DATA
/FILE ADAvrs.MOD,LINK=DDLIB
/FILE DB.yyyyy.ASSO ,LINK=DDASSOR1
/FILE DB.yyyyy.RLOGR1,LINK=DDRLOGR1
/EXEC (ADARUN,ADAvrs.MOD)
ADARUN PROG=ADARAI,DBID=yyyyy,MODE=MULTI
ADARAI LIST GENS=NO,RLOGDEV=dddd,RELGEN=1
/LOGOFF NOSPOOL

485

JCL/JCS Requirements and ExamplesAdabas Utilities

Create Recovery JCL (ADARAI RECOVER)

In SDF Format:

/.ADARAI LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK *A D A R A I BUILD RECOVERY JCL STREAM
/REMARK *
/DELETE-FILE DB.yyyyy.JCLOUT
/SET-JOB-STEP
/CREATE-FILE DB.yyyyy.JCLOUT,PUB(SPACE=(48,48))
/SET-JOB-STEP
/DELETE-FILE DB.yyyyy.JCLCON
/SET-JOB-STEP
/CREATE-FILE DB.yyyyy.JCLCON,PUB(SPACE=(48,48))
/SET-JOB-STEP
/ASS-SYSLST L.RAI.DATA
/ASS-SYSDTA *SYSCMD

/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,DB.yyyyy.ASSO
/SET-FILE-LINK DDRLOGR1,DB.yyyyy.RLOGR1
/SET-FILE-LINK DDPLOGR1,DB.yyyyy.PLOGR1
/SET-FILE-LINK DDPLOGR2,DB.yyyyy.PLOGR2
/SET-FILE-LINK DDJCLIN,DB.yyyyy.JCLIN
/SET-FILE-LINK DDJCLOUT,DB.yyyyy.JCLOUT
/SET-FILE-LINK DDJCLCON,DB.yyyyy.JCLCON
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADARAI,DBID=yyyyy,MODE=MULTI
ADARUN UEX2=EXITR2
ADARAI RECOVER PLOGDEV=2201,FEOFPL=YES,RELGEN=1
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADARAI LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK *A D A R A I BUILD RECOVERY JCL STREAM
/REMARK *
/REMARK *

/SYSFILE SYSLST=L.RAI.DATA
/FILE ADAvrs.MOD,LINK=DDLIB
/FILE DB.yyyyy.ASSO,LINK=DDASSOR1
/FILE DB.yyyyy.RLOGR1,LINK=DDRLOGR1
/FILE DB.yyyyy.PLOGR1,LINK=DDPLOGR1
/FILE DB.yyyyy.PLOGR2,LINK=DDPLOGR2
/FILE DB.yyyyy.JCLIN,LINK=DDJCLIN
/FILE DB.yyyyy.JCLOUT,LINK=DDJCLOUT
/FILE DB.yyyyy.JCLCON,LINK=DDJCLCON
/EXEC (ADARUN,ADAvrs.MOD)
ADARUN PROG=ADARAI,DBID=yyyyy,MODE=MULTI
ADARUN UEX2=EXITR2
ADARAI RECOVER PLOGDEV=2201,FEOFPL=YES,RELGEN=1
/LOGOFF NOSPOOL

486

Adabas UtilitiesJCL/JCS Requirements and Examples

Skeleton Job Control

For a BS2000 system, the skeleton job control should have the following characteristics:

The first two positions must be blank;

Statements can be up to 256 characters long, including the blanks in the first two positions;

Statements can be continued; the continuation mark (-) can be in any position (it does not have to be
in position 74);

In version 10, ADARAI automatically adds the command:

/MODIFY-SDF-OPTIONS CONTINUATION=NEW-MODE

Job control statements for the BS2000 executive are automatically broken up into 72-byte segments,
if necessary. Normal program control statements are not segmented.

Except for string substitution (described below), ADARAI does not check or change the job control
statement syntax.

In addition to the general JCL characteristics described above, BS2000 systems can include the following
in the skeleton JCL:

Substitution strings for repeating often-used job control input;

DDFILEA dataset overwriting, tape volume assignment, and disk space credit;

Subtask processing of RECOVER-generated console messages.

These options must be specified at the beginning of the skeleton JCL, immediately before the
%%JCL-JOB-HEADER statement.

Specifying Substitution Strings

Frequently occurring strings such as dataset names can be defined in the substitution section. The strings
are then inserted into the BS2000 JCL as well as in the user program control statements.

To use string substitution, include the following JCL statement before %%JCL-JOB-HEADER:

%%JCL-BS2-SUBSTITUTION

This statement is followed by the substitution definitions, which have the following format:

%%argname =substring

where argname is the 1- to 8-character JCL or user program control argument to be replaced, and
substring is the replacement string of up to 128 characters. One substitution statement per line is allowed;
the substitution statements are ended by the next %%JCL statement.

487

JCL/JCS Requirements and ExamplesAdabas Utilities

DDFILEA JCL Options

The JCL statements described in this section must appear before %%JCL-JOB-HEADER in the skeleton
JCL.

ADAORD is the only utility that opens DDFILEA output datasets during the BS2000 recovery job.
ADARAI assists in allocating those datasets on disk or tape regardless of whether the datasets existed at
RECOVER time.

Existing "tape" datasets are never overwritten. To overwrite existing DDFILEA "disk" datasets, specify
the following statement in the skeleton JCL:

%%JCL-BS2-WORK-DATASET-OVERWRITE=YES

OVERWRITE defaults to NO. If no DDFILEA assignments are found and overwriting is prohibited (the
default), ADARAI tries to write the DDFILEA datasets on TAPE-C1 cartridges.

To allocate DDFILEA on disk instead of tape, include the following JCL statement:

%%JCL-BS2-WORK-DISK-SPACE

Then specify one or more disk space assignment statements, as follows:

:catid := pam-pages

ADARAI checks the availability of the specified pubsets and for permission of the ADARAI task’s
"/LOGON userid" to allocate the specified number of PAM pages on those pubsets. If the checks fail, the
user’s logon ID must be added to the joinfile of the related pubset, and the ADARAI RECOVER job step
must be repeated before starting the generated recovery job. Otherwise, the ADAORD job steps may
ABEND.

To assign DDFILEA output tape devices and volumes, include the following statement:

%%JCL-BS2-WORK-TAPE-VOLUMES=device-type

If output tape datasets must be created, ADARAI uses temporary datasets named
#ADARAI.RECOVER.TAPE.nnnnn, where "nnnnn" equals 00001, 00002, and so on. If the console
subtask option described in the next section is enabled, each line can contain one or more volser numbers
separated by blanks or commas. The first two positions on each line must be blanks; the maximum line
length is 256 characters.

The following is an example:

%%JCL-BS2-WORK-TAPE-VOLUMES=TAPE-C1
 A00001,A00002,A00003,A00004
 A00005,A00006,A00007,A00008

Up to 512 volumes can be specified.

BS2000 Console Subtask

When a recovery job created by ADARAI RECOVER is submitted, console messages may occur that
require operator intervention, such as the following:

488

Adabas UtilitiesJCL/JCS Requirements and Examples

The catalog entry for a tape dataset is not available, and ADARAI inserts a /IMPORT-FILE
statement for a temporary tape dataset, causing a DMS0DA5 console message.

Tape output for the DDFILEA dataset is required, and ADARAI includes JCL that causes a message
requesting that a scratch tape be mounted.

These messages can be answered automatically by a UCON program, which runs as a subtask in parallel
with the recovery job. The UCON program (ADAR2C) receives all relevant console messages and sends
answers whenever possible.

To run a console subtask, include the following section before %%JCL-JOB-HEADER:

%%JCL-BS2-CONSOLE-SUBTASK-SPECIFICATION
CONSOLE-NAME=name,C’ password ’ (this statement is required)
DCAM-APPL=dcamappl (this statement is optional)

where

name is a /LOGON userid;

password is the user ID’s logon password; and

dcamappl is the name of a DCAM application (the default is "RAIRUCON").

For more information, see the Authorized User Tasks section in the BS2000 Systems Administration
documentation.

The following optional statement can be included in the skeleton JCL, followed by volser definitions. If
the console subtask is not called, the volser definitions have no effect.

%%JCL-BS2-WORK-TAPE-VOLUMES=device-type

Include the following statement in the JCL for the ADARAI RECOVER function (not in the skeleton
JCL):

/SET-FILE-LINK
FILE-NAME=console-job ,LINK-NAME=DDJCLCON

The following example JCL for the RECOVER function includes the console subtask:

/ LOGON
/ SET-FILE-LINK FILE-NAME=ADA.JCLIN,LINK-NAME=DDJCLIN
/ SET-FILE-LINK FILE-NAME=ADA.JCLOUT,LINK-NAME=DDJCLOUT
/ SET-FILE-LINK FILE-NAME=ADA.JCLCON,LINK-NAME=DDJCLCON
.
.

/ ASSIGN-SYSDTA TO-FILE=*SYSCMD
/ SET-FILE-LINK ADAvrs.MOD,LINK-NAME=DDLIB
/ START-PROG *M(E=ADARUN,L=ADAvrs.MOD)
ADARUN PROG=ADARAI,DB=47
ADARAI RECOVER
/ LOGOFF NOSPOOL

The console subtask evaluates the following BS2000 console messages, where tsn is the task serial
number, and mn is the mnemo-technical device name:

489

JCL/JCS Requirements and ExamplesAdabas Utilities

NKVT010 VOLUME volser IS MOUNTED ON DEVICE mn

If the volser and device are specified as described in the section DDFILEA JCL Options, they are
registered in the subtask’s online volser table. If the message NKVT013 is also outstanding at this time,
the subtask returns the response "tsn.mn " .

NKVT011/97 VOLUME volser IS DISMOUNTED FROM DEVICE mn...

The volser is removed from the online volser table.

NKVT013 MOUNT TAPE ’*SCRAT’ ON DEVICE ...

If this message is related to the RECOVER task and the volser is available in the online volser table, the
subtask sends the response " tsn.mn " .

DMS0DFB ACKNOWLEDGE VSN volser ON DEVICE mn...

If this message is related to the RECOVER task, the subtask sends the response " tsn ".

DMS0DA5 INVALID FILE SPECIFICATION: VSN volser FOR FILE file...

If the related "tsn" is the RECOVER task’s "tsn" and "file" is a temporary dataset with the name
#ADARAI.RECOVER.TAPE.nnnnn, the message is answered with the response " tsn.I".

For the subtask to respond, the logon ID must be able to ignore tapes with incorrect file IDs. To enable
this, issue the following statement under the system administrator’s logon ID (TSOS):

/MOD-USER userid ,PROTECTION-ATTRIBUTE=(TAPE-ACCESS=READ)

Skeleton Job Control Example (BS2000)
%%JCL-BS2-WORK-DATASET-OVERWRITE = NO
%%JCL-BS2-WORK-DISK-SPACE
 :A: = 500000
 :B: = 1000000
%%JCL-BS2-CONSOLE-SUBTASK-SPECIFICATION
 CONSOLE-NAME=CON1,C’PASSWORD’
%%JCL-BS2-WORK-TAPE-VOLUMES=TAPE-C1
 A00001,A00002,A00003,A00004,A00005
 A00006,A00007,A00008,A00009,A00010
%%JCL-BS2-SUBSTITUTION
 %%USERID = ADAvr
 %%AC %%ASSOR1 = $ADAvr.DByyyyy.ASSOR1
 %%ASSOR2 = $ADAvr.DByyyyy.ASSOR2
 %%DATAR1 = $ADAvr.DByyyyy.DATAR1
 %%DATAR2 = $ADAvr.DByyyyy.DATAR2
 %%WORK = $ADAvr.DByyyyy.WORK
 %%SORT = $ADAvr.DByyyyy.SORT%
 %%TEMP = $ADAvr.DByyyyy.TEMP
 %%RLOGR1 = $ADAvr.DByyyyy.RLOGR1
 %%PLOGR1 = $ADAvr.DByyyyy.PLOGR1

490

Adabas UtilitiesJCL/JCS Requirements and Examples

 %%PLOGR2 = $ADAvr.DByyyyy.PLOGR2
 %%DBID = yyyyy
 %%IDTNAME = ADABASvB
 %%USEREX = ADAvrs.USEREXITS.MOD
 %%DDLIB = ADAvrs.MOD
 %%DEVICE = dddd
%%JCL-JOB-HEADER
 /.RECOVER LOGON %%USERID,%%ACCOUNT
 / SET-FILE-LINK FILE-NAME=%%USEREX,LINK-NAME=BLSLIB01
 / SET-FILE-LINK FILE-NAME=%%DDLIB,LINK-NAME=DDLIB
 / ASSIGN-SYSOUT TO-FILE=$ADAvv.RAI.OUT
 / ASSIGN-SYSLST TO-FILE=$ADAvv.RAI.LST%%JCL-JOB-TRAILER
 /REMARK ---*
 /REMARK * RECOVERY JOB SUCCESSFULLY TERMINATED *
 /REMARK ---*
 /LOGOFF NOSPOOL
 /.JOBERROR REMARK
 /REMARK +++*
 /REMARK * RECOVERY JOB TERMINATED WITH ERROR *
 /REMARK +++*
 /LOGOFF NOSPOOL
%%JCL-ADARES
 /REMARK
 /REMARK REGENERATE/ BACKOUT
 /REMARK
 / SET-FILE-LINK FILE-NAME=%%RLOGR1,LINK-NAME=DDRLOGR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR1,LINK-NAME=DDASSOR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR2,LINK-NAME=DDASSOR2, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR1,LINK-NAME=DDDATAR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR2,LINK-NAME=DDDATAR2, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%WORK,LINK-NAME=DDWORKR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=RAI.DRU.JCLO.ADARES,LINK-NAME=DDDRUCK
 / SET-FILE-LINK FILE-NAME=RAI.PRI.JCLO.ADARES,LINK-NAME=DDPRINT
 %SEQUENTIAL
 / ASSIGN-SYSDTA TO-FILE=*SYSCMD
 / START-PROGRAM
FROM-FILE=*MODULE(ELEMENT=ADARUN,LIBRARY=%%DDLIB)
 ADARUN MODE=MULTI,PROG=ADARES
 ADARUN DBID=%%DBID,DE=%%DEVICE,IDTNAME=%%IDTNAME
 %KARTE
%%JCL-STEP-TRAILER
 /SET-JOB-STEP%%JCL-ADASAV
 /REMARK
 /REMARK RESTORE FILE(S)/DATABASE
 /REMARK
 /.%STEP REMARK
 / SET-FILE-LINK FILE-NAME=%%RLOGR1,LINK-NAME=DDRLOGR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR1,LINK-NAME=DDASSOR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR2,LINK-NAME=DDASSOR2, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR1,LINK-NAME=DDDATAR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR2,LINK-NAME=DDDATAR2, -
 / SUP=DISK(SHARE-UPD=YES)

491

JCL/JCS Requirements and ExamplesAdabas Utilities

 / SET-FILE-LINK FILE-NAME=%%WORK,LINK-NAME=DDWORKR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK
FILE-NAME=RAI.DRU.JCLO.RESTORE,LINK-NAME=DDDRUCK
 / SET-FILE-LINK
FILE-NAME=RAI.PRI.JCLO.RESTORE,LINK-NAME=DDPRINT
 %SEQUENTIAL
 / ASSIGN-SYSDTA TO-FILE=*SYSCMD
 / START-PROGRAM
FROM-FILE=*MODULE(ELEMENT=ADARUN,LIBRARY=%%DDLIB)
 ADARUN MODE=MULTI,PROG=ADASAV
 ADARUN DBID=%%DBID,DE=%%DEVICE,IDTNAME=%%IDTNAME
 %KARTE
%%JCL-ENDNUC
 /REMARK
 /REMARK ADADBS END NUCLEUS

/REMARK
 / SET-FILE-LINK FILE-NAME=%%RLOGR1,LINK-NAME=DDRLOGR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR1,LINK-NAME=DDASSOR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR2,LINK-NAME=DDASSOR2, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR1,LINK-NAME=DDDATAR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR2,LINK-NAME=DDDATAR2, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%WORK,LINK-NAME=DDWORKR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%SORT,LINK-NAME=DDSORTR1
 / SET-FILE-LINK FILE-NAME=%%TEMP,LINK-NAME=DDTEMPR1
 / SET-FILE-LINK FILE-NAME=RAI.DRU.JCLO.ADADBS,LINK-NAME=DDDRUCK
 / SET-FILE-LINK FILE-NAME=RAI.PRI.JCLO.ADADBS,LINK-NAME=DDPRINT
 / ASSIGN-SYSDTA TO-FILE=*SYSCMD
 / START-PROGRAM
FROM-FILE=*MODULE(ELEMENT=ADARUN,LIBRARY=%%DDLIB)
 ADARUN MODE=MULTI,PROG=ADADBS
 ADARUN DBID=%%DBID,DE=%%DEVICE,IDTNAME=%%IDTNAME
 ADADBS OPERCOM ADAEND
 /REMARK
 /REMARK CHECK INACTIVE DATABASE
 /REMARK
 / SET-FILE-LINK FILE-NAME=RAI.DRU.JCLO.ADARAI,LINK-NAME=DDDRUCK
 / SET-FILE-LINK FILE-NAME=RAI.PRI.JCLO.ADARAI,LINK-NAME=DDPRINT
 / ASSIGN-SYSDTA TO-FILE=*SYSCMD
 / START-PROGRAM
FROM-FILE=*MODULE(ELEMENT=ADARUN,LIBRARY=%%DDLIB)
 ADARUN
MODE=MULTI,PROG=ADARAI,DBID=%%DBID,DE=%%DEVICE,IDTNAME=%%IDTNAME
 ADARAI CHKDB INACTIVE
%%JCL-ADADEF
 /REMARK
 /REMARK DEFINE NEWWORK
 /REMARK
 / SET-FILE-LINK FILE-NAME=%%RLOGR1,LINK-NAME=DDRLOGR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR1,LINK-NAME=DDASSOR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR2,LINK-NAME=DDASSOR2, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR1,LINK-NAME=DDDATAR1, -

492

Adabas UtilitiesJCL/JCS Requirements and Examples

 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR2,LINK-NAME=DDDATAR2, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%WORK,LINK-NAME=DDWORKR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%SORT,LINK-NAME=DDSORTR1
 / SET-FILE-LINK FILE-NAME=%%TEMP,LINK-NAME=DDTEMPR1
 / SET-FILE-LINK FILE-NAME=RAI.DRU.JCLO.ADADEF,LINK-NAME=DDDRUCK
 / SET-FILE-LINK FILE-NAME=RAI.PRI.JCLO.ADADEF,LINK-NAME=DDPRINT
 / ASSIGN-SYSDTA TO-FILE=*SYSCMD
 / START-PROGRAM
FROM-FILE=*MODULE(ELEMENT=ADARUN,LIBRARY=%%DDLIB)
 ADARUN MODE=MULTI,PROG=ADADEF
 ADARUN DBID=%%DBID,DE=%%DEVICE,IDTNAME=%%IDTNAME
 %KARTE
%%JCL-ADALOD
 /REMARK
 /REMARK LOAD A FILE/ MASS UPDATE
 /REMARK
 / SET-FILE-LINK FILE-NAME=%%RLOGR1,LINK-NAME=DDRLOGR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR1,LINK-NAME=DDASSOR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR2,LINK-NAME=DDASSOR2, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR1,LINK-NAME=DDDATAR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR2,LINK-NAME=DDDATAR2, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%WORK,LINK-NAME=DDWORKR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%SORT,LINK-NAME=DDSORTR1
 / SET-FILE-LINK FILE-NAME=%%TEMP,LINK-NAME=DDTEMPR1
 / SET-FILE-LINK FILE-NAME=RAI.DRU.JCLO.ADALOD,LINK-NAME=DDDRUCK
 / SET-FILE-LINK FILE-NAME=RAI.PRI.JCLO.ADALOD,LINK-NAME=DDPRINT
 %SEQUENTIAL
 / ASSIGN-SYSDTA TO-FILE=*SYSCMD
 / START-PROGRAM
FROM-FILE=*MODULE(ELEMENT=ADARUN,LIBRARY=%%DDLIB)
 ADARUN MODE=MULTI,PROG=ADALOD
 ADARUN DBID=%%DBID,DE=%%DEVICE,IDTNAME=%%IDTNAME
 %KARTE
%%JCL-ADAORD
 /REMARK
 /REMARK REORDER
 /REMARK
 / SET-FILE-LINK FILE-NAME=%%RLOGR1,LINK-NAME=DDRLOGR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR1,LINK-NAME=DDASSOR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR2,LINK-NAME=DDASSOR2, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR1,LINK-NAME=DDDATAR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR2,LINK-NAME=DDDATAR2, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%WORK,LINK-NAME=DDWORKR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%SORT,LINK-NAME=DDSORTR1
 / SET-FILE-LINK FILE-NAME=%%TEMP,LINK-NAME=DDTEMPR1
 / SET-FILE-LINK FILE-NAME=RAI.DRU.JCLO.ADAORD,LINK-NAME=DDDRUCK
 / SET-FILE-LINK FILE-NAME=RAI.PRI.JCLO.ADAORD,LINK-NAME=DDPRINT

493

JCL/JCS Requirements and ExamplesAdabas Utilities

 %SEQUENTIAL
 / ASSIGN-SYSDTA TO-FILE=*SYSCMD
 / START-PROGRAM
FROM-FILE=*MODULE(ELEMENT=ADARUN,LIBRARY=%%DDLIB)
 ADARUN MODE=MULTI,PROG=ADAORD
 ADARUN DBID=%%DBID,DE=%%DEVICE,IDTNAME=%%IDTNAME
 %KARTE
%%JCL-ADAINV
 /REMARK
 /REMARK INVERT/ COUPLE
 /REMARK
 / SET-FILE-LINK FILE-NAME=%%RLOGR1,LINK-NAME=DDRLOGR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR1,LINK-NAME=DDASSOR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%ASSOR2,LINK-NAME=DDASSOR2, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR1,LINK-NAME=DDDATAR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%DATAR2,LINK-NAME=DDDATAR2, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%WORK,LINK-NAME=DDWORKR1, -
 / SUP=DISK(SHARE-UPD=YES)
 / SET-FILE-LINK FILE-NAME=%%SORT,LINK-NAME=DDSORTR1
 / SET-FILE-LINK FILE-NAME=%%TEMP,LINK-NAME=DDTEMPR1
 / SET-FILE-LINK FILE-NAME=RAI.DRU.JCLO.ADADBS,LINK-NAME=DDDRUCK
 / SET-FILE-LINK FILE-NAME=RAI.PRI.JCLO.ADADBS,LINK-NAME=DDPRINT
 / ASSIGN-SYSDTA TO-FILE=*SYSCMD
 / START-PROGRAM
FROM-FILE=*MODULE(ELEMENT=ADARUN,LIBRARY=%%DDLIB)
 ADARUN MODE=MULTI,PROG=ADAINV
 ADARUN DBID=%%DBID,DE=%%DEVICE,IDTNAME=%%IDTNAME
 %KARTE
%%JCL-STARTNUC
 /REMARK
 /REMARK START NUCLEUS
 /REMARK
 / MODIFY-JOB-SWITCHES ON=(4,5)
 / ASSIGN-SYSDTA TO-FILE=*SYSCMD
 / START-PROGRAM FROM-FILE=EDT
 :/.ADANUC LOGON %%USERID,%%ACCOUNT
 :/ SET-FILE-LINK FILE-NAME=%%RLOGR1,LINK-NAME=DDRLOGR1,-
 :/ SUP=DISK(SHARE-UPD=YES)
 :/ SET-FILE-LINK FILE-NAME=%%PLOGR1,LINK-NAME=DDPLOGR1,-
 :/ SUP=DISK(SHARE-UPD=YES)
 :/ SET-FILE-LINK FILE-NAME=%%PLOGR2,LINK-NAME=DDPLOGR2,-
 :/ SUP=DISK(SHARE-UPD=YES)
 :/ SET-FILE-LINK FILE-NAME=%%ASSOR1,LINK-NAME=DDASSOR1,-
 :/ SUP=DISK(SHARE-UPD=YES)
 :/ SET-FILE-LINK FILE-NAME=%%ASSOR2,LINK-NAME=DDASSOR2,-
 :/ SUP=DISK(SHARE-UPD=YES)
 :/ SET-FILE-LINK FILE-NAME=%%DATAR1,LINK-NAME=DDDATAR1,-
 :/ SUP=DISK(SHARE-UPD=YES)
 :/ SET-FILE-LINK FILE-NAME=%%DATAR2,LINK-NAME=DDDATAR2,-
 :/ SUP=DISK(SHARE-UPD=YES)
 :/ SET-FILE-LINK FILE-NAME=%%WORK,LINK-NAME=DDWORKR1,-
 :/ SUP=DISK(SHARE-UPD=YES)
 :/ SET-FILE-LINK FILE-NAME=RAI.DRU.JCLO.ADANUC,LINK-NAME=DDDRUCK
 :/ SET-FILE-LINK FILE-NAME=RAI.PRI.JCLO.ADANUC,LINK-NAME=DDPRINT
 :/ ASSIGN-SYSDTA TO-FILE=*SYSCMD
 :/ SET-FILE-LINK FILE-NAME=%USEREX,LINK-NAME=BLSLIB01
 :/ SET-FILE-LINK FILE-NAME=%%DDLIB,LINK-NAME=DDLIB

494

Adabas UtilitiesJCL/JCS Requirements and Examples

 :/ START-PROGRAM FROM-FILE=*MODULE(ELEMENT=ADARUN,LIBRARY=%%DDLIB)
 :ADARUN PROG=ADANUC
 :ADARUN DATABASE=%%DBID DATA BASE ID
 :ADARUN IDTNAME=%%IDTNAME NAME OF IDT
 :ADARUN DEVICE=%%DEVICE
 :ADARUN IDTNAME=%%IDTNAME
 :ADARUN LFIOP=1000000,LWP=800000,LBP=4000000,LU=64000
 :ADARUN LP=200,LS=20000,TT=900,TNAE=900,OPENRQ=NO,PLOGRQ=YES
 :ADARUN NAB=20,NH=400,NU=200,NISNHQ=50,NC=20,NPLOG=2,PLOGDEV=2000
 :ADARUN PLOGSIZE=1000,NCLOG=2,CLOGDEV=2000,CLOGSIZE=500
 :ADARUN UEX2=USEREX2
 :/LOGOFF SYSOUT=DEL
 @D &:1-1:
 @W ’#NUCENT’ O
 @H
 /STEP
 /ENTER-JOB #NUCENT,PROC-ADMIS=PAR(USER-ID=%%USERID, -
 / ACCOUNT=%%ACCOUNT)
 /STEP
 / SET-FILE-LINK FILE-NAME= %%DDLIB,LINK-NAME=DDLIB
 / SET-FILE-LINK FILE-NAME=RAI.DRU.JCLO.ADARES,LINK-NAME=DDDRUCK
 / SET-FILE-LINK FILE-NAME=RAI.PRI.JCLO.ADARES,LINK-NAME=DDPRINT
 / ASSIGN-SYSDTA TO-FILE=*SYSCMD
 / START-PROGRAM
FROM-FILE=*MODULE(ELEMENT=ADARUN,LIBRARY=%%DDLIB)
 ADARUN MODE=MULTI,PROG=ADARAI
 ADARUN DBID=%%DBID,DE=%%DEVICE,IDTNAME=%%IDTNAME
 ADARAI CHKDB ACTIVE

ADAR2E Utility

If a pubset member is lost because of, for example, a head crash or other unrecoverable hardware error,
initialize a new member, include it in the pubset, and restore all datasets in the pubset. In most cases, you
must also reallocate the ASSO, DATA, WORK, and PLOG datasets on exactly the same disk locations
they were on before the hardware failure.

The ADAR2E utility reads the TSOSCAT entries of assigned datasets and creates a procedure that
reallocates the Adabas files at exactly the same disk locations where they were before. The ADAR2E
utility operates totally independently of ADARAI and other Adabas utilities; ADAR2E should be run
whenever disk allocation changes are made to the major Adabas components (ASSO, DATA, WORK,
PLOG, CLOG, TEMP, or SORT).

The following example JCL is for running the ADAR2E utility:

/ LOGON
/ SET-FILE-LINK FILE-NAME=DB.yyyyy.ASSO-01,LINK-NAME=DDASSOR1
/ SET-FILE-LINK FILE-NAME=DB.yyyyy.DATA-01,LINK-NAME=DDDATAR1
/ SET-FILE-LINK FILE-NAME=DB.yyyyy.WORK-01,LINK-NAME=DDWORKR1
/ SET-FILE-LINK FILE-NAME=DB.yyyyy.TEMP-01,LINK-NAME=DDTEMPR1
/ SET-FILE-LINK FILE-NAME=DB.yyyyy.PLOGR1,LINK-NAME=DDPLOGR1
/ SET-FILE-LINK FILE-NAME=DB.yyyyy.PLOGR2,LINK-NAME=DDPLOGR2
/ SET-FILE-LINK FILE-NAME=ALLOCATE.JOB,LINK-NAME=DDJCLOUT
/ START-PROGRAM *MOD(LIB=ADAvrs,ELEM=ADAR2E)
/ LOGOFF SYS-OUTPUT=DEL

495

JCL/JCS Requirements and ExamplesAdabas Utilities

The following is a list of available link names:

DDASSOR1,DDASSOR2,DDASSOR3,DDASSOR4,DDASSOR5
DDDATAR1,DDDATAR2,DDDATAR3,DDDATAR4,DDDATAR5
DDWORKR1,DDWORKR2
DDSORTR1,DDSORTR2
DDTEMPR1,DDTEMPR2
DDPLOGR1,DDPLOGR2,DDPLOGR3,DDPLOGR4,DDPLOGR5,DDPLOGR6,DDPLOGR7,DDPLOGR8

The following is an example of the job control created by the ADAR2E utility:

/ BEGIN-PROCEDURE
/ MODIFY-SDF-OPTIONS CONTINUATION=NEW-MODE
/ CREATE-FILE FILE-NAME=:A:$ADABAS.DB.yyyyy.ASSO-01,-
/ SUPPORT=PUBLIC-DISK(VOLUME=PUBA00,-
/ DEVICE-TYPE=Ddddd,SPACE=ABSOLUTE-
/ (FIRST-PAGE=32833,SIZE=5001))
/ MODI-FILE-ATTR FILE-NAME=:A:$ADABAS.DB.yyyyy.ASSO-01,-
/ SUPPORT=PUBLIC-DISK(VOLUME=PUBA00,-
/ DEVICE-TYPE=Ddddd,SPACE=ABSOLUTE-
/ (FIRST-PAGE=29761,SIZE=5001))
 .
 .
/ CREATE-FILE FILE-NAME=:A:$ADABAS.DB.yyyyy.DATA-01,-
/ SUPPORT=PUBLIC-DISK(VOLUME=PUBA02,-
/ DEVICE-TYPE=Ddddd,SPACE=ABSOLUTE-
/ (FIRST-PAGE=119809,SIZE=8001))
/ MODI-FILE-ATTR FILE-NAME=:A:$ADABAS.DB.yyyyy.DATA-01,-
/ SUPPORT=PUBLIC-DISK(VOLUME=PUBA03,-
/ DEVICE-TYPE=Ddddd,SPACE=ABSOLUTE-
/ (FIRST-PAGE=75841,SIZE=8001))

Execute the ADAR2E-generated reallocation procedure under the system administrator’s logon ID
(TSOS) before starting the ADARAI RECOVER function.

Under BS2000 version 11 and above, it is possible to allow all users with access rights to a certain pubset
to allocate disk space absolutely by issuing the following command under TSOS:

/MODIFY-MASTER-CATALOG CATID= catid ,PHYSICAL-ALLO=USER-ALLOWED

OS/390 or z/OS

496

Adabas UtilitiesJCL/JCS Requirements and Examples

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data protection log DDPLOGRn tape/ disk Required for
RECOVER only if
FEOFPL=YES is
specified.

Recovery log (RLOG) DDRLOGR1 disk

Job stream input DDJCLIN disk Required only for
RECOVER

Recovery job output DDJCLOUT disk Required only for
RECOVER

ADARAI messages DDDRUCK printer Messages and Codes

ADARUN messages DDPRINT printer Messages and Codes

ADARUN parameters DDCARD reader Operations

ADARAI parameters DDKARTE reader

JCL Examples (OS/390 or z/OS)

Prepare for Recovery Logging (ADARAI PREPARE):

//RAIPREP EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOADLIB
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.ADAyyyyy.ASSOR1
//DDRLOGR1 DD DISP=SHR,DSN=EXAMPLE.ADAyyyyy.RLOGR1
//DDDRUCK DD SYSOUT=A
//DDPRINT DD SYSOUT=A
//DDCARD DD *
ADARUN PROGRAM=ADARAI,SVC=xxx,DEVICE=dddd,DBID=yyyyy,MODE=MULTI
//DDKARTE DD *
ADARAI PREPARE RLOGSIZE=5,MINGENS=5

List the RLOG (ADARAI LIST)

//RAILIST EXEC PGM=ADARUN
//STEPLIB DD DSN=ADABAS.Vvrs.LOADLIB,DISP=SHR
//DDASSOR1 DD DSN=EXAMPLE.ADAyyyyy.ASSOR1,DISP=SHR
//DDRLOGR1 DD DSN=EXAMPLE.ADAyyyyy.RLOGR1,DISP=SHR
//DDDRUCK DD SYSOUT=A
//DDPRINT DD SYSOUT=A
//DDCARD DD *
ADARUN PROGRAM=ADARAI,SVC=xxx,DEVICE=dddd,DBID=yyyyy,MODE=MULTI
//DDKARTE DD *
ADARAI LIST
/*

Create Recovery JCL (ADARAI RECOVER)

//ADARAI EXEC PGM=ADARUN
//STEPLIB DD DSN=ADABAS.Vvrs.LOADLIB,DISP=SHR
//*
//DDASSOR1 DD DSN=EXAMPLE.ADAyyyyy.ASSOR1,DISP=SHR
//*

497

JCL/JCS Requirements and ExamplesAdabas Utilities

//DDRLOGR1 DD DSN=EXAMPLE.ADAyyyyy.RLOGR1,DISP=SHR
//DDJCLIN DD DSN=EXAMPLE.ADAyyyyy.RAIJCL(JCLIN),DISP=SHR
//DDJCLOUT DD SYSOUT=A
//*
//DDPLOGR1 DD DSN=EXAMPLE.ADAyyyyy.PLOGR1,DISP=SHR
//DDPLOGR2 DD DSN=EXAMPLE.ADAyyyyy.PLOGR2,DISP=SHR
//*
//DDDRUCK DD SYSOUT=A
//DDPRINT DD SYSOUT=A
//DDCARD DD *
ADARUN PROGRAM=ADARAI,SVC=xxx,DEVICE=dddd,DBID=yyyyy,MODE=MULTI
ADARUN UEX2=UEX2
//DDKARTE DD *
ADARAI RECOVER JCLLOG=YES,RELGEN=0,DRIVES=2

Skeleton Job Control Example (OS/390 or z/OS)
%%JCL-JOB-HEADER
 //ADARECOV JOB 5,’ADA-USER’,MSGCLASS=X,CLASS=A,REGION=4096K
 //*
 //JOBLIB DD DSN=ADABAS.Vvrs.LOAD,DISP=SHR
 //*
%%JCL-JOB-TRAILER
 //*
 //* END OF RECOVERY
 //*
%%JCL-STEP-TRAILER
 //*
 //* END OF STEP
 //*
%%JCL-DDKARTE
 //DDKARTE DD *
%%JCL-ADASAV
 //*
 //* RESTORE FILE(S)/DATABASE
 //*
 //%STEP EXEC PGM=ADARUN ADASAV JOB STEP
 %SEQUENTIAL
 //DDRLOGR1 DD DSN=ADABAS.Vvrs.RLOGR1,DISP=SHR
 //DDASSOR1 DD DSN=ADABAS.Vvrs.ASSOR1,DISP=SHR
 //DDDATAR1 DD DSN=ADABAS.Vvrs.DATAR1,DISP=SHR
 //DDWORKR1 DD DSN=ADABAS.Vvrs.WORKR1,DISP=SHR
 //DDDRUCK DD SYSOUT=X
 //DDPRINT DD SYSOUT=X
 //DDCARD DD *
 ADARUN MODE=MULTI,PROG=ADASAV,DBID=yyyyy,DEVICE=dddd,SVC=xxx
 //DDKARTE DD *
 %KARTE
%%JCL-ADARES
 //*
 //* REGENERATE/BACKOUT
 //*
 //%STEP EXEC PGM=ADARUN ADARES JOB STEP
 %SEQUENTIAL
 //DDRLOGR1 DD DSN=ADABAS.Vvrs.RLOGR1,DISP=SHR
 //DDASSOR1 DD DSN=ADABAS.Vvrs.ASSOR1,DISP=SHR
 //MERGINTI DD DSN=ADABAS.Vvrs.MERGINTI,DISP=SHR
 //MERGINTO DD DSN=ADABAS.Vvrs.MERGINTO,DISP=SHR
 //DDDRUCK DD SYSOUT=X
 //DDPRINT DD SYSOUT=X
 //SYSUDUMP DD SYSOUT=X
 //DDCARD DD *

498

Adabas UtilitiesJCL/JCS Requirements and Examples

 ADARUN MODE=MULTI,PROG=ADARES,DBID=yyyyy,DEVICE=dddd,SVC=xxx
 //DDKARTE DD *
 %KARTE%%JCL-ADADEF
 //* DEFINE NEWWORK
 //*
 //%STEP EXEC PGM=ADARUN ADADEF JOB STEP
 //DDRLOGR1 DD DSN=ADABAS.Vvrs.RLOGR1,DISP=SHR
 //DDASSOR1 DD DSN=ADABAS.Vvrs.ASSOR1,DISP=SHR
 //DDDATAR1 DD DSN=ADABAS.Vvrs.DATAR1,DISP=SHR
 //DDWORKR1 DD DSN=ADABAS.Vvrs.WORKR1,DISP=SHR
 //DDTEMPR1 DD DSN=ADABAS.Vvrs.TEMPR1,DISP=SHR
 //DDSORTR1 DD DSN=ADABAS.Vvrs.SORTR1.DISP=SHR
 //DDDRUCK DD SYSOUT=X
 //DDPRINT DD SYSOUT=X
 //DDCARD DD *
 ADARUN MODE=MULTI,PROG=ADADEF,DBID=yyyyy,DEVICE=dddd,SVC=xxx
 //DDKARTE DD *
 %KARTE
%%JCL-ADALOD
 //*
 //* LOAD A FILE/MASS UPDATE
 //*
 //%STEP EXEC PGM=ADARUN ADALOD JOB STEP
 %SEQUENTIAL
 //DDRLOGR1 DD DSN=ADABAS.Vvrs.RLOGR1,DISP=SHR
 //DDASSOR1 DD DSN=ADABAS.Vvrs.ASSOR1,DISP=SHR
 //DDDATAR1 DD DSN=ADABAS.Vvrs.DATAR1,DISP=SHR
 //DDWORKR1 DD DSN=ADABAS.Vvrs.WORKR1,DISP=SHR
 //DDTEMPR1 DD DSN=ADABAS.Vvrs.TEMPR1,DISP=SHR
 //DDSORTR1 DD DSN=ADABAS.Vvrs.SORTR1.DISP=SHR
 //DDFILEA DD DSN=ADABAS.Vvrs.SORT.OVERFLOW
 //DDDRUCK DD SYSOUT=X
 //DDPRINT DD SYSOUT=X
 //DDCARD DD *
 ADARUN MODE=MULTI,PROG=ADALOD,DBID=yyyyy,DEVICE=dddd,SVC=xxx
 //DDKARTE DD *
 %KARTE
%%JCL-ADAORD
 //*
 //* REORDER
 //*
 //%STEP EXEC PGM=ADARUN ADAORD JOB STEP
 %SEQUENTIAL
 //DDRLOGR1 DD DSN=ADABAS.Vvrs.RLOGR1,DISP=SHR
 //DDASSOR1 DD DSN=ADABAS.Vvrs.ASSOR1,DISP=SHR
 //DDDATAR1 DD DSN=ADABAS.Vvrs.DATAR1,DISP=SHR
 //DDWORKR1 DD DSN=ADABAS.Vvrs.WORKR1,DISP=SHR
 //DDDRUCK DD SYSOUT=X
 //DDPRINT DD SYSOUT=X
 //DDCARD DD *
 ADARUN MODE=MULTI,PROG=ADAORD,DBID=yyyyy,DEVICE=dddd,SVC=xxx
 //DDKARTE DD *
 %KARTE
%%JCL-ADAINV
 //* INVERT/ COUPLE
 //*
 //%STEP EXEC PGM=ADARUN ADAINV JOB STEP
 //DDRLOGR1 DD DSN=ADABAS.Vvrs.RLOGR1,DISP=SHR
 //DDASSOR1 DD DSN=ADABAS.Vvrs.ASSOR1,DISP=SHR
 //DDDATAR1 DD DSN=ADABAS.Vvrs.DATAR1,DISP=SHR
 //DDWORKR1 DD DSN=ADABAS.Vvrs.WORKR1,DISP=SHR
 //DDDRUCK DD SYSOUT=X

499

JCL/JCS Requirements and ExamplesAdabas Utilities

 //DDPRINT DD SYSOUT=X
 //SYSUDUMP DD SYSOUT=X
 //DDCARD DD *
 ADARUN MODE=MULTI,PROG=ADAINV,DBID=yyyyy,DEVICE=dddd,SVC=xxx
 //DDKARTE DD *
 %KARTE%%JCL-STARTNUC
 //* START NUCLEUS
 //*
 //STEP1 EXEC PGM=IEBGENER (submit to internal reader)
 //SYSPRINT DD SYSOUT=X
 //SYSIN DD DUMMY
 //SYSUT2 DD SYSOUT=(*,INTRDR)
 //SYSUT1 DD DATA,DLM=’$$’
 //ADANUC JOB 5,’ADA-NUC’,CLASS=A,MSGCLASS=X,REGION=6M
 //%STEP EXEC PGM=ADARUN
 //STEPLIB DD DSN=ADABAS.Vvrs.LOAD,DSIP=SHR
 //*
 //DDASSOR1 DD DSN=ADABAS.Vvrs.ASSOR1,DISP=SHR
 //DDDATAR1 DD DSN=ADABAS.Vvrs.DATAR1,DISP=SHR
 //DDWORKR1 DD DSN=ADABAS.Vvrs.WORKR1,DISP=SHR
 //*
 //DDRLOGR1 DD DSN=ADABAS.Vvrs.RLOGR1,DISP=SHR
 //*
 //DDPLOGR1 DD DSN=ADABAS.Vvrs.PLOGR1,DISP=SHR
 //*

 //SYSUDUMP DD SYSOUT=X
 //DDPRINT DD SYSOUT=X
 //DDCARD DD *
 ADARUN PROG=ADANUC ADARUN UEX2=UEX2
 ADARUN NPLOG=2,PLOGDEV=dddd
 ADARUN PLOGSIZE=size
 ADARUN MODE=MULTI
 ADARUN DATABASE=yyyyy
 ADARUN SVC=xxx
 ADARUN UTIONLY=YES
 $$ (internal reader delimiter)
 //CHKDB EXEC PGM=ADARUN (check for an active nucleus)
 //STEPLIB DD DSN=ADABAS.Vvrs.LOAD,DISP=SHR
 //SYSOUT DD SYSOUT=*
 //DDPRINT DD SYSOUT=*
 //DDDRUCK DD SYSOUT=*
 //DDCARD DD *
 ADARUN MODE=MULTI,PROGRAM=ADARAI,
 ADARUN DBID=yyyyy,SVC=xxx,DE=dddd
 //DDKARTE DD *
 ADARAI CHKDB ACTIVE
 //*
%%JCL-ENDNUC
 //*
 //* ADADBS END NUCLEUS
 //*
 //%STEP EXEC PGM=ADARUN
 //DDASSOR1 DD DSN=ADABAS.Vvrs.ASSOR1,DISP=SHR
 //DDDATAR1 DD DSN=ADABAS.Vvrs.DATAR1,DISP=SHR
 //DDWORKR1 DD DSN=ADABAS.Vvrs.WORKR1,DISP=SHR
 //DDTEMPR1 DD DSN=ADABAS.Vvrs.TEMPR1,DISP=SHR
 //DDSORTR1 DD DSN=ADABAS.Vvrs.SORTR1,DISP=SHR
 //DDRLOGR1 DD DSN=ADABAS.Vvrs.RLOGR1,DISP=SHR
 //DDDRUCK DD SYSOUT=X
 //DDPRINT DD SYSOUT=X
 //DDCARD DD *

500

Adabas UtilitiesJCL/JCS Requirements and Examples

 ADARUN MODE=MULTI,PROG=ADADBS,DBID=yyyyy,DE=dddd,SVC=xxx
 //DDKARTE DD *
 ADABAS OPERCOM ADAEND
 //CHKDB EXEC PGM=ADARUN (check for an inactive nucleus)
 //STEPLIB DD DSN=ADABAS.Vvrs.LOAD,DISP=SHR
 //SYSOUT DD SYSOUT=*
 //DDPRINT DD SYSOUT=*
 //DDDRUCK DD SYSOUT=*
 //DDCARD DD *
 ADARUN MODE=MULTI,PROGRAM=ADARAI,
 ADARUN DBID=yyyyy,SVC=xxx,DE=dddd
 //DDKARTE DD *
 ADARAI CHKDB INACTIVE
 //*

VM/ESA or z/VM
ADARAI is not currently supported by either the ADAMAINT EXEC (database maintenance) or the
INSTADA EXEC (database installation). The information needed to run ADARAI must be added
manually to the EXECs, CONTROL files, and so on.

 Add the required information as follows:

1. Update ADARAI PARM to contain the correct database ID (the default ID is "00001").

2. Add MULTI write LINK commands to the ADARAI minidisks in the PROFILE EXEC of the DBA
virtual machine. The ADARAI minidisks such as DDRLOGR1 must be defined in the CP directory
of the Adabas nucleus virtual machine.

3. Complete the ADFdbid EXEC with a DATADEF statement for DDRLOGR1. This statement should
always be defined for every utility and for the nucleus. The dataset must be CMS-formatted and
reserved with the defined file name and file types.

501

JCL/JCS Requirements and ExamplesAdabas Utilities

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk Required for
RECOVER

Work DDWORKR1 disk Required for
RECOVER

Datra protection log DDPLOGRn tape/ disk Required for
RECOVER

Recovery log (RLOG) DDRLOGR1 disk

Job stream input DDJCLIN disk Required for
RECOVER

Recovery job output DDJCLOUT disk Required for
RECOVER

ADARAI messages DDDRUCK disk/ terminal/ printer Messages and Codes

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADARAI parameters DDKARTE disk/ terminal/ reader

JCL Examples (VM/ESA or z/VM)

Start Recovery Logging (ADARAI PREPARE)

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDRLOGR1,DSN=ADABASVv.RLOG1,VOL=RLOGV1
DATADEF DDDRUCK,DSN=ADARAI.DDDRUCK,MODE=A
DATADEF DDPRINT,DSN=ADAFRM.DDPRINT,MODE=A
DATADEF DDCARD,DSN=RUNRAI.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADARAI.CONTROL,MODE=A
ADARUN

Contents of RUNRAI CONTROL A1:

ADARUN PROG=ADARAI,DEVICE=dddd,DB=99,MODE=MULTI

Contents of ADARAI CONTROL A1:

ADARUN PREPARE RLOGSIZE=5,RLOGDEV=eeee,MINGENS=5

List The RLOG (ADARAI LIST)

DATADEF ASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF RLOGR1,DSN=ADABASVv.RLOG1,VOL=RLOGV1
DATADEF DDDRUCK,DSN=ADARAI.DDDRUCK,MODE=A
DATADEF DDPRINT,DSN=ADARAI.DDPRINT,MODE=A
DATADEF DDCARD,DSN=RUNRAI.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADARAI.CONTROL,MODE=A

502

Adabas UtilitiesJCL/JCS Requirements and Examples

Contents of RUNRAI CONTROL A1:

ADARUN
PROG=ADARAI,DEVICE=dddd,DB=yyyyy,MODE=MULTI

Contents of ADARAI CONTROL A1:

ADARUN LIST

VSE/ESA
The following functions are available for use with ADARAI on a VSE/ESA system:

Function Action

CHKDB check the database status

DISABLE disable the recovery log (RLOG)

LIST list the RLOG contents

PREPARE start the RLOGs

REMOVE remove the RLOG

The ADARAI RECOVER function used to rebuild the job stream is not currently supported on a
VSE/ESA system.

503

JCL/JCS Requirements and ExamplesAdabas Utilities

File Symbolic Name Storage Logical Unit More
Information

Associator ASSORn disk See note 1

Data Storage DATARn disk See note 1 Required for
RECOVER

Work WORKR1 disk Required for
RECOVER

Recovery log
(RLOG)

RLOGR1 disk

Data protection log PLOGRn tape
disk

 Required for
RECOVER

Job stream input JCLIN SYSIPT Required for
RECOVER

Recovery job
output

JCLOUT SYSPCH Required for
RECOVER

ADARAI
messages

 printer SYS009 Messages and
Codes

ADARUN
messages

 printer SYSLST Messages and
Codes

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
See note 1

ADARAI
parameters

 reader SYSIPT

Note:
Any programmer logical unit may be used.

Example JCS (VSE/ESA)

Start Recovery Logging (ADARAI PREPARE)

// ASSGN SYS009,00F
// EXEC PROC=ADAVvFIL
// EXEC PROC=ADAVvLIB
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADARAI,SVC=xxx,DEVICE=dddd,DB=yyyyy,MODE=MULTI
/*
ADARAI PREPARE RLOGSIZE=5,MINGENS=5
/*

See Procedures for VSE/ESA Examples for descriptions of the VSE/ESA procedures (PROCs).

504

Adabas UtilitiesJCL/JCS Requirements and Examples

List the RLOG (ADARAI LIST)

// ASSGN SYS009,00F
// EXEC PROC=ADAVvFIL
// EXEC PROC=ADAVvLIB
// ASSGN SYS000,SYSIPT
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADARAI,SVC=xxx,DEVICE=dddd,DB=yyyyy,MODE=MULTI
/*
ADARAI LIST
/*

505

JCL/JCS Requirements and ExamplesAdabas Utilities

ADAREP: REPORT
This chapter covers the following topics:

Functional Overview

Report Syntax

Processing Save Tape Input

Report Description

JCL/JCS Requirements and Examples

506

Adabas UtilitiesADAREP: REPORT

Functional Overview
The ADAREP utility produces the database status report, which provides information concerning the
current physical layout and logical contents of a database or a save tape (if the SAVETAPE parameter is
specified).

The information provided in the database status report includes

database name, number, creation date/time, file status, and current log number.

in cylinders and blocks, the amount and locations of Associator, Data, and Work space currently
used, and allocated but unused.

Associator and Data Storage RABN information including device type, VOLSER number, file
number (if appropriate), and usage (AC, NI/UI, Data Storage, DSST, alternate (only from a save
tape), or unused).

alternate RABN block amounts and locations (only from a save tape).

by file, a summary of ISN, extent, padding factor, used/unused Associator and Data Storage space,
and file options.

detailed information (optionally by file) that includes all summary information plus
MINISN/MAXISN settings, detailed space information, creation and last use date/time, field
definition fable (FDT) contents, and general or extended checkpoint file information.

507

Functional OverviewAdabas Utilities

Report Syntax

This chapter covers the following topics:

Optional Parameters

Examples

Optional Parameters
ADAREP can be specified alone to retrieve a database status report. You can optionally customize the
report by added parameter values.

CPEXLIST: Print Checkpoint List in Extended Format
CPLIST : Print Checkpoint List in Normal Format

These parameters are used to print the checkpoint list in normal (CPLIST) or extended
(CPEXLIST) format. Either CPEXLIST or CPLIST must be specified to display checkpoint
information. CPEXLIST adds the following information to the normal CPLIST information,
depending on the checkpoint origin:

(Utility or Adabas Online System/Basic Services) function name;

Checkpoint-specific data.

If the CPEXLIST report is to be displayed, OFFSET can also be specified for a more readable
display.

The FROMDATE, TODATE, FROMSESSION, and TOSESSION parameters may be used to
indicate the range of checkpoints to be printed.

FILE or NOFILE: File Information to be Displayed or Suppressed

508

Adabas UtilitiesReport Syntax

FILE defines the list of files for which status information is to be printed or displayed. If this
parameter is omitted, status information for all files will be included.

If NOFILE is specified, the printing of all file and field description information is suppressed.

FROMDATE/ TODATE: Start/ End Checkpoint Dates for Report

When CPLIST or CPEXLIST is specified, specific start and/or end dates for checkpoint
information can be specified. Examples of valid yyyymmdd date specification are:

ADAREP FROMDATE=19960101,TODATE=19960228 January 1-February 28, 1996
ADAREP FROMDATE=19951111 November 11, 1995 to checkpoint file end
ADAREP TODATE=19951223 From checkpoint file begin to (and including)
 December 23, 1995

If FROMDATE is not specified, the report begins with the earliest checkpoint information in the
system (or with the first on the FROMSESSION session, if later); if TODATE is not specified,
the report continues up to the most recent checkpoint (or ends with the last on the TOSESSION
session, if earlier).

FROMSESSION/ TOSESSION: Start/ End Session for Report

Specify a start and/or end session number. Sessions before FROMSESSION and/or after
TOSESSION session numbers are not included in the report information. If FROMSESSION is
not specified, the report begins with the earliest checkpoint information in the system (or with
the first on the FROMDATE date, if later); if TOSESSION is not specified, the report continues
up to the last checkpoint (or ends with the last on the TODATE date, if earlier).

LAYOUT: Format Output for Printing

LAYOUT=1 specifies that the "Contents of Database" table should be printed in a single 120-
character column format. Normally, the Contents of Database report table is divided into two
80-column subtables suitable for terminal display.

LIMCOUNT or NOCOUNT: Counting of Number of Records Loaded

ADAREP reads the address converter to determine the value for RECORDS LOADED for a
file. For very large files, this can result in a large amount of I/O activity. If LIMCOUNT is
specified, ADAREP checks the value for TOPISN for the file. If TOPISN is greater than 1000,
"NOT COUNTED" appears under RECORDS LOADED.

If NOCOUNT is specified, no value is printed for RECORDS LOADED for any file. If neither
LIMCOUNT nor NOCOUNT are specified, ADAREP compiles the exact value for RECORDS
LOADED for each file.

NOFDT: Suppress Printing of Field Definitions

The printing of the field definition table (FDT) information for each file is to be omitted. The
FDT of the Adabas checkpoint and security files are not printed by ADAREP.

NOLGLIST, NOPHLIST, or NOSTD: Suppress Database Layout Printing

509

Report SyntaxAdabas Utilities

If NOLGLIST is specified, the logical database layout information is to be omitted. If
NOPHLIST is specified, physical database layout information is omitted. Specifying NOSTD suppresses
all database layout information, and is equivalent to specifying NOLGLIST and NOPHLIST.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

OFFSET: Defines Extended Report Line Alignment

The OFFSET parameter aligns the beginning of the extended information with the end of the
normal checkpoint information for printing on a single line. The default is 63. To display
extended information, OFFSET must be reduced or the extended portion may not be displayable
within 80 columns.

PLOGNUM: Protection Log Number

PLOGNUM specifies the number of the nucleus protection log used during the ADASAV save
operation. The parameter is required if the supplied save tape was created by an Adabas version
5.1 online save operation. For tapes created using Adabas version 5.2 or above, the PLOGNUM
is supplied on the tape. Specifying PLOGNUM for such tapes overrides the information on the
tape.

SAVETAPE: Print Save Tape Report

If SAVETAPE is specified, the report is printed from a save tape. The purpose of the save tape
report is to determine what the save tape contains. For more information, see the section
Processing Save Tape Input.

CPLIST/ CPEXLIST cannot be specified with SAVETAPE. NOCOUNT must be specified with
SAVETAPE because ADAREP does not count the number of records in a file on a save tape. If
CPLIST/ CPEXLIST is specified or NOCOUNT is not, ADAREP prints a warning message,
changes these options internally, and continues processing.

SYN1/SYN4: Beginning Block Number

SYN1/SYN4 specifies the block number containing the SYN1/SYN4 checkpoint at which the
corresponding save operation began. The parameter is required if the supplied save tape was
created by an Adabas version 5.1 online save operation. For tapes created using ADASAV
version 5.2 or above, the SYN1/SYN4 checkpoint information is supplied on the tape.
Specifying SYN1/SYN4 for such tapes overrides the information on the tape.

Examples

510

Adabas UtilitiesReport Syntax

Example 1:

ADAREP REPORT

All database, file, and field information is to be printed. Checkpoint data is not to be printed.

Example 2:

ADAREP REPORT NOFDT

Database and file information is to be printed. Checkpoint data and field definitions for each file are not to
be printed.

Example 3:

ADAREP CPEXLIST,FROMDATE=19980701,TODATE=19980715
ADAREP NOSTD,NOFILE

A checkpoint list (extended format) is to be printed for all checkpoints taken between July 1, 1998 and
July 15, 1998. No other information is to be printed.

Example 4:

ADAREP REPORT SAVETAPE,NOCOUNT

All database, file, and field information is to be printed from a save tape. NOCOUNT is required because
ADAREP does not count the number of records in a file on a save tape.

511

Report SyntaxAdabas Utilities

Processing Save Tape Input
If the SAVETAPE keyword is specified, the report is printed from a save tape.

The save tape

must have been created using ADASAV version 5.1 or above;

may have been created online or offline;

may be a database save, file save, or delta save tape; and

must be supplied as a DD/SAVE sequential input file.

ADAREP does not scan the complete save tape: normally, it is sufficient to supply only the first
cassette/tape reel.

ADAREP reads through the save tape to pick up the general control block (GCB), the block of unreadable
blocks (BUB), the mirror table, the mirror BUB, the free space table (FST), and all the file control blocks
(FCBs). Once these are in main memory, ADAREP continues as for a normal database report. The file
definition tables (FDTs) are read from the save tape as they are needed: they are not buffered in main
memory.

Notes:

1. Adabas version 7.2 and above do not support and therefore do not save BUB or mirror information.
However, BUB and mirror information on save tapes from versions of Adabas prior to version 7.2
back to version 5.1 is still reported.

2. A save tape created using ADASAV version 5.1 does not contain the mirror table, the mirror BUB,
or the FST. At the corresponding location in the report, a message appears indicating that these
blocks are not available.

This chapter covers the following topics:

Supplying Protection Log Input

Checking Input Tapes

Concurrent Parameters

Reports for Delta Save Tapes

Report Layout

Supplying Protection Log Input
If an online save tape is used, the corresponding protection log may optionally be specified as a
DD/PLOG sequential input file:

512

Adabas UtilitiesProcessing Save Tape Input

If DD/PLOG is supplied, ADAREP scans the protection log for FCB and FST blocks to ensure that it
has the most recent versions.

If DD/PLOG is not supplied, ADAREP prints a warning message and continues. It displays the
database status as of the beginning of the online save operation (time of SYN1/SYN4 checkpoint).
Any secondary extents allocated during the online save operation are not reflected in the report
because they are only visible on the protection log. In addition, the physical layout section may report
phantom errors due to inconsistency in the FCB and FST blocks on the save tape. This happens only
if a secondary extent was allocated during the short phase when ADASAV was saving the FCB and
FST blocks.

If the save tape you are using was created using ADASAV version 5.1, you must specify the parameters
PLOGNUM and SYN1/SYN4 to indicate the protection log number and block number of the SYN1 or
SYN4 checkpoint. For tapes created using ADASAV version 5.2 or above, this information is supplied on
the tape. Specifying PLOGNUM or SYN1/SYN4 for such tapes overrides the information on the tape.

When DD/PLOG is supplied, two tape units are needed in parallel: it is not possible to concatenate the
save tape and the protection log as for ADASAV RESTONL.

Checking Input Tapes
After opening the DD/SAVE and DD/PLOG input datasets, ADAREP cross-checks to ensure that the
input tapes are correct:

If an invalid save tape is supplied, ADAREP terminates and displays error-128 (invalid save tape
supplied).

If an invalid protection log is supplied, ADAREP displays an appropriate warning message, sets the
condition code to 4, and continues.

Concurrent Parameters
CPLIST/ CPEXLIST information and the number of records loaded for a file cannot be printed from the
save tape. If the CPLIST/ CPEXLIST parameter is specified or the NOCOUNT parameter is not specified
with SAVETAPE, ADAREP prints a warning message, changes these options internally, and continues
processing.

If the save tape was created using ADASAV version 5.3.2 or above, the VOLSER number is printed on
the report. For save tapes created using earlier versions of ADASAV, asterisks are printed as VOLSER
numbers.

Reports for Delta Save Tapes
For delta save tapes, much of the information is either inaccessible or must be reconstructed:

The delta save status is always "enabled"; the DLOG area usage is only one block (the header) which
is displayed as "n%".

513

Processing Save Tape InputAdabas Utilities

The last full save number, last delta save number, and the date/time of the last delta save are taken
from the DSID.

The estimated number of changed blocks is MAXFILES times 5 plus 30 rounded to the next multiple
of 100.

The DLOG area location is derived from the GCB.

The date/time of last full save cannot be reconstructed and is always displayed as "unknown".

Report Layout
The purpose of the save tape report is to determine what the save tape contains.

The save tape report is preceded by a short header indicating the kind of save tape supplied, whether it
was created online or offline, when it was created, the version of ADASAV used to create it, the database
ID on the save tape, and possibly the delta save identifier of the save tape. For online save tapes, the
session number of the corresponding protection log and the block number of the SYN1/SYN4 checkpoint
(either supplied or derived from the tape) is displayed.

A D A R E P Vv.r SMs DBID = nnnnn STARTED yyyy-mm-dd hh:mm:SS

PARAMETERS:

ADAREP REPORT SAVETAPE

* *
* REPORT FROM ONLINE DATABASE SAVE *
* CREATED AT yyyy-mm-dd hh:mm:ss *
* BY ADASAV VERSION V vr *
* DBIB nnnnn *
* DSID 1 / 0 / yyyy-mm-dd hh:mm:ss *
* PLOG SESSION NR 17 *
* SYN1 BLOCK NR 137 *
* *

* *
* DATA BASE REPORT * yyyy-mm-dd hh:mm:ss
* *

The database ID printed in the first line of the report is taken from the ADARUN DBID parameter. This
DBID is not cross-checked with the database ID on the save tape. Instead, the save tape DBID is used
throughout the report once the save tape is opened and the GCB read.

The physical layout for file save reports is a table of RABN ranges indicating how each RABN in the
database is used. Because a file save tape contains only the FCBs of the saved files, gaps exist in the
physical layout table and are reported as "unknown" ranges rather than errors.

514

Adabas UtilitiesProcessing Save Tape Input

Report Description
The ADAREP database status report contains general database information followed by information about
the status, allocation, and definition of each file in the database. Although the report is designed for
printing from the SYSLST (BS2000), DDDRUCK (z/OS or z/VM), or SYS009 (VSE) dataset, the
following figures show examples of the report output displayed at a terminal. The following pages display
sections in the order they appear in the report; a description of each part is provided on the same page or
the facing page.

This chapter covers the following topics:

General Database Information

File Information

Checkpoint Information

General Database Information
The first section contains general information about the database and its physical layout:

 * DATA BASE REPORT * yyyy-mm-dd hh:mm:ss

 DATA BASE NAME = EXAMPLE-DB
 DATA BASE NUMBER = 99
 DATE LOADED = yyyy-mm-dd
 TIME LOADED = hh:mm:ss
 SYSTEM FILES = 10
 TRIGGER FILES = 6
 MAXIMUM NUMBER OF FILES = 15
 NUMBER OF FILES LOADED = 3
 CURRENT LOG TAPE NUMBER = 48
 RABNSIZE = 3
 RECOVERY AID = NO

Additionally, if universal encoding support (UES) is enabled (UES=YES), the following encoding
information is displayed:

 UNIVERSAL ENCODING SUP. = YES
 ALPHA FILE ENCODING = 37
 WIDE FILE ENCODING = 4095
 ALPHA ASCII ENCODING = 437
 WIDE USER ENCODING = 950

If UES=NO, this information is suppressed.

515

Report DescriptionAdabas Utilities

Field Explanation

DATABASE NAME Name assigned to the database. See the ADADEF utility, DBNAME
parameter.

DATABASE NUMBER Number (ID) assigned to the database. See the ADADEF utility,
DBIDENT parameter.

DATE LOADED Date the database was initially defined.

TIME LOADED Time of day when the database was initially defined.

SYSTEM FILES File numbers of Adabas system files.

TRIGGER FILE If the database contains a trigger file, this entry displays the file
number. If no trigger file exists in the database, this line does not
print.

MAXIMUM NUMBER OF
FILES

Maximum number of files permitted for the database. See the
ADADEF utility, MAXFILES parameter.

NUMBER OF FILES
LOADED

Number of files currently in the database.

CURRENT LOG TAPE
NUMBER

Number of the most recent data protection log for the
database.

RABNSIZE Length of the blocks in the database. RABNSIZE=3 indicates 24-bit
blocks; RABNSIZE=4 indicates 31-bit blocks.

RECOVERY AID Whether the Adabas Recovery Aid (ADARAI) is active for the
database.

UNIVERSAL ENCODING
SUPPORT

Whether universal encoding support (UES) is active for the
database.

ALPHA FILE ENCODING Current file encoding set for alphanumeric (A) format fields in the
database. Must be EBCDIC-compatible.

WIDE FILE ENCODING Current file encoding set for wide-character (W) format fields in the
database.

ALPHA ASCII ENCODING Current user encoding set for alphanumeric (A) format fields in the
database. Must be ASCII-compatible.

WIDE USER ENCODING Current user encoding set for wide-character (W) format fields in the
database.

Space Allocated to Database Components

The "physical layout" table lists the space allocations for the major components of the database
(Associator, Data Storage, and Work).

The "unused storage" table lists the unused space in the Associator and Data Storage areas. This space is
not assigned to any file in the database.

516

Adabas UtilitiesReport Description

 P H Y S I C A L L A Y O U T

 DD- I DEV I NMBR OF I NMBR OF EXTENTS IN BLK. I BLOCK I NMBR OF I
 NAMES I TYPE I CYLS I BLOCKS FROM TO I LNGTH I M-BYTE I
 ----------I-------I---------I-------------------------I-------I---------I
 I I I I I I
 ASSOR1 I 3380 I 100 I 28481 1 28481 I 2004 I 54 I
 I I I I I I
 DATAR1 I 3380 I 200 I 26991 1 26991 I 4820 I 124 I
 I I I I I I
 WORKR1 I 3380 I 40 I 5391 1 5391 I 4820 I 24 I
 I I I I I I

 U N U S E D S T O R A G E

 DD- I DEV I NMBR OF I NMBR OF EXTENTS IN BLK. I BLOCK I NMBR OF I
 NAMES I TYPE I CYLS I BLOCKS FROM TO I LNGTH I M-BYTE I
 ----------I-------I---------I-------------------------I--------I---------I
 I I I I I I
 ASSOR1 I 3380 I 98 I 28134 328 28461 I 2004 I 54 I
 I I I I I I
 DATAR1 I 3380 I 198 I 26811 131 26941 I 4820 I 124 I

The columns in these tables provide the following information:

Column Explanation

DDNAMES The job/task control name (without the "DD" prefix) that defines the
Associator, Data Storage, or Work component of the database.

DEV TYPE The physical device containing the Associator, Data Storage, or
Work component.

NMBR OF CYLS The DASD cylinders allocated to the Associator, Data Storage, and
Work components. If less than one full cylinder has been allocated,
"0" is shown in this column.

NMBR OF BLOCKS The total number of blocks assigned to the Associator, Data Storage,
or Work component.

EXTENTS IN BLK The extents, listed by block range.

BLOCK LNGTH The block size. The block size depends on the component and the
device type.

NUMBER OF M-BYTES The component storage size, in megabytes.

Contents of the Database: General File Status

The next section contains information on the status of each file in the database:

517

Report DescriptionAdabas Utilities

 * *
 * CONTENTS OF DATABASE 99 (EXAMPLE-DB) * yyyy-mm-dd hh:mm:ss
 * *

 FILE NAME LOADED TOP-ISN MAX-ISN EXTENTS PADDING
 NUA D A% D%

 1 EMPLOYEES 1995-10-27 1107 2003 111 1 10 10
 2 VEHICLES 1995-10-27 773 2003 111 1 10 10
 10 CHECKPOINT 1995-10-27 3 667 111 1 10 10

The columns in this table provide the following information:

Column Explanation

FILE Adabas file number.

NAME File name (see the ADALOD utility, NAME parameter).

LOADED Date the file was loaded.

TOP-ISN Highest ISN currently used in the file.

MAX-ISN Highest ISN that can be assigned to a record in the file (see the ADALOD utility,
MAXISN parameter).

EXTENTS Number of logical extents currently assigned to the normal index (N), upper
index (U), address converter (A), and Data Storage (D). A maximum of 5 logical
extents may be allocated to an element. If an element has been assigned 5 extents,
reorder the file (using ADAORD REORFILE or the ADAULD, ADADBS
DELETE, ADALOD LOAD utility sequence) before the last extent fills, or
Adabas will lock the file.

PADDING The block padding factor defined for the Associator (A) and Data Storage (D)
(see the ADALOD utility, ASSOPFAC and DATAPFAC parameters).

File Options

The next section lists the file options that are active for each file in the database:

518

Adabas UtilitiesReport Description

 * FILE OPTIONS *

 ADAM FILE
 . COUPLED FILE
 . . ISNREUSE
 . . . DSREUSE
 CIPHERED FILE
 EXPANDED FILE
 USERISN
 NOACEXTENSION
 MIXDSDEV
 PGMREFRESH
 MULTICLIENT FILE
 INDEX COMPRESSED FILE NAME

 1 EMPLOYEES . C I D
 2 VEHICLES . C . D
 10 CHECKPOINT . . . D

Options that are active for a file are indicated by the following codes in the row containing the file name:

Code Explanation

A ADAM file. The file was loaded with the ADAM option.

C Coupling, ciphering, or index compression. The file is coupled to one or more files,
and/or the file data is ciphered, and/or the file index is compressed.

D Space reuse. Space which has been released within a block as a result of a record deletion
may be used for a new record.

I ISN reuse. ISNs of deleted records may be reassigned to new records.

M MIXDSDEV active (multiple Data Storage device types) and/or a multiclient file.

N File is defined with the NOACEXTENSION option.

P PGMREFRESH is active.

U File was loaded with the USERISN option.

X File is a component of an expanded file.

File Space Allocations

The next section shows the space allocated for each file in the database:

519

Report DescriptionAdabas Utilities

 * FILE SPACE ALLOCATIONS *

 FILE NAME ALLOC.: NI UI AC DATA/CYL
 UNUSED:

 1 EMPLOYEES 100 30 03 80/0
 1 24 17 31/0
 2 VEHICLES 10 20 03 30/0
 2 03 02 12/0
 10 CHECKPOINT 10 01 01 20/0
 10 05 0 11/0

Each file listed has two rows in the file space allocations table. The first row shows the number of blocks
and cylinders allocated . The second row shows the number of blocks and cylinders currently unused.

The first two columns give the number and logical name of the file. The remaining columns provide the
following information:

Column The number of . . .

NI blocks for the normal index.

UI blocks for the upper index.

AC blocks for the address converter.

DATA/CYL blocks and cylinders for Data Storage.

Physical Layout of the Database

The next section lists all space allocations for the database in RABN sequence. RABNs allocated to the
Associator are listed first, followed by RABNs allocated to Data Storage.

 PHYSICAL LAYOUT OF THE DATABASE
 yyyy-mm-dd hh:mm:ss

 FROM TO NUMBER DEV TABLE FILE VOLSER
 BLK BLK OF BLKS TYPE TYPE NUMBER

 106 - 119 14 3380 DSST 00 ADA001
 120 - 120 01 3380 AC 10 ADA001
 121 - 121 01 3380 UI 10 ADA001
 122 - 131 10 3380 NI 10 ADA001
 132 - 134 03 3380 AC 01 ADA001
 135 - 164 30 3380 UI 01 ADA001
 165 - 264 100 3380 NI 01 ADA001
 265 - 267 03 3380 AC 02 ADA001
 268 - 287 20 3380 UI 02 ADA001
 288 - 327 10 3380 NI 02 ADA001
 328 - 28481 28154 3380 UNUSED 00 ADA001
 01 - 20 20 3380 DS 10 ADA002
 21 - 100 80 3380 DS 01 ADA002
 101 - 130 30 3380 DS 02 ADA002
 131 - 26991 26861 3380 UNUSED 00 ADA002

520

Adabas UtilitiesReport Description

Note:
Normally, a gap in the physical layout table is accompanied by an error message pointing to the gap.
However, this is not the case for the physical layout of a file save. Since the file save contains only the
FCBs of the saved files, there will be gaps in the physical layout table and these are reported as ’unknown’
ranges.

The columns in this table provide the following information:

Column Explanation

FROM BLK The RABN of the first block in the logical extent.

TO BLK The RABN of the last block in the logical extent.

NUMBER OF
BLKS

The number of blocks contained within the extent.

DEV TYPE The physical device type.

TABLE TYPE The element for which the allocation was made:

AC address converter

NI normal index

UI upper index

DS Data Storage

DSF Delta Save logging area

DSST Data Storage space table

UNUSED available space

FILE The file for which the allocation was made. Zero indicates that the extent is not
related to a particular file.

VOLSER NUMBER The serial number of the volume on which the extent is contained. This is
shown for Data Storage only if the Data Storage datasets are present in the
JCL.

File Information

General Characteristics

Detailed information on each file in the database is provided after the database information. This
information can be limited to certain files or omitted altogether. The first part of this section displays
information about the file’s characteristics:

521

Report DescriptionAdabas Utilities

 * FILE 01 * EMPLOYEES yyyy-mm-dd hh:mm:ss

 TOP-ISN = 1,107 HIGHEST INDEX LEVEL = 3
 MAX-ISN EXPECTED = 2,003 PADDING FACTOR ASSO = 10%
 RECORDS LOADED = 1,107 PADDING FACTOR DATA = 10%
 MIN-ISN = 1 LENGTH OF CLIENT NR = 0
 NUMBER OF UPDATES = 0 ISNSIZE = 3

 MAX COMP REC LEN = 4,734 DATE LOADED = 1995-01-29
 BLK/ADD DS EXT = 0 TIME LOADED = 13:30:14
 BLK/ADD UI EXT = 0 DATE OF LAST UPDATE = 1997-01-15
 BLK/ADD NI EXT = 0 TIME OF LAST UPDATE = 23:45:10

 FILE ALPHA CODE = 500
 FILE WIDE CODE = 4,095
 USER WIDE CODE = DB DEFAULT

The following information is provided:

Field Explanation

TOP-ISN Highest ISN currently used in the file.

MAX-ISN EXPECTED Highest ISN planned for the file. See the ADALOD utility, MAXISN
parameter.

RECORDS LOADED Number of records currently contained in the file.

MINIMUM ISN Lowest ISN that can be assigned to a record in the file. See the
ADALOD utility, MINISN parameter.

NUMBER OF UPDATES Number of updates that have been applied to the file after it was
loaded.

MAX COMP REC
LENGTH

Maximum compressed record length permitted for the file. See the
ADALOD utility, MAXRECL parameter.

BLK/ADD DS EXT Maximum number of blocks which may be allocated for each Data
Storage secondary extent. See the ADALOD utility, MAXDS
parameter.

BLK/ADD UI EXT Maximum number of blocks which may be allocated for each
secondary upper index extent. See the ADALOD utility, MAXUI
parameter.

BLK/ADD NI EXT Maximum number of blocks which may be allocated for each
secondary normal index extent. See the ADALOD utility, MAXNI
parameter.

FILE ALPHA CODE Current file encoding set for alphanumeric fields in the file. This
information is not displayed if UES=NO.

FILE WIDE CODE Current file encoding set for wide-character fields in the file. This
information is not displayed if UES=NO.

522

Adabas UtilitiesReport Description

Field Explanation

USER WIDE CODE Current user encoding set for wide-character fields in the file. This
information is not displayed if UES=NO.

HIGHEST INDEX LEVEL Highest index level currently active for the file.

PADDING FACTOR ASSO Associator padding factor. See the ADALOD utility, ASSOPFAC
parameter or the ARDORD utility, REORASSO and REORFASSO
functions.

PADDING FACTOR DATA Data Storage padding factor. See the ADALOD utility, DATAPFAC
parameter or the ADAORD utility, REORDATA and REORFDATA
functions.

LENGTH OF CLIENT NR Length of the owner ID for a multiclient file.

ISNSIZE Whether the file contains 3-byte or 4-byte ISNs.

DATE LOADED Date the file was loaded.

TIME LOADED Time the file was loaded.

DATE OF LAST UPDATE Date the file was last changed.

TIME OF LAST UPDATE Time the file was last changed.

Options

File-option settings for the file are displayed next:

 ADAM FILE NO
 CIPHERED FILE NO
 ISN REUSAGE NO
 SPACE REUSAGE YES
 COUPLED FILES NONE
 EXPANDED FILE NO
 USERISN NO
 NOACEXTENSION NO
 MIXDSDEV NO
 PGMREFRESH NO
 MULTICLIENT FILE NO
 PRIVILEGED USAGE NO
 ONLINE INVERT NONE
 INDEX COMPRESSED NO

 ADABAS VERSION NEEDED FOR THIS FILE: V71 OR LATER

523

Report DescriptionAdabas Utilities

Field Indicates . . .

ADAM FILE whether the file was loaded with the ADAM option.

CIPHERED FILE whether the file was loaded with the cipher option.

ISN REUSAGE whether the file ISNs can be reused.

SPACE REUSAGE whether the file Data Storage space can be reused.

COUPLED FILES the file(s) to which this file is physically coupled.

EXPANDED FILE whether the file is part of an expanded file; if so, the number of the
expanded file is displayed.

USERISN whether the file was loaded with the USERISN option.

NOACEXTENSION whether the file permits increasing the MAXISN setting.

MIXDSDEV whether the file Data Storage extents can be on different
device types.

PGMREFRESH whether the file can be refreshed using the E1 command.

MULTICLIENT FILE whether the file can contain records belonging to multiple
owners/owner IDs.

PRIVILEGED USAGE whether the file was locked by the nucleus for privileged usage; if so,
only Adabas utilities are allowed to access the file.

ONLINE INVERT the descriptor(s) being inverted online.

INDEX COMPRESSED whether the file index is compressed.

Delta Save Change Flags

If the Delta Save Facility is installed on the database and delta save logging is enabled, ADAREP shows
the delta save change flags for each file:

 DELTA SAVE CHANGE FLAGS:
 SAVE ENTIRE INDEX = [YES | NO]
 SAVE ENTIRE ADDR CONV = [YES | NO]
 SAVE ENTIRE DATA STOR = [YES | NO]
 TOTAL CHANGES BY UTILITIES = nnn BLOCKS

Each flag indicates whether all of the index, address converter, or Data Storage, respectively, of the file
have been changed by a utility and will be saved entirely in the next delta save operation.

The "total changes by utilities" include the blocks within extents that will be saved entirely as well as the
blocks changed by ADALOD UPDATE executions.

Space Allocation

The next section lists the space allocations for the file:

524

Adabas UtilitiesReport Description

 LIST I DEV BLOCK I SPACE ALLOC. I FROM TO I UNUSED SPACE I
 TYPE I TYPE LNGTH I BLOCKS CYL I RABN RABN I BLOCKS CYL I
 I I I I I
 -----I------------I------------------I-------------------I------------------I
 I I I I I
 DSST I 3380 2004 I 1 0 I 106 106 I I
 AC I 3380 2004 I 3 0 I 132 134 I I
 UI I 3380 2004 I 30 0 I 135 164 I 17 0 I
 NI I 3380 2004 I 100 0 I 165 264 I 24 0 I
 I I I I I
 DS I 3380 4820 I 80 0 I 21 100 I 31 0 I
 I I I I I
 --

The space allocations table provides the following information:

Column Explanation

LIST TYPE The database component:

AC address converter

NI normal index

UI upper index

DS Data Storage

DSF File-specific delta save logging area

DSST Data Storage space table

UNUSED Available space

DEV TYPE Physical device containing the component.

BLOCK LNGTH Block length depends on the component and device type.

SPACE ALLOC. Total number of blocks and cylinders allocated to the component; "0" indicates
less than one full cylinder.

FROM RABN RABN of the first block in the logical extent.

TO RABN RABN of the last block in the logical extent.

UNUSED SPACE Number of allocated blocks and cylinders but currently unused; "0" indicates less
than one full cylinder.

Field Definition Table

The field definition table (FDT) is displayed next. This information can be omitted.

525

Report DescriptionAdabas Utilities

 FIELD DESCRIPTION TABLE

 I I I I I
 LEVEL I NAME I LENGTH I FORMAT I OPTIONS I PARENT OF
 I I I I I
 ------I------I--------I--------I--------------I----------------------------I
 I I I I I I
 1 I AA I 8 I A I DE,UQ I I
 1 I AB I I I I I
 2 I AC I 20 I A I NU I I
 2 I AE I 20 I A I DE I SUPERDE,PHONDE I
 2 I AD I 20 I A I NU I I
 1 I AF I 1 I A I FI I I
 1 I AG I 1 I A I FI I I
 1 I AH I 6 I U I DE I I
 1 I A2 I I I I I
 1 I AO I 6 I A I DE I SUBDE,SUPERDE I
 1 I AQ I I I PE I I
 2 I AR I 3 I A I NU I SUPERDE I
 2 I AS I 5 I P I NU I SUPERDE I
 1 I A3 I I I I I
 2 I AU I 2 I U I I SUPERDE I
 2 I AV I 2 I U I NU I SUPERDE I

526

Adabas UtilitiesReport Description

Field Explanation

LEVEL Field level.

NAME Field name.

LENGTH Field length, in bytes.

FORMAT Field’s data type:

A alphanumeric

B binary

F fixed point

P packed decimal

G floating point

U unpacked decimal

W wide-character

OPTIONS DE Descriptor

FI Fixed storage

LA Long alphanumeric

MU Multiple-value field

NC Null/not counted

 Null not allowed

NU Null value suppression

NV Not converted (alpha and wide-character fields)

PE A periodic group. The fields composing the periodic group are those
which follow and have a higher level number.

UQ Unique descriptor

XI Index (occurrence) number excluded from UQ in PE

PARENT OF Shows whether this field is a parent field for a collation descriptor, sub/superfield,
sub/superdescriptor, hyperdescriptor, or phonetic descriptor.

527

Report DescriptionAdabas Utilities

Special Descriptors

The next section displays information about any special descriptors (collation descriptors, subdescriptors,
subfields, superdescriptors, superfields, phonetic descriptors, and hyperdescriptors) in the file:

 SPECIAL DESCRIPTOR TABLE
 I I I I I I
 TYPE I NAME I LENGTH I FORMAT I OPTIONS I STRUCTURE I
 I I I I I I
 -------I------I--------I--------I----------------------I----------------I
 I I I I I I
 SUPER I H1 I 4 I B I DE,NU I AU (1 - 2) I
 I I I I I AV (1 - 2) I
 SUB I S1 I 4 I A I DE I AO (1 - 4) I
 SUPER I S2 I 26 I A I DE I AO (1 - 6) I
 I I I I I AE (1 - 20) I
 SUPER I S3 I 12 I A I DE,NU,PE I AR (1 - 3) I
 I I I I I AS (1 - 9) I
 I I I I I I
 PHON I PH I I I I PH = PHON(AE) I
 I I I I I I
 COL I Y1 I 20 I W I DE I CDX 8,PA I
 COL I Y2 I 12 I A I DE,NU,PE I CDX 1,AR I
 I I I I I I
 I I I I I I

Along with the name, length, and format of each special descriptor, this table provides the following
information:

528

Adabas UtilitiesReport Description

Column Explanation

TYPE SUB Subfield/subdescriptor

SUPER Superfield/superdescriptor

PHON Phonetic descriptor

HYPER Hyperdescriptor

COL Collation descriptor

OPTIONS DE Descriptor field

FI Fixed point

LA Long alphanumeric

MU Multiple-value field

NC Null not counted (SQL null representation)

NN Null not allowed

NU Null value suppression

NV Not converted (alpha and wide-character fields)

PE Periodic group

UQ Unique descriptor

XI Index (occurrence) number excluded from UQ in PE

STRUCTURE The component fields and field bytes of the sub-, super-, or hyperdescriptor.
Phonetic descriptors show the equivalent alphanumeric elementary fields.
Collation descriptors show the associated collation descriptor user exit and the
name of the parent field.

Checkpoint Information
Checkpoint information is also provided if the CPLIST or CPEXLIST parameters are specified:

529

Report DescriptionAdabas Utilities

 * CHECK-POINT-LIST * yyyy-mm-dd hh:mm:ss

 CP CP DATE TIME PLOG BLOCK JOBNAME
 NAME TYPE NR NR
 USER TYPE VOLSER NR....

 SYNP 30 1995-06-03 14:07:38 47 1 DUAL GA0TB1
 LOAD VOLSER = WRK001
 SYNC 01 ET 1995-06-03 14:08:16 48 2 DUAL GANUC70A
 SESSION OPEN IGNDIB=N FORCE=N
 SYNP 1C UTI 1995-06-03 14:08:36 48 3 DUAL GA0TB1
 RESTRUCT

The columns in this table provide the following information:

530

Adabas UtilitiesReport Description

Column Explanation

CP-NAME The checkpoint identifier. In the case of a user non-synchronized
checkpoint, this is the checkpoint identifier supplied by the user
program. Checkpoint names starting with "SYN" are reserved for the
Adabas nucleus and utilities:

SYNC A synchronized checkpoint made during nucleus
initialization, including the status of the ADARUN IGNDIB
and FORCE parameters.

SYNF A checkpoint taken by a user program or utility that requires
exclusive (EXF) control of one or more files.

SYNP A checkpoint from a utility that requires privileged control.
Such a utility can perform updating without using the Adabas
nucleus.

SYNS A checkpoint from Adabas Online System (SYSAOS) or
ADADBS with three exceptions from the nucleus. The
function identified by this checkpoint is implemented without
user intervention during regeneration.

Exceptions include a second SYNS 5B recorded at the end of
a nucleus session; SYNS 60 recorded at an interval specified
by the ADARUN INTNAS parameter; and SYNS 61
recorded when more space is allocated for a file.

SYNV Indicates that a volume ID changed during sequential write to
a dataset is being closed.

SYNX A checkpoint from a utility requiring exclusive control
(EXU) of one or more files.

SYN1 A checkpoint made at the beginning of online ADASAV
execution (SAVE database function).

SYN2 A checkpoint made at the end of online ADASAV execution
(SAVE database function).

SYN4 A checkpoint made at the beginning of online ADASAV
execution (SAVE files operation).

SYN5 A checkpoint made at the end of online ADASAV execution
(SAVE files operation).

CP TYPE The checkpoint number. See the following table of checkpoints for the possible
checkpoint numbers.

531

Report DescriptionAdabas Utilities

Column Explanation

USER TYPE The Adabas user type that set the checkpoint. The user types are:

ET ET user

EXF exclusive-file-control user or utility (privileged user)

EXU exclusive-file-update user or utility

UTI utility-update-control utility (privileged user)

UTS Online ADASAV SAVE file (privileged user)

DATE TIME The date and time the checkpoint was taken.

PLOG NR. The number of the data protection log in use when the checkpoint was written
to the checkpoint file.

BLOCK NR. The block number of the data protection log in which the checkpoint was
written.

VOLSER-NUMBER The volume serial number of the sequential protection (DD/SIBA) log. The
volume serial number is "DUAL" if dual logging is used and "MULTI" if
multiple logging is used.

JOBNAME The name of the job that created the checkpoint.

The following table describes the checkpoints written by the Adabas nucleus or utilities:

Type Name Originator Description

01 SYNC ADANUC Written by nucleus at start of nucleus session.

01 SYNF User/Util. User/utility session OPEN with files used in EXF (exclusive use)
mode.

01 SYNX EXU user EXU user open.

02 SYNV ADANUC VOLSER entry. Written at volume switch on DD/SIBA and at the
end of the session if sequential logging is used.

03 SYNF User/Util. Close checkpoint for an EXF user.

03 SYNX EXU Close checkpoint for an EXU user.

05 SYNP ADASAV SAVE file(s)-start of operation

06 SYNP ADASAV SAVE database-start of operation

07 SYNP ADASAV RESTORE file(s)-end of operation

08 SYNP ADASAV RESTPLOG-end of operation

09 SYNV ADASAV SAVE file(s), VOLSER entry. Written at volume change on
DD/SAVE and at SAVE-operation end.

0A SYNV ADASAV SAVE database, VOLSER entry. Written at volume switch on
DD/SAVE and at SAVE-operation end.

532

Adabas UtilitiesReport Description

Type Name Originator Description

0B SYNP ADASAV SAVE DELTA-end of operation

0C SYNP ADASAV RESTORE DELTA-end of operation

0D SYNP ADASAV MERGE-end of operation

0E SYNV ADASAV SAVE DELTA, VOLSER entry

0F SYNV ADASAV MERGE, VOLSER entry

10 SYNP ADAINV COUPLE files

11 SYNP ADAINV INVERT field(s)

15 SYNP ADAORD REORDER Associator database

16 SYNP ADAORD REORDER Data Storage database

17 SYNP ADAORD REORDER database

18 SYNP ADAORD REORDER Associator file

19 SYNP ADAORD REORDER Data Storage file

1A SYNP ADAORD REORDER file

1B SYNP ADAORD STORE

1C SYNP ADAORD RESTRUCTURE

1D SYNP ADADEF DEFINE NEWWORK

1E SYNP ADADEF MODIFY default character encodings

22 SYNX ADARES REGENERATE file

23 SYNX ADARES BACKOUT file

24 SYNX ADARES REGENERATE all; CPEXLIST lists excluded files

25 SYNX ADARES BACKOUT all; CPEXLIST lists excluded files

26 SYNP ADARES REPAIR Data Storage

27 SYNV ADARES COPY sequential protection log

28 SYNP ADARES PLCOPY function successfully completed

28 SYNV ADARES PLCOPY dual or multiple protection log

29 SYNV ADARES CLCOPY dual or multiple command log

2A SYNP ADARES PLCOPY MERGE function successfully completed

2A SYNV ADARES PLCOPY MERGE dual or multiple protection log

2B SYNP ADARES CLOG MERGE function successfully completed

2B SYNV ADARES CLOG MERGE dual or multiple command log

30 SYNP ADALOD LOAD file

31 SYNP ADALOD Mass update

35 SYNX ADAULD Unload file

533

Report DescriptionAdabas Utilities

Type Name Originator Description

3F SYNP ADAZAP Successful VERIFY - REPLACE

40 SYNS SYSAOS Add extent

41 SYNS SYSAOS CHANGE default field length

42 SYNS SYSAOS DECREASE database size

44 SYNS SYSAOS Delete file

45 SYNS SYSAOS INCREASE database size

47 SYNS SYSAOS RECOVER space

48 SYNS SYSAOS Refresh file

49 SYNS SYSAOS Remove component file from expanded-file chain

4A SYNS SYSAOS Release descriptor

4B SYNS SYSAOS RENAME file

4C SYNS SYSAOS RENUMBER file

4D SYNS SYSAOS RESET DIB

4E SYNS SYSAOS Reuse ISN

4F SYNS SYSAOS Reuse Data Storage

50 SYNS SYSAOS UNCOUPLE files

51 SYNS SYSAOS ALLOCATE file extent

52 SYNS SYSAOS DEALLOCATE file extent

53 SYNS SYSAOS Delete checkpoint

54 SYNS SYSAOS Set user priority

55 SYNS SYSAOS Modify FCB

57 SYNS SYSAOS DEFINE file

58 SYNS SYSAOS Write FDT

59 SYNS SYSAOS DEFINE new field

5B SYNS ADADBS Write refreshed statistics (some or all per user request)

5B SYNS ADANUC Write (all) statistics at end of nucleus session

5B SYNS ADARES Write refreshed statistics (command, file, and thread usage;
DRES and DSTAT)

5C SYNS SYSAOS CHANGE default field format

5D SYNS SYSAOS Change file encoding

60 SYNS ADANUC Nucleus statistic checkpoint

61 SYNS ADANUC Allocate file space

64 SYNS ADASCR Protect files

534

Adabas UtilitiesReport Description

Type Name Originator Description

65 SYNS ADASCR Protect fields

66 SYNS SYSAOS Link component file into expanded-file chain

68 SYNS SYSAOS Set USERISN on/off

69 SYNS SYSAOS Set MIXDSDEV on/off

6A SYNS SYSAOS Install Delta Save DLOG area

6B SYNS SYSAOS Change Delta Save DLOG area

6C SYNS SYSAOS Remove Delta Save DLOG area

6F SYNS SYSAOS Online process initiated

70 SYNS SYSAOS Online invert process

71 SYNS SYSAOS Online reorder process

73 SYNC ADANUC Nucleus (nuclei) successfully quiesced.

74 SYNC ADANUC Nucleus (nuclei) have resumed normal processing.

535

Report DescriptionAdabas Utilities

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADAREP with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Save tape DDSAVE tape/ disk Only with
SAVETAPE

Protection log DDPLOG tape/ disk Option with online
save tape

ADARUN parameters SYSDTA/ DDCARD Operations

ADAREP parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT DDPRINT Messages and Codes

ADAREP messages SYSLST DDDRUCK Messages and Codes

ADAREP JCL Example (BS2000)

In SDF Format:

/.ADAREP LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A R E P ALL FUNCTIONS
 /REMARK *
 /ASS-SYSLST L.REP
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAREP,DB=yyyyy,IDTNAME=ADABAS5B
 ADAREP CPLIST
 /LOGOFF SYS-OUTPUT=DEL

536

Adabas UtilitiesJCL/JCS Requirements and Examples

In ISP Format:

/.ADAREP LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A R E P ALL FUNCTIONS
 /REMARK *
 /SYSFILE SYSLST=L.REP
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAREP,DB=yyyyy,IDTNAME=ADABAS5B
 ADAREP CPLIST
 /LOGOFF NOSPOOL

OS/390 or z/OS

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Save tape DDSAVE tape/ disk Only with
SAVETAPE

Protection log DDPLOG tape/ disk Option with online
save tape

ADARUN parameters DDCARD reader Operations

ADAREP parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADAREP messages DDDRUCK printer Messages and Codes

ADAREP JCL Example (OS/390 or z/OS)

All Functions

//ADAREP JOB
//*
//* ADAREP: ALL FUNCTIONS
//*
//REP EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAREP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAREP CPEXLIST
/*

537

JCL/JCS Requirements and ExamplesAdabas Utilities

Refer to ADAREP in the MVSJOBS dataset for this example.

Report from a Save Tape

//ADAREPS JOB
//*
//* ADAREP: REPORT FROM A SAVE TAPE
//*
//REP EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDSAVE DD DISP=SHR,DSN=EXAMPLE.DByyyyy.SAVE <=== SAVE DATASET
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAREP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAREP REPORT SAVETAPE,NOCOUNT
/*

Refer to ADAREPS in the MVSJOBS dataset for this example.

VM/ESA or z/VM

Dataset DD Name Medium Additional
Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Save tape DDSAVE tape/ disk Only with
SAVETAPE

Protection log DDPLOG tape/ disk Option with online
save tape

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADAREP parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADAREP messages DDDRUCK disk/ terminal/ printer Messages and Codes

ADAREP Example (VM/ESA or z/VM)
DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDPRINT,DSN=ADAREP.DDPRINT,MODE=A
DATADEF DUMP,DUMMY

538

Adabas UtilitiesJCL/JCS Requirements and Examples

DATADEF DDDRUCK,DSN=ADAREP.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNREP.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADAREP.CONTROL,MODE=A
ADARUN

Contents of RUNREP CONTROL A1

ADARUN PROG=ADAREP,DEVICE=dddd,DB=yyyyy

Contents of ADAREP CONTROL A1

ADAREP CPLIST

VSE/ESA

Dataset Symbolic Name Storage Logical Unit More
Information

Associator ASSORn disk

Data Storage DATARn disk

Save tape SAVE tape
disk

SYS010
see note

Only with
SAVETAPE

Protection log PLOG tape
disk

SYS011
see note

Option with online
save tape

ADARUN
parameters

SYSRDR
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
see note

Operations

ADAREP
parameters

 reader SYSIPT

ADARUN
messages

 printer SYSLST Messages and
Codes

ADAREP report printer SYS009

Note:
Any programmer logical unit may be used.

ADAREP JCS Example (VSE/ESA)

See Procedures for VSE/ESA Examples for descriptions of the VSE/ESA procedures (PROCs).

All Functions

* $$ JOB JNM=ADAREP,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAREP
* ALL FUNCTIONS
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAREP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*

539

JCL/JCS Requirements and ExamplesAdabas Utilities

ADAREP CPEXLIST
/*
/&
* $$ EOJ

Refer to member ADAREP.X for this example.

Report from a Save Tape

* $$ JOB JNM=ADAREPS,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAREPS
* REPORT FROM A SAVE TAPE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYSTEN,TAPE
// PAUSE MOUNT LOAD SAVE FILE ON TAPE cuu
// TLBL SAVE,’EXAMPLE.DByyyyy.SAVE’
// MTC REW,SYS010
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAREP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAREP REPORT SAVETAPE,NOCOUNT
/*
/&
* $$ EOJ

Refer to member ADAREPS.X for this example.

540

Adabas UtilitiesJCL/JCS Requirements and Examples

ADARES:Restart
This chapter covers the following topics:

Functional Overview

BACKOUT Functions

CLCOPY: Copy Dual Command Log

COPY: Copy a Sequential Protection Log or Save Tape

MERGE CLOG: Merge Nucleus Cluster Command Logs

PLCOPY: Copy Protection Log to Sequential Dataset

REGENERATE: Regenerate Updates

REPAIR: Repair Data Storage Blocks

Multithreaded Processing Statistics

JCL/JCS Requirements and Examples

541

ADARES:RestartAdabas Utilities

Functional Overview
The ADARES utility performs functions related to database recovery.

Information about using ADARES
1. The functions BACKOUT (except BACKOUT DPLOG or MPLOG), REGENERATE, and REPAIR

require a sequential dataset containing protection log data as input. A dual/multiple protection log
cannot be used directly. To convert dual/multiple protection logs to sequential logs, use the ADARES
PLCOPY function.

2. The REGENERATE, BACKOUT, and COPY functions can process several sessions within one job
if the following is true:

The DDSIIN/SIIN input file contains the sessions in ascending order by session number; gaps in
the session number sequence exist only for those sessions representing save dataset generations;

Each session on the file begins with block number 1, and there are no gaps in block numbering.

3. To select a single session only, specify the session number with PLOGNUM, or with FROMPLOG
without TOPLOG; to specify a range of sessions, specify FROMPLOG and TOPLOG.

4. The ADARES COPY function accepts ADASAV output save (DD/SAVEn) files. No parameters
indicating a save file can be specified; ADARES recognizes a save file by its structure. Only one
save file can be copied during an ADARES COPY run. When copying a save file, specify the session
number with PLOGNUM.

5. Adabas expanded files: the BACKOUT and REGENERATE (file) functions process complete
expanded files only. If the file specified is either the anchor or component file of an expanded file, all
other component files of the expanded file must also be specified.

6. To perform the additional Delta Save Facility operations of ADARES, ADARUN parameter
DSF=YES must be specified in the DD/CARD input.

7. Multithreaded BACKOUT, BACKOUT DPLOG or MPLOG, and REGENERATE require additional
main memory, which can be estimated using the values for the corresponding nucleus ADARUN
parameter NT and NU:

(NT x 70,000) + (NU x 72)

For example, if NT=28 and NU=1000, about 2MB of main memory is required.

8. For optimal processing when using the multithreaded backout/regenerate feature, Software AG
recommends that you set the nucleus ADARUN parameter NAB to at least

NAB=NT x (32K + 108) / 4096

542

Adabas UtilitiesFunctional Overview

Using ADARES in Adabas Nucleus Cluster Environments

In an Adabas nucleus cluster environment, the protection logs (and optionally, the command logs) of all
individual nuclei in the cluster are merged into single log files in chronological order for the cluster
database shared by all the nuclei as a whole. The chronological order is determined by timestamps on all
individual nucleus log records, which are synchronized across the cluster by the operating system.

Merging Logs

For recovery processing, all protection log datasets (PLOGs) must be merged into a single log
"stream" for each cluster database. PLOGs are merged automatically when an ADARES
PLCOPY is executed. The PLCOPY process accesses the parallel participant table (PPT) to
determine which PLOGs to copy and uses dynamic allocation to access the appropriate datasets.

An existing PLCOPY job must be modified to run in a cluster environment. The user exit 2 may
also need to be modified. A sample PLCOPY job ADARESMP that illustrates the necessary
addition of the intermediate datasets and a sample user exit 2 (USEREX2P) is provided. See
Automatically Copy/Merge Nucleus Cluster Protection Logs. It is not necessary to remove the
PLOG DD statements, however. If they remain, they are ignored.

By default, dual/multiple command log datasets (CLOGs) can be copied to a sequential dataset
for each nucleus using the ADARES CLCOPY function, but the resulting datasets are not then
automatically merged across the cluster into a single CLOG dataset for the cluster database. You
can choose to merge the CLCOPY output from each nucleus manually by using the ADARES
MERGE CLOG function. By default, the CLOG datasets must be specified in the user exit 2
JCL; they are not dynamically allocated.

However, for accounting or other tracking purposes, you may want to automate the CLOG
merge process the same way the PLOG merge process is automated. When you specify
ADARUN CLOGMRG=YES, the CLOG merge process is invoked automatically when the
ADARES CLCOPY job is submitted from UEX2 and executed. ADARUN LOGGING=YES
must also be specified. As with the PLCOPY process, the CLCOPY process then accesses the
parallel participant table (PPT) to determine which CLOGs to copy and uses dynamic allocation
to access the appropriate datasets.

Existing CLCOPY jobs must be modified to include the intermediate datasets. A sample
CLCOPY job ADARESMC is provided that illustrates the necessary addition of the
intermediate datasets. See Automatically Copy/Merge Nucleus Cluster Command Logs. The
sample user exit 2 (USEREX2P) includes both CLCOPY and PLCOPY functionality for the
merge.

The automated PLCOPY and CLCOPY jobs copy/merge as much data as possible; if a nucleus
is still writing to a log dataset, the job ’partially’ merges the dataset.

Intermediate Datasets

The merge begins with the lowest timestamp from all PLOGs and CLOGs being merged and
ends with the lowest of the ending timestamps from all datasets. Records beyond this point are
written to an ’intermediate’ dataset, which must be supplied as input to the subsequent merge. A
cross-check ensures that the correct intermediate dataset has been supplied.

543

Functional OverviewAdabas Utilities

ADARES expects that at least one of the PLOGs or CLOGs being merged is at ’completed’
status. If this is not the case, ADARES reports that there is no data to be copied.

A sample user exit 2 (USEREX2P for both PLOGs and CLOGs) is provided that illustrates the
necessary JCL for the intermediate datasets. When intermediate datasets are used for both CLCOPY and
PLCOPY jobs, the dataset names for each must be unique so that they are not overwritten.

PLCOPY example:

//MERGIN1 DD DISP=SHR,DSN=EXAMPLE.PINTERI
//MERGIN2 DD DISP=SHR,DSN=EXAMPLE.PINTERO

CLCOPY example:

//MERGIN1 DD DISP=SHR,DSN=EXAMPLE.CINTERI
//MERGIN2 DD DISP=SHR,DSN=EXAMPLE.CINTERO

Depending on whether it is a PLCOPY or a CLCOPY, the job submitted by user exit 2 must
refer to the appropriate set of statements.

Once DD statements for the PLOG datasets have been supplied on the session start-up JCL, you
do not need to supply them again for ADARES as these are opened using dynamic allocation. If
the DD statements are supplied, they are ignored.

It is not necessary to manually change the JCL after each execution. ADARES maintains control
information in the parallel participant table (PPT) to determine which intermediate dataset to
expect as input. It checks the header information in both datasets to determine which to use for
input and which for output.

The following checks are made to ensure that the intermediate dataset has been supplied
correctly:

1. The DBID is stored in the intermediate dataset header and must match the DBID in the log.

2. The log number is stored in the intermediate dataset header and must either match or be
one less than the current number from the log dataset.

3. The STCK in the intermediate dataset header must match the STCK stored in the PPT.

If any of the checks fails, ADARES ERROR 157 is returned.

ADARES also ensures that the intermediate dataset contains the number of records expected. If
not, ADARES ERROR 164 is returned.

Uniquely Identifying Checkpoints

After the protection log (PLOG) merge process, the block number will not necessarily be the
same. To uniquely identify the checkpoint in this situation, it is necessary to also specify the
NUCID for all functions that can specify a TOBLK/ FROMBLK parameter; that is, BACKOUT
and REGENERATE.

The merge process ensures that there is at most one checkpoint per block. It records the (old)
block number prior to the merge and the NUCID that wrote the checkpoint. When you then
specify the block number and NUCID as reported in ADAREP, ADARES is able to uniquely
identify the block.

544

Adabas UtilitiesFunctional Overview

Note:
In an Adabas nucleus cluster environment, ADAREP includes the NUCID when printing all
checkpoint information.

The additional parameters that are required in an Adabas nucleus cluster environment are
NUCID, TONUCID, and FROMNUCID. If the NUCID is the same for the starting and ending
checkpoint, only the NUCID needs to be specified.

Note:
ADASAV stores this information in the header so that it can uniquely identify the block for the
RESTONL and RESTPLOG functions.

545

Functional OverviewAdabas Utilities

BACKOUT Functions
Data protection information in the form of before and after images of all updated records is written to the
protection log during each Adabas session. This information is needed to remove or reapply updates.

The protection log may be assigned to a sequential dataset or to a dual/multiple protection log dataset
(direct access) on disk. If the dual/multiple protection log is used, the ADARES PLCOPY function must
be used to copy it to a sequential dataset. This dataset can be used as input to ADARES BACKOUT or
REGENERATE.

Software AG does not recommend the use of 3480/3490 tape cartridge compression (IDRC) for protection
log files. The ADARES utility BACKOUT function runs at least twice as long under OS/390 or z/OS
when processing compressed data. Also, the BACKOUT function is not supported for compressed data on
VSE/ESA and VM/ESA systems.

The ADARES BACKOUT {DPLOG | MPLOG} function is not valid for a cluster database. This is
disallowed because a merged PLOG is required in order to perform the BACKOUT.

BACKOUT Back Out Updates Using the Sequential Protection Log (SIBA)

BACKOUT DPLOG or MPLOG Back Out Updates Using the Dual or Multiple Protection Log

546

Adabas UtilitiesBACKOUT Functions

BACKOUT: Back Out Updates Using the
Sequential Protection Log (SIBA)
The BACKOUT function removes all the updates applied between two specified checkpoints. Both
checkpoints must be contained on the sequential protection log input dataset.

The BACKOUT function requires that the read backward feature is supported by the tape drive to be used
for sequential input.

Note:
An interrupted BACKOUT run must be reexecuted from the beginning.

You can specify either the log number (PLOGNUM) or the session number (FROMPLOG) of the
protection log as a starting point for BACKOUT processing. If you specify a session number, you can also
specify a range of sessions to be processed using the TOPLOG parameter.

By default, ADARES processes the database specified by the ADARUN DBID parameter. If BACKOUT
processing is required against a different database, use the PLOGDBID parameter to specify the database.

By default, BACKOUT processing continues until the end of the input dataset is reached. You can limit
the extent of BACKOUT processing using the TOCP parameter.

By default, all files in the specified input dataset are included in the BACKOUT processing. You have to
option to identify specific files to be included.

At the end of BACKOUT processing, ADARES automatically backs out all incomplete logical
transactions when BACKOUT is specified for the entire database and continues until the end of the input
dataset is reached. This also occurs if

the FILE parameter and the CONTINUE parameter are both specified; and

the TOCP parameter is not specified.

You can override this process by specifying the NOAUTOBACKOUT parameter.

547

BACKOUT: Back Out Updates Using the Sequential Protection Log (SIBA)Adabas Utilities

This chapter covers the following topics:

Essential Parameters

Optional Parameters and Subparameters

Examples

Essential Parameters
PLOGNUM: Protection Log Number

PLOGNUM specifies the log number of the sequential protection log to be used as input for
BACKOUT processing. The log number may be obtained from the database status report.

FROMPLOG: Starting Session for BACKOUT

FROMPLOG specifies the session number at which BACKOUT processing is to start.
ADARES searches the sequential PLOG input (DD/SIIN) file for the correct starting session. To
define the starting point more precisely, specify the FROMCP and FROMBLK parameters.

Optional Parameters and Subparameters
CONTINUE: Continue File Recovery with Autobackout

When FILE is specified, CONTINUE locks the complete database for exclusive use by the
BACKOUT function.

It allows autobackout of incomplete transaction changes, if any, during file backout. If specified,
all changes made by incomplete transactions are backed out of the database datasets specified by
the FILE parameter.

548

Adabas UtilitiesBACKOUT: Back Out Updates Using the Sequential Protection Log (SIBA)

If the file list contains coupled or expanded component files and CONTINUE is specified, the
usual default checking of the list for all coupled and/or remaining component files does not occur; in this
case, IGNORECOUPLE or IGNOREEXP does not have to be specified to stop the checking.

EXCLUDE: Exclude Specified Files from Backout

EXCLUDE lists the numbers of the files to be excluded from BACKOUT processing; that is,
the files that are not to be backed out. Any protection records that pertain to these files are
ignored.

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

When the FILE parameter is specified, all files specified in the EXCLUDE parameter must also
be specified in the FILE parameter.

The EXCLUDE parameter has no bearing on whether the BACKOUT is performed with or
without transaction logic.

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

Excluded files are listed in the extended CPLIST of the ADAREP report.

FILE: Files to Be Included

If all files are to be included in the BACKOUT processing, this parameter should not be
specified.

If the specified file is a component file of an Adabas expanded file, then all other component
files for the expanded file must also be specified. If a specified file is coupled to other files,
these files must also be specified.

FROMBLK: Beginning Block for BACKOUT

FROMBLK specifies the block number containing the FROMCP checkpoint entry. This block
number, which may be obtained from the database status report, refers to either PLOGNUM or
FROMPLOG. FROMBLK can only be specified if FROMCP is specified.

FROMCP: Beginning Checkpoint for BACKOUT

FROMCP specifies the checkpoint before which the backout process is to begin. The checkpoint
identification (name), which may be obtained from the database status report, refers to either
PLOGNUM or FROMPLOG.

If backout processing is to begin at the end of the log, this parameter should be omitted.

IGNORECOUPLE: Ignore Unspecified Couple Files

IGNORECOUPLE (or CONTINUE) stops the BACKOUT function from checking the FILE list
for complete coupled file pairs. If neither CONTINUE nor IGNORECOUPLE are specified and
the FILE list specifies a coupled file without specifying its "mate", ADARES terminates and
issues an error message.

549

BACKOUT: Back Out Updates Using the Sequential Protection Log (SIBA)Adabas Utilities

IGNOREEXP: Ignore Expanded Component Files

If the FILE list includes Adabas expanded component files, ADARES BACKOUT normally
checks to ensure that all additional component files related to the listed component files are also
in the list; if not, ADARES ends the BACKOUT operation and issues an error message.
Specifying IGNOREEXP (or CONTINUE) stops the checking for related component files.

MTR: Multithreaded Regenerate Switch

MTR=YES activates the multithreaded regenerate feature; MTR=NO disables it.

When the multithreaded regenerate feature is active, multiple buffers containing PLOG
information are sent to the Adabas nucleus in parallel to improve performance. When the feature
is not active, only one buffer is sent to Adabas at a time.

If the nucleus ADARUN parameter MODE=SINGLE, MTR is automatically set to NO.
Multiple threads are not available to Adabas running in single user mode.

If the FILE parameter is not specified, or is specified with CONTINUE, the default value for
MTR is YES. In these cases, multithreaded regenerate has exclusive control of the whole
database and is generally effective.

Otherwise, the default value is NO. If it only has exclusive control of some files, as is the case
when FILE is specified without CONTINUE, multithreaded regenerate can run in parallel with
normal applications accessing different files and has the potential to negatively impact the
performance of production applications.

NOAUTOBACKOUT: Prevent Incomplete Transaction Backout

If several consecutive BACKOUT runs are necessary in order to process multiple protection
logs resulting from a single Adabas session, an automatic backout should be performed only for
the last input log. The NOAUTOBACKOUT parameter should therefore be specified for each
BACKOUT run except the run in which the last input log is used.

Note:
NOAUTOBACKOUT cannot be specified in single-user mode.

NOUSERABEND: Terminate without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

NPCALLS: Maximum Number of Parallel Calls

When MTR=YES, the NPCALLS parameter may be specified to limit the number of parallel
calls sent to the Adabas nucleus.

550

Adabas UtilitiesBACKOUT: Back Out Updates Using the Sequential Protection Log (SIBA)

If the FILE parameter is not specified, or is specified with CONTINUE, the default value for
NPCALLS is the nucleus ADARUN parameter NT+1 or NC, whichever is smaller.

If the FILE parameter is specified without CONTINUE, the default value is the nucleus
ADARUN parameter NT+1 or NC/2, whichever is smaller.

NPCALLS is primarily used to reduce the number of parallel calls allowed by the default value.
Fewer parallel calls mean a smaller nucleus workload produced by ADARES. This is especially useful for
increasing the resources available to application programs running in parallel with BACKOUT FILE.

PARALLELREAD: Enable Read-Only File Usage for Other Users

The PARALLELREAD parameter provides for concurrent read-only access to the files being
processed by ADARES BACKOUT both for database-wide and file-oriented functions:

for file-oriented functions, specifying PARALLELREAD causes ADARES to issue an
OPEN call with "EXU=file-list" in the record buffer. This allows read-only access to the
files for other users while ADARES is active.

when FILE is not specified or when CONTINUE is specified, the PARALLELREAD
parameter is effective for a database-wide session backout. The parameter makes it
possible for read-only users to access the database at the same time the database session is
being backed out.

Update commands are rejected.

If parallel access users read records that were updated in the database session being backed out,
they may see record images that are logically wrong in the sense of the application, or response
codes such as 113 that indicate inconsistencies.

Note:
During ADARES operation with PARALLELREAD, temporary differences between the
Associator and Data Storage may cause nucleus responses 113 or 199 to occur.

PLOGDBID: Alternate Protection Log ID

When performing a backout operation using a protection log from a database other than that
specified by the ADARUN statement’s DBID parameter, PLOGDBID specifies the database ID
of the alternate protection log. The default is the database ID from the ADARUN-specified
database.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

TOBLK: Ending TOCP Block

TOBLK specifies the block number containing the TOCP checkpoint entry. This block number,
which can be obtained from the database status report, refers to either PLOGNUM or
FROMPLOG, or to TOPLOG, if specified. TOBLK can only be specified if TOCP is specified.

551

BACKOUT: Back Out Updates Using the Sequential Protection Log (SIBA)Adabas Utilities

TOCP: Ending Checkpoint Block for Backout

TOCP specifies the checkpoint at which the backout process is to be terminated. If backout
processing is to continue until the beginning of the log, do not specify TOCP. The checkpoint
identification (name), which can be obtained from the database status report, refers to either
TOPLOG, if specified, or to PLOGNUM or FROMPLOG.

TOPLOG: Ending PLOG Session for Backout

TOPLOG specifies the last session to be processed by the specified ADARES function. If
ADARES finds a session on the PLOG input (DD/SIIN) file whose session number is outside
the inclusive range defined by FROMPLOG/TOPLOG, that session is excluded from ADARES
processing. TOPLOG can only be specified if FROMPLOG is also specified. If TOPLOG is not
specified, the FROMPLOG session becomes the default. To define the ending point more
precisely, specify the TOCP and TOBLK parameters.

Examples
Example 1:

ADARES BACKOUT PLOGNUM=3

All files are to be included in backout processing. The protection log number is 3. Backout processing is
to begin at the end of the log and is to end at the beginning of the log. At the end of the backout
processing, an automatic "backout" (but moving forward) of incomplete transactions occurs.

Example 2:

ADARES BACKOUT
FILE=4,7,PLOGNUM=11,FROMCP=CH18,FROMBLK=1864,
ADARES TOCP=CH01,TOBLK=1

The backout is to be limited to files 4 and 7. All updates applied to files 4 and 7 between the taking of
checkpoints CH01 and CH18 are to be removed. CH01 is located in block 1 of data protection log 11.
Checkpoint CH18 is located in block 1864 of data protection log 11. No automatic backout of incomplete
transactions occurs.

552

Adabas UtilitiesBACKOUT: Back Out Updates Using the Sequential Protection Log (SIBA)

BACKOUT DPLOG or MPLOG: Back Out
Updates Using the Dual or Multiple
Protection Log
The BACKOUT {DPLOG | MPLOG} function removes all the updates applied between two checkpoints
contained on the same Adabas dual or multiple protection log dataset, respectively.

The BACKOUT {DPLOG | MPLOG} function is not valid for a cluster database. This is disallowed
because a merged PLOG is required in order to perform the BACKOUT.

This chapter covers the following topics:

Executing the Function

Syntax

Essential Parameter

Optional Parameters

Example

Executing the Function
The following sequence is recommended for executing the BACKOUT DPLOG or MPLOG function:

1. Issue the operator or Online System command FEOFPL.

Force EOF on the current protection log dataset and switch to a new one. The new protection log
dataset will contain all information required for BACKOUT DPLOG or MPLOG.

2. Run the user application.

All protection log data written by the nucleus for this application must fit on a single protection log
dataset. No protection log switch may occur while the application is running. Here, you should
assume that the application program has failed, and must be backed out.

3. Issue again the operator or Online System command FEOFPL.

Close the protection log dataset. The closed dataset contains all information required for BACKOUT
DPLOG or MPLOG.

4. Run ADARES PLCOPY.

Copy the content of the protection log dataset to a sequential dataset. This can be done by running
ADARES PLCOPY or by using user exit 2 for DPLOG or user exit 12 for MPLOG.

553

BACKOUT DPLOG or MPLOG: Back Out Updates Using the Dual or Multiple Protection LogAdabas Utilities

5. Run ADARES BACKOUT DPLOG or MPLOG.

This backs out the session to the status of step 1.

An interrupted BACKOUT DPLOG or MPLOG run must be reexecuted from the beginning. If the
data on the protection log dataset that is to be used is unavailable (the nucleus uses this data protection log
again), a BACKOUT from the sequential copy must be done.

Syntax
In general, the parameters FROMCP/TOCP/FROMBLK/TOBLK should not be specified. Software AG
recommends that you back out using the entire contents of one protection log dataset.

During backout, the nucleus writes new protection log information to the protection log dataset currently
available. This is the only dataset that can be used by the nucleus. In case of a protection log switch during
BACKOUT DPLOG or MPLOG, the nucleus waits until the complete dataset has been copied with
ADARES PLCOPY, and then resumes the backout run.

By default, all files in the specified input dataset are included in the BACKOUT processing. You have the
option to identify specific files to be included.

CONTINUE allows autobackout of incomplete transaction changes, if any, during file backout. If
specified, all changes made by incomplete transactions are backed out of the database datasets specified
by the FILE parameter. If the file list contains coupled or expanded component files and CONTINUE is
specified, the usual default checking of the list for all coupled and/or remaining component files does not
occur; in this case, IGNORECOUPLE or IGNOREEXP does not have to be specified to stop the checking.

Specifying CONTINUE locks the complete database for exclusive use by the BACKOUT function during
file backout.

At the end of BACKOUT processing, ADARES automatically backs out all incomplete logical
transactions when BACKOUT is specified for the entire database and continues until the end of the input
dataset is reached. This also occurs if

the FILE parameter and the CONTINUE parameter are both specified; and

the TOCP parameter is not specified.

You can override this process by specifying the NOAUTOBACKOUT parameter.

554

Adabas UtilitiesBACKOUT DPLOG or MPLOG: Back Out Updates Using the Dual or Multiple Protection Log

Essential Parameter
DPLOG | MPLOG: Dual or Multiple PLOG Source

DPLOG indicates that a dual protection log dataset is to be used as input; MPLOG indicates that
a multiple protection log dataset is to be used as input.

Optional Parameters
CONTINUE: Continue File Recovery with Autobackout

When FILE is specified, CONTINUE locks the complete database for exclusive use by the
BACKOUT function.

It allows autobackout of incomplete transaction changes, if any, during file backout. If specified,
all changes made by incomplete transactions are backed out of the database datasets specified by
the FILE parameter.

If the file list contains coupled or expanded component files and CONTINUE is specified, the
usual default checking of the list for all coupled and/or remaining component files does not
occur; in this case, IGNORECOUPLE or IGNOREEXP does not have to be specified to stop the
checking.

DUALPLD | PLOGDEV: PLOG Device Type

DUALPLD specifies the device type used for the dual protection log datasets; PLOGDEV
specified the device type used for the multiple protection log datasets. The default is the device
type specified by the ADARUN DEVICE parameter.

EXCLUDE: Exclude Specified Files from Backout

555

BACKOUT DPLOG or MPLOG: Back Out Updates Using the Dual or Multiple Protection LogAdabas Utilities

EXCLUDE lists the numbers of the files to be excluded from BACKOUT processing; that is,
the files that are not to be backed out. Any protection records that pertain to these files are ignored.

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

When the FILE parameter is specified, all files specified in the EXCLUDE parameter must also
be specified in the FILE parameter.

The EXCLUDE parameter has no bearing on whether the BACKOUT is performed with or
without transaction logic.

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

Excluded files are listed in the extended CPLIST of the ADAREP report.

FILE: Files to be Included

FILE specifies the files to be included in the backout process. If all files are to be included, this
parameter should be omitted. If the specified file is a component file of an Adabas expanded
file, all other component files of the expanded file must also be specified here. If a specified file
is coupled to other files, the coupled files must also be specified.

Note:
Before beginning, ADARES locks all specified files for the duration of BACKOUT execution.
If the FILE parameter is omitted, the entire database will be locked. Other users can have
read-only access to the specified files if the UTYPE=EXU parameter is specified or to the
database if the PARALLELREAD parameter is specified.

FROMCP: Beginning Checkpoint for Backout

FROMCP specifies the checkpoint before which the backout process is to begin. The checkpoint
ID may be obtained from the database status report. If backout processing is to begin at the end
of the log, do not specify the FROMCP parameter.

FROMBLK: Beginning FROMCP Block Number

FROMBLK is the block number containing the FROMCP checkpoint entry. This block number
may be obtained from the database status report. FROMBLK can be specified only if FROMCP
is specified.

IGNORECOUPLE: Ignore Unspecified Coupled Files

IGNORECOUPLE (or CONTINUE) stops the BACKOUT function from checking the FILE list
for complete coupled file pairs. If neither CONTINUE nor IGNORECOUPLE are specified and
the FILE list specifies a coupled file without specifying its "mate", ADARES terminates and
issues an error message.

IGNOREEXP: Ignore Expanded Component Files

556

Adabas UtilitiesBACKOUT DPLOG or MPLOG: Back Out Updates Using the Dual or Multiple Protection Log

If the FILE list includes any Adabas expanded component files, ADARES BACKOUT normally
checks to ensure that all additional component files related to the listed component files are also
in the list; if not, ADARES ends the BACKOUT operation and issues an error message. Specifying
IGNOREEXP (or CONTINUE) stops the checking for related component files.

MTR: Multithreaded Backout Switch

MTR=YES activates the multithreaded backout feature; MTR=NO disables it.

When the multithreaded backout feature is active, multiple buffers containing PLOG
information are sent to the Adabas nucleus in parallel to improve performance. When the feature
is not active, only one buffer is sent to Adabas at a time.

If the nucleus ADARUN parameter MODE=SINGLE, MTR is automatically set to NO.
Multiple threads are not available to Adabas running in single user mode.

If the FILE parameter is not specified, or is specified with CONTINUE, the default value for
MTR is YES. In these cases, multithreaded backout has exclusive control of the whole database
and is generally effective.

Otherwise, the default value is NO. If it only has exclusive control of some files, as is the case
when FILE is specified without CONTINUE, multithreaded backout can run in parallel with
normal applications accessing different files and has the potential to negatively impact the
performance of production applications.

NOAUTOBACKOUT: Prevent Incomplete Transaction Backout

If several consecutive BACKOUT runs are necessary in order to process multiple protection
logs resulting from a single Adabas session, an automatic backout should be performed only for
the last input log. The NOAUTOBACKOUT parameter should therefore be specified for each
BACKOUT run except the run in which the last input log is used.

Note:
NOAUTOBACKOUT cannot be specified in single-user mode.

NOUSERABEND: Terminate without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

NPCALLS: Maximum Number of Parallel Calls

When MTR=YES, the NPCALLS parameter may be specified to limit the number of parallel
calls sent to the Adabas nucleus.

If the FILE parameter is not specified, or is specified with CONTINUE, the default value for
NPCALLS is the nucleus ADARUN parameter NT+1 or NC, whichever is smaller.

557

BACKOUT DPLOG or MPLOG: Back Out Updates Using the Dual or Multiple Protection LogAdabas Utilities

If the FILE parameter is specified without CONTINUE, the default value is the nucleus
ADARUN parameter NT+1 or NC/2, whichever is smaller.

NPCALLS is primarily used to reduce the number of parallel calls allowed by the default value.
Fewer parallel calls mean a smaller nucleus workload produced by ADARES. This is especially useful for
increasing the resources available to application programs running in parallel with BACKOUT DPLOG
FILE.

PARALLELREAD: Enable Read-Only File Usage by Other Users

The PARALLELREAD parameter provides for concurrent read-only access to the files being
processed by ADARES BACKOUT DPLOG both for database-wide and file-oriented functions:

for file-oriented functions, specifying PARALLELREAD causes ADARES to issue an
OPEN call with "EXU=file-list" in the record buffer. This allows read-only access to the
files for other users while ADARES is active.

when FILE is not specified or when CONTINUE is specified, the PARALLELREAD
parameter is effective for a database-wide DPLOG backout. The parameter makes it
possible for read-only users to access the database at the same time the database DPLOG is
being backed out.

Update commands are rejected.

If parallel access users read records that were updated in the database DPLOG being backed out,
they may see record images that are logically wrong in the sense of the application, or response
codes such as 113 that indicate inconsistencies.

Note:
During ADARES operation with PARALLELREAD, temporary differences between the
Associator and Data Storage may cause nucleus responses 113 or 199 to occur.

PLOGDBID: Alternate Protection Log ID

When performing a backout operation using a protection log from a database other than that
specified by the ADARUN statement’s DBID parameter, PLOGDBID specifies the database ID
of the alternate protection log. The default is the database ID from the ADARUN-specified
database.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

TOBLK: Ending TOCP Block Number

TOBLK specifies the block number containing the TOCP checkpoint entry. TOBLK can only be
specified if TOCP is specified.

TOCP: Ending Checkpoint for Backout

558

Adabas UtilitiesBACKOUT DPLOG or MPLOG: Back Out Updates Using the Dual or Multiple Protection Log

TOCP specifies the checkpoint at which the backout process is to stop. Backout processing
continues up to the specified checkpoint. If backout processing is to continue until the beginning of the
log, do not specify TOCP or NOAUTOBACKOUT.

Example
1. ADADBS OPERCOM FEOFPL

2. User application on files 20 and 21 fails

3. ADADBS OPERCOM FEOFPL

4. ADARES BACKOUT DPLOG,FILE=20,21

This example assumes that the PLCOPY function is performed with user exit 2. Whenever a protection
log switch occurs, this user exit submits a job to copy the content of the dual protection log to a sequential
dataset.

1. Switch to a new PLOG.

2. Run the user session creating PLOG data on the new PLOG dataset.

3. Close the PLOG dataset. User exit 2 submits a job which copies the contents of the PLOG dataset
just closed.

4. Perform a BACKOUT from that PLOG for the files 20 and 21 up to the beginning of the PLOG.

559

BACKOUT DPLOG or MPLOG: Back Out Updates Using the Dual or Multiple Protection LogAdabas Utilities

CLCOPY: Copy Dual Command Log
The CLCOPY function is used only if dual logging of command information was specified for the Adabas
session. This function copies the dataset that has the earlier time stamp to a sequential dataset. Once the
CLCOPY function is completed successfully, the copied dataset is marked as empty. This function may,
therefore, be used only once for any given dataset.

The CLCOPY function is not allowed in single-user mode.

This chapter covers the following topics:

Optional Parameters

Examples

Optional Parameters
ADARES CLCOPY can be specified with no parameters.

DUALCLD: Dual Command Log Device Type

DUALCLD specifies the device type used for the dual command log datasets. This parameter is
required if the device type used for the command log dataset is different from that specified with
the ADARUN DEVICE parameter.

NOUSERABEND: Terminate without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

OPENOUT: Open DDSIAUS1/2 or SIAUS1/2 Output Datasets

The OPENOUT parameter indicates that the DD/SIAUS1/2 output datasets are to be opened by
ADARES, even if no data is actually to be copied. Without OPENOUT, the sequential output
datasets are not opened if ADARES detects an end-of-file condition while attempting to read the
first input record; this may cause problems in some operating system environments. With
OPENOUT, the output datasets are opened before the first input record is read.

560

Adabas UtilitiesCLCOPY: Copy Dual Command Log

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

TWOCOPIES: Create Two Copies of Output

TWOCOPIES causes two copies of the output to be created.

Examples
Example 1:

ADARES CLCOPY

Dual command log is to be copied.

Example 2:

ADARES CLCOPY TWOCOPIES

Dual command log is to be copied. Two copies of the output are to be created.

561

CLCOPY: Copy Dual Command LogAdabas Utilities

COPY: Copy a Sequential Protection Log or
Save Tape
The COPY function copies an Adabas sequential protection log dataset. If the Adabas session that created
the sequential protection log dataset was terminated abnormally, the COPY function must be executed
before the dataset can be used as input to any other ADARES function.

ADARES COPY

must be used to copy a data protection log dataset from disk to a tape dataset before it can be used as
input to the ADARES BACKOUT function.

may be used even if subsequent Adabas sessions have created other data protection log datasets.

also accepts ADASAV SAVE output (DD/SAVEn) as input. Only one ADASAV SAVE input
volume can be copied in a single ADARES COPY run. A SAVE output tape must be assigned to the
DD/SIIN job control file.

may be executed any number of times for a given input dataset.

The COPY function has special uses if you are using the Adabas Delta Save Facility. Refer to the Adabas
Delta Save Facility documentation for more information.

ADARES COPY can be specified with no parameters. If ADARES COPY is specified without either
PLOGNUM or FROMPLOG, the whole input protection log is copied.

This chapter covers the following topics:

Optional Parameters

Examples

562

Adabas UtilitiesCOPY: Copy a Sequential Protection Log or Save Tape

Optional Parameters
FROMPLOG: Beginning Session for Backout

FROMPLOG specifies the session number at which the specified ADARES function is to start.
ADARES searches the PLOG input (DD/SIIN) file for the correct starting session.

NONUC: Ignore Nucleus Response

The NONUC parameter may be used to ignore the nucleus response code in cases where the
Adabas nucleus is unable to perform an autorestart. ADARES then attempts to physically copy
the input tape as far as possible.

This parameter should only be specified after all other corrective actions have failed; however,
NONUC must be specified if the PLOG sequential input (DD/SIIN) file contains several nucleus
sessions to be copied.

NOUSERABEND: Terminate without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

OPENOUT: Open DDSIAUS1/2 or SIAUS1/2 Output Datasets

The OPENOUT parameter indicates that the DD/SIAUS1/2 output datasets are to be opened by
ADARES, even if no data is actually to be copied. Without OPENOUT, the sequential output
datasets are not opened if ADARES detects an end-of-file condition while attempting to read the
first input record; this may cause problems in some operating system environments. With
OPENOUT, the output datasets are opened before the first input record is read.

PLOGNUM: Protection Log Number

The Adabas protection log number of the dataset to be copied. This number may be obtained
from the database status report produced by the ADAREP utility. The output of the COPY
function will be assigned the same log number.

RLOGDEV: Device Type for RLOG Dataset

The RLOGDEV parameter is used if the Adabas Recovery Aid (ADARAI) is active to specify a
device-type for the recovery log (RLOG) dataset.

If RLOGDEV is not specified (the default), the recovery log device-type is assumed to be the
same as the ADARUN DEVICE parameter.

If the specified or default value for RLOGDEV is incorrect, ADARES COPY terminates with
error 149, "missing or mismatching RLOGDEV parameter".

563

COPY: Copy a Sequential Protection Log or Save TapeAdabas Utilities

The RLOGDEV parameter makes it possible for ADARES to record its function for ADARAI,
even if the GCB of the database has been destroyed.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

TOPLOG: Ending PLOG Session for Backout

TOPLOG specifies the last session to be processed by the specified ADARES function. If
ADARES finds a session on the PLOG input (DD/SIIN) file that is greater than the specified
TOPLOG session, that session is excluded from ADARES processing.

TWOCOPIES: Create Two Output Copies

TWOCOPIES causes two copies of the output to be created. If TWOCOPIES is not specified,
the default is one copy.

UTICPLIST: Print All Utility Checkpoints

The UTICPLIST parameter causes ADARES to select and print all utility checkpoints found on
the data protection log during the COPY function.

Examples
Example 1:

ADARES COPY PLOGNUM=6

Data protection log 6 is to be copied.

Example 2:

ADARES COPY PLOGNUM=8,TWOCOPIES

Data protection log 8 is to be copied. Two copies of the output are to be created.

564

Adabas UtilitiesCOPY: Copy a Sequential Protection Log or Save Tape

MERGE CLOG: Merge Nucleus Cluster
Command Logs
In an Adabas cluster environment, you can merge command logs (CLOGs) across a cluster in one of two
ways:

If your system is set up appropriately (CLOGMRG=YES and user exit 2), CLOGs are merged
automatically.

Otherwise, you can merge CLOGs manually using the ADARES MERGE CLOG utility function.

Sequential datasets are expected as input to the MERGE CLOG function; therefore, the ADARES
CLCOPY function must be executed prior to the ADARES MERGE function.

The timestamp contained in the CLOGLAYOUT=5 is required for the proper merging of command logs
records.

Essential Parameter
NUMLOG: Number of Command Log Datasets

The NUMLOG parameter is required: it specifies the number of command log datasets to be
included in the merge process. The maximum number is 32.

565

MERGE CLOG: Merge Nucleus Cluster Command LogsAdabas Utilities

PLCOPY: Copy Protection Log to Sequential
Dataset
The PLCOPY function is used only if dual/multiple logging of protection information was specified for
the Adabas session. This function copies the dataset that has the earlier time stamp to a sequential dataset.
Once the PLCOPY function is successfully completed, the copied dataset is marked as empty. This
function may, therefore, be used only once in an Adabas session for any given dataset.

The use of hardware compression (IDRC) is not recommended for protection log files. The ADARES
BACKOUT function is not supported for hardware-compressed data on VSE/ESA and z/VM systems. On
z/OS systems, the BACKOUT function will take at least twice as long to run when processing compressed
data.

The PLCOPY function is not allowed in single-user mode.

The PLCOPY function has special uses if you are using the Adabas Delta Save Facility. Refer to the
Adabas Delta Save Facility documentation for more information.

ADARES PLCOPY can be specified with no parameters.

This chapter covers the following topics:

Optional Parameters

Examples

Optional Parameters
PLOGDEV: PLOG Device Type

PLOGDEV specifies the device type used for dual/multiple protection log datasets. This
parameter is required if the device type used for the dual/multiple protection log dataset is
different from that specified with the ADARUN DEVICE parameter.

NOPPT (Clustered Nucleus Environments Only)

566

Adabas UtilitiesPLCOPY: Copy Protection Log to Sequential Dataset

The parallel participant table (PPT) tells ADARES PLCOPY which datasets to copy. If the PPT
is destroyed, the ADARES NOPPT function allows the DBA to specify the PLOG datsets that are to be
copied and merged.

If ADARAI is used, the PLOG datasets are written to the RLOG at nucleus initialization. In the
event of a failure and a final PLCOPY is still needed, ADARAI can construct the PLCOPY NOPPT JCL
from the PLOG datasets written to the RLOG.

NOPPT is intended only for emergency use when the PPT has been overwritten. It specifies that
the PPT is to be ignored and DD/PLOG datasets are to be supplied with JCL.

Warning:
Use this parameter cautiously since it ignores the PPT and all
control-type information typically provided by the PPT.

When you use this parameter, you must supply

the correct intermediate dataset; and

the correct input protection logs from all nuclei in the form of DD/PLOG01-nn.

Warning:
Without the PPT, ADARES cannot perform any extensive
validations on the input datasets.

NOUSERABEND: Terminate without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

OPENOUT: Open DDSIAUS1/2 or SIAUS1/2 Output Datasets

The OPENOUT parameter indicates that the DD/SIAUS1/2 output datasets are to be opened by
ADARES, even if no data is actually to be copied. Without OPENOUT, the sequential output
datasets are not opened if ADARES detects an end-of-file condition while attempting to read the
first input record; this may cause problems in some operating system environments. With
OPENOUT, the output datasets are opened before the first input record is read.

RLOGDEV: Device Type for RLOG Dataset

The RLOGDEV parameter is used if the Adabas Recovery Aid (ADARAI) is active to specify a
device-type for the recovery log (RLOG) dataset.

If RLOGDEV is not specified (the default), the recovery log device type is assumed to be the
same as the ADARUN DEVICE parameter.

567

PLCOPY: Copy Protection Log to Sequential DatasetAdabas Utilities

If the specified or default value for RLOGDEV is incorrect, ADARES PLCOPY terminates with
error 149, "missing or mismatching RLOGDEV parameter".

The RLOGDEV parameter makes it possible for ADARES to record its function for ADARAI,
even if the GCB of the database has been destroyed.

SBLKNUM

The SBLKNUM parameter can only be specified in conjunction with the NOPPT parameter and
only for the PLCOPY function.

SBLKNUM allows the user to specify the starting block number for the sequential merge
output. If this parameter is omitted, an attempt will be made to read the PPT and obtain the
block number from there. If this read fails, the output will start with block one.

To determine the value for this parameter, the user must look at the output from the previous
PLCOPY and use the next block number in sequence.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

TWOCOPIES: Create Two Copies of Output

TWOCOPIES causes two copies of the output to be created. If TWOCOPIES is not specified,
the default is one copy.

UTICPLIST: Print All Utility Checkpoints

The UTICPLIST parameter causes ADARES to select and print all utility checkpoints found on
the data protection log during the PLCOPY function.

Examples
Example 1:

Copy the dual/multiple protection log.

ADARES PLCOPY

Example 2:

Create two copies of the dual/multiple protection log.

ADARES PLCOPY TWOCOPIES

Example 3:

Copy the dual/multiple protection log. The Adabas Recovery Aid (ADARAI) is active. The recovery log
(RLOG) device type is 8390.

568

Adabas UtilitiesPLCOPY: Copy Protection Log to Sequential Dataset

ADARES PLCOPY RLOGDEV=8390

569

PLCOPY: Copy Protection Log to Sequential DatasetAdabas Utilities

REGENERATE: Regenerate Updates
The REGENERATE function reapplies all the updates performed between two checkpoints.

In addition to restoring normal updates, ADARES REGENERATE also restores any of the following
ADADBS utility (or Adabas Online System) function updates that were performed between the specified
checkpoints for the selected file or files:

ALLOCATE DELETE NEWFIELD RELEASE

CHANGE DSREUSE PRIORITY RENAME

DEALLOCATE ISNREUSE RECOVER RENUMBER

DELCP MODFCB REFRESH UNCOUPLE

For the database, all file-related operations listed above are performed, plus any of the following
ADADBS (or Adabas Online System) database-related functions:

ADD INCREASE (dataset size)

DECREASE (dataset
size)

RECOVER

This chapter covers the following topics:

Syntax

Essential Parameters

Optional Parameters and Subparameters

Examples

Syntax

570

Adabas UtilitiesREGENERATE: Regenerate Updates

Essential Parameters
You can specify either the log number (PLOGNUM) or the session number (FROMPLOG) of the
protection log as a starting point for REGENERATE processing. If you specify a session number, you can
also specify a range of sessions to be processed using the TOPLOG parameter.

FROMPLOG: Beginning Session for Regeneration

FROMPLOG specifies the session number at which the specified ADARES function is to start.
ADARES searches the PLOG input file for the correct starting session. To define the starting
point more precisely, specify the FROMCP and FROMBLK parameters.

PLOGNUM: Protection Log Number

PLOGNUM is the log number of the data protection log to be used as input for regenerate
processing. The log number may be obtained from the database status report.

Optional Parameters and Subparameters
ALLOCATION: Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameters ACRABN, DSRABN, NIRABN, or UIRABN.

ALLOCATION concerns the following operations, which are replayed as part of the
regeneration:

571

REGENERATE: Regenerate UpdatesAdabas Utilities

ADADBS ALLOCATE Adabas Online System "Define File" Adabas Online System
"Install/Change DLOG Area"

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameters fails,
the utility retries the allocation without the placement parameter.

AUTOBACKOUT: Back Out Transactions from TOCP Checkpoint

When the TOCP parameter is specified, incomplete transactions are not normally backed out at
the end of processing. This allows you to reexecute the utility function that corresponds to the
TOCP checkpoint, followed by another ADARES operation with FROMCP specifying the
starting checkpoint.

In situations where a REGENERATE/BACKOUT should end at the TOCP checkpoint, using
the AUTOBACKOUT parameter to back out incomplete transactions ensures the logical
consistency of the database. Note that AUTOBACKOUT is allowed only if TOCP is specified.

CONTINUE: Continue File Recovery with Autobackout

CONTINUE allows AUTOBACKOUT of any incomplete transaction changes during file
regeneration. If specified, all changes made by incomplete transactions are backed out of the
database datasets specified by the FILE parameter.

If the file list contains either coupled or expanded component files and CONTINUE is specified,
the usual checking of the list for inclusion of complete coupled pairs and/or component file sets
is not performed; in this case, IGNORECOUPLE or IGNOREEXP does not have to be specified
to stop the respective file list check.

If CONTINUE is specified, the complete database is locked for use by the REGENERATE
function only.

EXCLUDE: Exclude Specified Files from Regenerate

EXCLUDE lists the numbers of the files to be excluded from REGENERATE processing; that
is, the files that are not to be regenerated. Any protection records that pertain to these files are
ignored.

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

When the FILE parameter is specified, all files specified in the EXCLUDE parameter must also
be specified in the FILE parameter.

The EXCLUDE parameter has no bearing on whether the REGENERATE is performed with or
without transaction logic.

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

572

Adabas UtilitiesREGENERATE: Regenerate Updates

Excluded files are listed in the extended CPLIST of the ADAREP report.

FILE: Files to Be Included

FILE specifies the files to be included in the regeneration process. If all files are to be included,
do not specify the FILE parameter. If the specified file is a component file of an Adabas
expanded file, all other component files of the expanded file must also be specified here. If a
specified file is coupled to other files, the coupled files must also be specified.

Note:
Before beginning, ADARES locks all specified files for the duration of REGENERATE
execution. If the FILE parameter is omitted, the entire database will be locked.

FROMBLK: Starting Block for Regeneration

FROMBLK specifies the block number in which the FROMCP checkpoint entry is contained.
This block number may be obtained from the previous ADASAV restore output or database
status report. It refers to PLOGNUM or FROMPLOG. FROMBLK can be specified only if
FROMCP is specified.

FROMCP: Starting Checkpoint for Regeneration

FROMCP defines the checkpoint after which the REGENERATE process is to begin.
Processing begins with the information following the specified checkpoint. The checkpoint
name may be obtained from the previous ADASAV restore output (SYN2/5), the database status
report, or the ADARES COPY/PLCOPY output resulting from specifying UTICPLIST. If
processing is to begin at the beginning of the log, do not specify the FROMCP parameter.
FROMCP refers to the protection log specified by PLOGNUM or FROMPLOG.

For information about the ’SYNS,INCLUDE’ option, see the section INCLUDE: Include
Checkpoint in Regeneration.

IGNORECOUPLE: Ignore Unspecified Coupled Files

IGNORECOUPLE (or CONTINUE) stops the REGENERATE function from checking the
FILE list for complete coupled file pairs. If neither CONTINUE nor IGNORECOUPLE is
specified and the FILE list specifies a coupled file without specifying its "mate", ADARES
terminates and issues an error message.

IGNOREEXP: Ignore Expanded Component Files

If the FILE list includes any Adabas expanded component files, ADARES BACKOUT normally
checks to ensure that all related component files are also in the list; if not, ADARES ends the
REGENERATE operation and issues an error message. Specifying IGNOREEXP (or
CONTINUE) stops the checking for related component files.

INCLUDE: Include Checkpoint in Regeneration

The optional keyword INCLUDE specified for FROMCP and/or TOCP includes the checkpoint
where the regenerate starts/stops in the operation; that is, the function associated with the
checkpoint is reexecuted. The checkpoint name must be SYNS, since ADARES can reexecute
only functions associated with SYNS checkpoint. The checkpoint name and parameter
combination ’SYNS,INCLUDE’ must be enclosed in apostrophes.

573

REGENERATE: Regenerate UpdatesAdabas Utilities

If INCLUDE is not specified (the default), the REGENERATE operation starts immediately
after the checkpoint specified by FROMCP and stops immediately before the checkpoint
specified by TOCP.

The INCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

MTR: Multithreaded Regenerate Switch

MTR=YES activates the multithreaded regenerate feature; MTR=NO disables it.

When the multithreaded regenerate feature is active, multiple buffers containing PLOG
information are sent to the Adabas nucleus in parallel to improve performance. When the feature
is not active, only one buffer is sent to Adabas at a time.

If the nucleus ADARUN parameter MODE=SINGLE, MTR is automatically set to NO.
Multiple threads are not available to Adabas running in single user mode.

If the FILE parameter is not specified, or is specified with CONTINUE, the default value for
MTR is YES. In these cases, multithreaded regenerate has exclusive control of the whole
database and is generally effective.

Otherwise, the default value is NO. If it only has exclusive control of some files, as is the case
when FILE is specified without CONTINUE, multithreaded regenerate can run in parallel with
normal applications accessing different files and has the potential to negatively impact the
performance of production applications.

NOAUTOBACKOUT: Prevent Incomplete Transaction Backout

NOAUTOBACKOUT stops the normal backout of incomplete transactions at the end of
REGENERATE operation. Normally, ADARES performs an automatic backout of all
incomplete logical transactions at the end of the function if both of the following are true:

The REGENERATE was for the entire database (FILE parameter omitted), or the
CONTINUE parameter was specified; and

The TOCP parameter was omitted, which implies that processing is to be performed until
the end of the input dataset is reached.

If several consecutive REGENERATE runs are needed to process multiple protection logs
resulting from a single Adabas session, an automatic backout should be performed only for the
last input log. The NOAUTOBACKOUT parameter should therefore be specified for each
REGENERATE run except for the run in which the last input log is used.

Note:
NOAUTOBACKOUT cannot be specified in single-user mode.

NOUSERABEND: Terminate without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

574

Adabas UtilitiesREGENERATE: Regenerate Updates

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and the utility
terminates with condition code 20.

NPCALLS: Maximum Number of Parallel Calls

When MTR=YES, the NPCALLS parameter may be specified to limit the number of parallel
calls sent to the Adabas nucleus.

If the FILE parameter is not specified, or is specified with CONTINUE, the default value for
NPCALLS is the nucleus ADARUN parameter NT+1 or NC, whichever is smaller.

If the FILE parameter is specified without CONTINUE, the default value is the nucleus
ADARUN parameter NT+1 or NC/2, whichever is smaller.

NPCALLS is primarily used to reduce the number of parallel calls allowed by the default value.
Fewer parallel calls mean a smaller nucleus workload produced by ADARES. This is especially
useful for increasing the resources available to application programs running in parallel with
REGENERATE FILE.

PARALLELREAD: Enable Read-Only File Usage by Other Users

The PARALLELREAD parameter provides for concurrent read-only access to the files being
processed by ADARES REGENERATE both for database-wide and file-oriented functions:

for file-oriented functions, specifying PARALLELREAD causes ADARES to issue an
OPEN call with "EXU=file-list" in the record buffer. This allows read-only access to the
files for other users while ADARES is active.

when FILE is not specified or when CONTINUE is specified, the PARALLELREAD
parameter is effective for database-wide session regeneration. The parameter makes it
possible for read-only users to access the database at the same time the database session is
being regenerated.

Update commands are rejected.

If parallel access users read records that were updated in the database session being regenerated,
they may see record images that are logically wrong in the sense of the application, or response
codes such as 113 that indicate inconsistencies.

Note:
During ADARES operation with PARALLELREAD, temporary differences between the
Associator and Data Storage may cause nucleus responses 113 or 199 to occur.

PLOGDBID: Alternate Protection Log ID

PLOGDBID specifies an alternate DBID from which the PLOG has been taken. When
regenerating with a protection log from a database other than that specified by the ADARUN
statement’s DBID parameter, use PLOGDBID to specify the database ID of the alternate
protection log. The default is the database ID (DBID) from the ADARUN-specified database.

RAID: Action to Follow Receipt of Nucleus Response Code or Utility Checkpoint

575

REGENERATE: Regenerate UpdatesAdabas Utilities

The RAID parameter terminates a regeneration with error 146 whenever a file is to be excluded
because a utility checkpoint (other than ADADBS or Adabas Online System checkpoints) was
encountered or a nucleus response code was received for the file.

If RAID is not specified (the default), ADARES continues processing the other files after a file
is excluded from REGENERATE processing.

RAID is provided for use in recovery jobs built by the Adabas Recovery Aid (ADARAI).

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

TOBLK: Ending TOCP Block

TOBLK specifies the block number in which the TOCP checkpoint entry is contained. TOBLK,
which can be specified only if TOCP is also specified, refers to the protection log specified by
TOPLOG, if specified, or else by PLOGNUM or FROMPLOG.

TOCP: Ending Checkpoint Block for Regenerate

TOCP specifies the checkpoint before which the REGENERATE process is to stop. Processing
continues up to, but not including, the specified checkpoint. If REGENERATE processing is to
continue until the end of the log, do not specify TOCP. TOCP refers to the protection log
specified by TOPLOG, if specified, or else PLOGNUM or FROMPLOG.

For information about the ’SYNS,INCLUDE’ option, see the section INCLUDE: Include
Checkpoint in Regeneration.

TOPLOG: Ending PLOG Session for Regenerate

TOPLOG specifies the last session to be processed by the specified ADARES function. If
ADARES finds a session on the PLOG input file that is greater than the specified TOPLOG
session, that session is excluded from ADARES processing. If TOPLOG is not specified, the
FROMPLOG session becomes the default.

Examples
Example 1:

ADARES REGENERATE PLOGNUM=4

All files are to be included in regenerate processing. The protection log number is 4. Regenerate
processing is to begin at the beginning of the log and is to end at the end of the log. At the end of
REGENERATE processing, incomplete transactions are automatically backed out.

Example 2:

ADARES REGENERATE
FILE=4,7,FROMPLOG=11,FROMCP=CH01,FROMBLK=106,
ADARES TOPLOG=12,TOCP=CH05,TOBLK=2031

576

Adabas UtilitiesREGENERATE: Regenerate Updates

Regenerate processing is to be limited to files 4 and 7. All updates applied to files 4 and 7 between the
taking of checkpoints CH01 and CH05 are to be reapplied. CH01 is located in block 106 of data
protection log 11. Checkpoint CH05 is located in block 2031 of data protection log 12. No automatic
backout of incomplete transactions occurs following REGENERATE processing, as in the previous
example.

Example 3:

ADARES REGENERATE EXCLUDE=10,11,12

Files 10 through 12 are excluded from the REGENERATE database function. No changes to these files
are replayed.

Example 4:

ADARES REGENERATE
ADARES FROMCP=’SYNS,INCLUDE’,FROMBLK=123
ADARES TOCP=SYNP,TOBLK=234

1. ADARES regenerates the database.

2. The REGENERATE starts at the SYNS checkpoint in PLOG block 123; ADARES reexecutes the
associated ADADBS/Adabas Online System function.

3. The REGENERATE stops just before the SYNP checkpoint in block 234; ADARES does not replay
the associated utility function.

Example 5:

ADARES REGENERATE FILE=10
ADARES FROMCP=’SYNS,INCLUDE’,FROMBLK=345
ADARES TOCP=’SYNS,INCLUDE’,TOBLK=456

1. ADARES regenerates file 10.

2. The REGENERATE starts at the SYNS checkpoint in PLOG block 345; ADARES reexecutes the
associated ADADBS/Adabas Online System function if it pertains to file 10.

3. The REGENERATE stops at the SYNS checkpoint in block 456; ADARES replays the associated
ADADBS/Adabas Online System function if it pertains to file 10.

Example 6:

ADARES REGENERATE
ADARES RAID

1. ADARES regenerates the database.

2. ADARES reexecutes all database updates found on the input PLOG.

3. ADARES immediately terminates with error 146 if it receives a nucleus response code or encounters
a utility checkpoint other than from ADADBS or Adabas Online System.

577

REGENERATE: Regenerate UpdatesAdabas Utilities

REPAIR: Repair Data Storage Blocks
Warning:
The REPAIR function can cause data loss if not used correctly. It
should only be used with guidance from your Software AG technical
support representative.

The REPAIR function may be used to repair one or more Data Storage blocks, using the protection log
and the output of the ADASAV utility.

Notes:

1. An interrupted REPAIR function must be reexecuted from the beginning.
2. The REPAIR function should not be run if any of the following utility functions have changed the

RABN ranges since the last ADASAV SAVE operation: ADAORD, ADALOD, ADADBS
DEALLOCATE, ADASAV RESTORE FMOVE

3. The DDSIIN/SIIN input must be concatenated in the following sequence: ADASAV SAVE
(DD/SAVEn) output; , protection log.

This chapter covers the following topics:

Syntax

Essential Parameter

Optional Parameters

Examples

Syntax

Essential Parameter
DSRABN: Data Storage RABN or RABNs to Be Repaired

DSRABN specifies one or more Data Storage RABNs to be repaired. Either a single RABN or a
range of RABNs (for example, 1000-1234) can be specified.

578

Adabas UtilitiesREPAIR: Repair Data Storage Blocks

Optional Parameters
FILE: Locked File List

FILE locks one or more files so that they cannot be read or updated by any user during REPAIR
execution. Only the files specified are locked for the exclusive use of ADARES REPAIR. Files
not included in the list remain available to other users of the database. If FILE is not specified,
the entire database is locked; the user queue must be empty.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

Examples
Example 1:

ADARES REPAIR DSRABN=1434,FILE=20

Repair Data Storage block 1434. Only file 20 is locked during file processing.

Example 2:

ADARES REPAIR DSRABN=1462-2543

Repair Data Storage blocks 1462 through 2543.

579

REPAIR: Repair Data Storage BlocksAdabas Utilities

Multithreaded Processing Statistics
When running ADARES BACKOUT, BACKOUT DPLOG, or REGENERATE with MTR=YES, a table
with processing statistics is printed to DDDRUCK after successful completion of the utility. For example:

MULTI - THREADING PROCESSING STATISTIC

 PLOG BLOCKS READ FROM INPUT 20472
 PLOG RECORDS SENT TO ADABAS 764554
 COMMANDS PROCESSED 302273
 TRANSACTION PROCESSED 55045
 NUMBER OF ADABAS CALLS 56450
 MAXIMUM CALLS IN PARALLEL 71
 AVERAGE RECORD BUFFER SIZE 1403

Field Description

PLOG blocks read from
input

Number of PLOG blocks read from the input protection log

PLOG records sent to
Adabas

Number of PLOG records selected for backout or
regenerate processing

Commands processed Number of update commands processed (N1, E1, ...)

Transactions processed Number of transactions backed out or regenerated

Number of Adabas calls Number of Adabas calls issued to perform the backout or regenerate

Maximum calls in parallel Maximum number of backout or regenerate calls processed in parallel by
the nucleus

Average calls in parallel Average number of backout or regenerate calls processed in parallel by
the nucleus during this ADARES run

Average record buffer size Average size of the record buffers used for the backout or regenerate
calls

580

Adabas UtilitiesMultithreaded Processing Statistics

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADARES with BS2000, OS/390 or
z/OS, VSE/ESA, and VM/ESA or z/VM systems and shows examples of each of the job streams.

Notes:

1. The DD/SIAUS1/2 device type used to copy the protection log may not support the BACKOUT
function if it is an IDRC (hardware compression) device. For more information, see the description
of the PLCOPY function earlier in this document.

2. When running with the optional Recovery Aid (ADARAI), all temporary datasets must also be
cataloged in the job control.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000

581

JCL/JCS Requirements and ExamplesAdabas Utilities

Dataset Link Name Storage More Information

Sequential protection log
or ADASAV DDSAVEn
output

DDSIIN tape/ disk Input log for COPY,
REGENERATE, and
REPAIR functions.

Multiple protection log DDPLOGRn disk Input logs for
PLCOPY function,
and BACKOUT
DPLOG.

Multiple command log DDCLOGRn disk Input logs for
CLCOPY function.

Sequential protection log DDBACK tape Input log for
BACKOUT function
(notBACKOUT
DPLOG).

Copied log DDSIAUS1 tape/ disk Output of COPY,
CLCOPY,
PLCOPYfunctions.

Extra copied log DDSIAUS2 tape/ disk Required only if two
copies are to be
produced by a copy
function (with
TWOCOPIES).

Data Storage DDDATARn disk Required only for
REGENERATE if
FROMCP=SYN1 or
SYN4.

Associator DDASSORn disk

Recovery log (RLOG) DDRLOGR1 disk Required when using
ADARAI.

ADARUN parameters SYSDTA/ DDCARD Operations

ADARES parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT/ DDPRINT Messages and Codes

ADARES messages SYSLST DDDRUCK Messages and Codes

ADARES JCL Examples (BS2000)

Copy Dual/Multiple Command Log

In SDF Format:

/.ADARES LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A R E S COPY DUAL/MULTIPLE COMMAND LOG
 /REMARK *
 /DELETE-FILE ADAyyyyy.AUS1

582

Adabas UtilitiesJCL/JCS Requirements and Examples

 /SET-JOB-STEP
 /CREATE-FILE ADAyyyyy.AUS1,PUB(SPACE=(960,480))
 /SET-JOB-STEP
 /ASS-SYSLST L.RES.CLCO
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDCLOGR1,ADAyyyyy.CLOGR1,SHARE-UPD=YES
 /SET-FILE-LINK DDCLOGR2,ADAyyyyy.CLOGR2,SHARE-UPD=YES
 /SET-FILE-LINK DDSIAUS1,ADAyyyyy.AUS1
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES CLCOPY
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADARES LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A R E S COPY DUAL/MULTIPLE COMMAND LOG
 /REMARK *
 /SYSFILE SYSLST=L.RES.CLCO
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.CLOGR1 ,LINK=DDCLOGR1,SHARUPD=YES
 /FILE ADAyyyyy.CLOGR2 ,LINK=DDCLOGR2,SHARUPD=YES
 /FILE ADAyyyyy.AUS1 ,LINK=DDSIAUS1,SPACE=(960,480)
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES CLCOPY
 /LOGOFF NOSPOOL

Copy Sequential Protection Log

In SDF Format:

/.ADARES LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A R E S COPY SEQUENTIAL PLOG
 /REMARK *
 /DELETE-FILE ADAyyyyy.SIBA.COP1
 /SET-JOB-STEP
 /CREATE-FILE ADAyyyyy.SIBA.COP1,PUB(SPACE=(960,480))
 /SET-JOB-STEP
 /ASS-SYSLST L.RES.COPY
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDSIIN,ADAyyyyy.SIBA
 /SET-FILE-LINK DDSIAUS1,ADAyyyyy.SIBA.COP1
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES COPY PLOGNUM=ppp
 /LOGOFF SYS-OUTPUT=DEL

583

JCL/JCS Requirements and ExamplesAdabas Utilities

In ISP Format:

/.ADARES LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A R E S COPY SEQUENTIAL PLOG
 /REMARK *
 /SYSFILE SYSLST=L.RES.COPY
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.SIBA ,LINK=DDSIIN
 /FILE ADAyyyyy.SIBA.COP1,LINK=DDSIAUS1,SPACE=(960,480)
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES COPY PLOGNUM=ppp
 /LOGOFF NOSPOOL

Copy Dual/Multiple Protection Log

In SDF Format:

/.ADARES LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A R E S COPY DUAL/MULTIPLE PROTECTION LOG
 /REMARK *
 /DELETE-FILE ADAyyyyy.AUS1
 /SET-JOB-STEP
 /CREATE-FILE ADAyyyyy.AUS1,PUB(SPACE=(960,480))
 /SET-JOB-STEP
 /DELETE-FILE ADAyyyyy.AUS2
 /SET-JOB-STEP
 /CREATE-FILE ADAyyyyy.AUS2,PUB(SPACE=(960,480))
 /SET-JOB-STEP
 /ASS-SYSLST L.RES.PLCO
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDPLOGR1,ADAyyyyy.PLOGR1,SHARE-UPD=YES
 /SET-FILE-LINK DDPLOGR2,ADAyyyyy.PLOGR2,SHARE-UPD=YES
 /SET-FILE-LINK DDSIAUS1,ADAyyyyy.AUS1
 /SET-FILE-LINK DDSIAUS2,ADAyyyyy.AUS2
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES PLCOPY TWOCOPIES
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADARES LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A R E S COPY DUAL/MULTIPLE PROTECTION LOG
 /REMARK *
 /SYSFILE SYSLST=L.RES.PLCO
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.PLOGR1 ,LINK=DDPLOGR1,SHARUPD=YES
 /FILE ADAyyyyy.PLOGR2 ,LINK=DDPLOGR2,SHARUPD=YES
 /FILE ADAyyyyy.AUS1 ,LINK=DDSIAUS1,SPACE=(960,480)
 /FILE ADAyyyyy.AUS2 ,LINK=DDSIAUS2,SPACE=(960,480)

584

Adabas UtilitiesJCL/JCS Requirements and Examples

 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES PLCOPY TWOCOPIES
 /LOGOFF NOSPOOL

Backout Using a Sequential Protection Log

In SDF Format:

/.ADARES LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A R E S BACKOUT FROM SEQUENTIAL PLOG
 /REMARK *
 /ASS-SYSLST L.RES.BACK
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDBACK,ADAyyyyy.BACK
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES BACKOUT
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADARES LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A R E S BACKOUT FROM SEQUENTIAL PLOG
 /REMARK *
 /SYSFILE SYSLST=L.RES.BACK
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.BACK ,LINK=DDBACK
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES BACKOUT
 /LOGOFF NOSPOOL

Backout Using a Dual/Multiple Protection Log

In SDF Format:

/.ADARES LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A R E S BACKOUT FROM DUAL/MULTIPLE PLOG
 /REMARK *
 /ASS-SYSLST L.RES.BADP
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDPLOGR1,ADAyyyyy.PLOGR1,SHARE-UPD=YES
 /SET-FILE-LINK DDPLOGR2,ADAyyyyy.PLOGR2,SHARE-UPD=YES
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES BACKOUT DPLOG
 /LOGOFF SYS-OUTPUT=DEL

585

JCL/JCS Requirements and ExamplesAdabas Utilities

In ISP Format:

/.ADARES LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A R E S BACKOUT FROM DUAL/MULTIPLE PLOG
 /REMARK *
 /SYSFILE SYSLST=L.RES.BADP
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.PLOGR1 ,LINK=DDPLOGR1,SHARUPD=YES
 /FILE ADAyyyyy.PLOGR2 ,LINK=DDPLOGR2,SHARUPD=YES
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES BACKOUT DPLOG
 /LOGOFF NOSPOOL

Regenerate Function

In SDF Format:

/.ADARES LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A R E S REGENERATE
 /REMARK *
 /ASS-SYSLST L.RES.REGE
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDSIIN,ADAyyyyy.SIBA
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES REGENERATE FILE=1,CONTINUE,PLOGNUM=ppp
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADARES LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A R E S REGENERATE
 /REMARK *
 /SYSFILE SYSLST=L.RES.REGE
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.SIBA ,LINK=DDSIIN
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES REGENERATE FILE=1,CONTINUE,PLOGNUM=ppp
 /LOGOFF NOSPOOL

Repair Data Storage

In SDF Format:

/.ADARES LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A R E S REPAIR DATASTORAGE
 /REMARK *

586

Adabas UtilitiesJCL/JCS Requirements and Examples

 /ASS-SYSLST L.RES.REPA
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDSIIN,ADAyyyyy.SAVE
 /SET-FILE-LINK DDSIIN01,ADAyyyyy.PLOG5
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES REPAIR DSRABN=3456 3490
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADARES LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A R E S REPAIR DATASTORAGE
 /REMARK *
 /SYSFILE SYSLST=L.RES.REPA
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.SAVE ,LINK=DDSIIN
 /FILE ADAyyyyy.PLOG5 ,LINK=DDSIIN01
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADARES,DB=yyyyy,IDTNAME=ADABAS5B
 ADARES REPAIR DSRABN=3456 3490
 /LOGOFF NOSPOOL

OS/390 or z/OS

587

JCL/JCS Requirements and ExamplesAdabas Utilities

Dataset DD Name Storage More Information

Sequential protection log
or ADASAV DDSAVEn
output

DDSIIN tape/ disk Input log for COPY,
REGENERATE,
andREPAIR
functions.

Multiple protection log DDPLOGRn disk Input logs for
PLCOPY function,
and BACKOUT
DPLOG/MPLOG .

Multiple command log DDCLOGRn disk Input logs for
CLCOPY function.

Sequential protection log DDBACK tape Input log for
BACKOUT function
(not BACKOUT
DPLOG).

Copied log DDSIAUS1 tape/ disk Output of COPY,
CLCOPY,
PLCOPYfunctions.

Extra copied log DDSIAUS2 tape/ disk Required only if two
copies are to be
produced by a copy
function (with
TWOCOPIES).

Recovery log (RLOG) DDRLOGR1 disk Required when using
ADARAI.

Data Storage DDDATARn disk Required only for
REGENERATE if
FROMCP=SYN1 or
SYN4.

Associator DDASSORn disk

ADARUN parameters DDCARD reader Operations

ADARES parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADARES messages DDDRUCK printer Messages and Codes

ADARES JCL Examples (OS/390 or z/OS)

Copy Sequential Protection Log

//ADARESCP JOB
//*
//* ADARES: COPY SEQUENTIAL PROTECTION LOG
//*
//RES EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*

588

Adabas UtilitiesJCL/JCS Requirements and Examples

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDSIIN DD DSN=EXAMPLE.DByyyyy.SIBA, <=== PLOG
// VOL=SER=vvvvvv,DISP=OLD,UNIT=TAPE
//DDSIAUS1 DD DSN=EXAMPLE.DByyyyy.PLOG(+1), <=== PLOG COPY
// VOL=SER=vvvvvv,UNIT=TAPE,DISP=(NEW,CATLG)
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADARES COPY
/*

Refer to ADARESCP in the MVSJOBS dataset for this example.

Copy Dual/Multiple Protection Log

//ADARESCD JOB
//*
//* ADARES: COPY DUAL/MULTIPLE PROTECTION LOG
//* TWO COPIES OF OUTPUT ARE TO BE CREATED
//*
//RES EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.VVRS.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDPLOGR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR1 <=== PLOG1
//DDPLOGR2 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR2 <=== PLOG2
//DDSIAUS1 DD DSN=EXAMPLE.DByyyyy.PLOG1(+1), <=== PLOG COPY 1
// VOL=SER=vvvvvv,UNIT=TAPE,DISP=(NEW,CATLG)
//DDSIAUS2 DD DSN=EXAMPLE.DByyyyy.PLOG2(+1), <=== PLOG COPY 2
// VOL=SER=vvvvvv,UNIT=TAPE,DISP=(NEW,CATLG)
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X

//DDCARD DD *
ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADARES PLCOPY TWOCOPIES
/*

Refer to ADARESCD in the MVSJOBS dataset for this example.

Automatically Copy/Merge Nucleus Cluster Protection Logs

Note:
Note that when intermediate datasets are used for both CLCOPY and PLCOPY, the dataset names must be
unique so that they are not overwritten.

589

JCL/JCS Requirements and ExamplesAdabas Utilities

Following is sample JCL for allocating the required intermediate datasets MERGINTI and MERGINTO:

//ALLOC JOB
//*
//* Example to allocate the MERGINTI and the MERGINTO datasets
//*
//ALLOC EXEC PGM=IEFBR14
//MERGINTI DD DISP=(NEW,CATLG,DELETE),DSN=EXAMPLE.PINTERI,
// SPACE=(CYL,(1,10,0)),UNIT=3390,VOL=SER=volser,
// RECFM=VB,BLKSIZE=27998,LRECL=27994
//MERGINTO DD DISP=(NEW,CATLG,DELETE),DSN=EXAMPLE.PINTERO,
// SPACE=(CYL,(1,10,0)),UNIT=3390,VOL=SER=volser,
// RECFM=VB,BLKSIZE=27998,LRECL=27994

Refer to ADARESMP in the MVSJOBS dataset for this example.

Automatically Copy/Merge Nucleus Cluster Protection Logs Ignoring PPT

//ADARESIP JOB

//*
//* ADARES: COPY/MERGE DUAL/MULTIPLE PROTECTION LOGS FROM ALL
//* NUCLEI IN AN ADABAS CLUSTER
//* PPT IS TO BE IGNORED
//* THIS IS ONLY FOR EMERGENCY USE WHEN THE PPT HAS BEEN
//* OVER-WRITTEN - USE CAUTION WHEN SUBMITTING
//*

//RES EXEC PGM=ADARUN

//STEPLIB DD DISP=SHR,DSN=ADABAS.VVRS.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.DATAR1 <=== DATA
//DDPLOG01 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.PLOGR1 <=== PLOG1 NUC1
//DDPLOG02 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.PLOGR2 <=== PLOG2 NUC1
//DDPLOG03 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.PLOGR1A <=== PLOG1 NUC2
//DDPLOG04 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.PLOGR2A <=== PLOG2 NUC2
//DDPLOG05 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.PLOGR1B <=== PLOG1 NUC3
//DDPLOG06 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.PLOGR2B <=== PLOG2 NUC3
//MERGINTO DD DISP=SHR,DSN=EXAMPLE.INTERO <=== INTER
//MERGINTI DD DISP=SHR,DSN=EXAMPLE.INTERI <=== INTER
//DDSIAUS1 DD DSN=EXAMPLE.DBYYYYY.PLOG1(+1), <=== PLOG COPY
// VOL=SER=ADAXXX,UNIT=TAPE,DISP=(NEW,CATLG)
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADARES,MODE=MULTI,SVC=XXX,DEVICE=3380,DBID=YYYYY
/*
//DDKARTE DD *
ADARES PLCOPY NOPPT
/*
//

Refer to ADARESIP in the MVSJOBS dataset.

590

Adabas UtilitiesJCL/JCS Requirements and Examples

Copy Dual/Multiple Command Log

//ADARESCC JOB
//*
//* ADARES: COPY DUAL/MULTIPLE COMMAND LOG
//*
//RES EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDCLOGR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.CLOGR1 <=== CLOG1
//DDCLOGR2 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.CLOGR2 <=== CLOG2
//DDSIAUS1 DD DSN=EXAMPLE.DByyyyy.CLOG, <=== OUTPUT OF
// VOL=SER=vvvvvv,UNIT=TAPE,DISP=(NEW,CATLG) CLCOPY

//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADARES CLCOPY
/*

Refer to ADARESCC in the MVSJOBS dataset for this example.

Automatically Copy/Merge Nucleus Cluster Command Logs

Note:
Note that when intermediate datasets are used for both CLCOPY and PLCOPY, the dataset names must be
unique so that they are not overwritten.

Following is sample JCL for allocating the required intermediate datasets MERGINTI and MERGINTO:

//ALLOC JOB
//*
//* Example to allocate the MERGINTI and the MERGINTO datasets
//*
//ALLOC EXEC PGM=IEFBR14
//MERGINTI DD DISP=(NEW,CATLG,DELETE),DSN=EXAMPLE.CINTERI,
// SPACE=(CYL,(1,10,0)),UNIT=3390,VOL=SER=volser,
// RECFM=VB,BLKSIZE=27998,LRECL=27994
//MERGINTO DD DISP=(NEW,CATLG,DELETE),DSN=EXAMPLE.CINTERO,
// SPACE=(CYL,(1,10,0)),UNIT=3390,VOL=SER=volser,
// RECFM=VB,BLKSIZE=27998,LRECL=27994

Refer to ADARESMC in the MVSJOBS dataset for this example.

Manually Merge Sequential Command Logs in a Nucleus Cluster Environment

//ADARESCM JOB
//*
//* ADARES: MERGE SEQUENTIAL COMMAND LOGS
//* FOR USE WITH AN ADABAS NUCLEUS CLUSTER
//*

//RES EXEC PGM=ADARUN

591

JCL/JCS Requirements and ExamplesAdabas Utilities

//STEPLIB DD DISP=SHR,DSN=ADABAS.VVRS.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.WORKR1 <=== WORK
//DDCLOG01 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.CLOGR1A <=== CLOG1
//DDCLOG02 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.CLOGR1B <=== CLOG2
//DDCLOG03 DD DISP=SHR,DSN=EXAMPLE.DBYYYYY.CLOGR1C <=== CLOG3
//DDSIAUS1 DD DSN=EXAMPLE.DBYYYYY.CLOGM, <=== OUTPUT OF
// VOL=SER=ADAXXX,UNIT=TAPE,DISP=(NEW,CATLG) CLOG MERGE
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADARES,MODE=MULTI,SVC=XXX,DEVICE=3380,DBID=YYYYY
/*
//DDKARTE DD *
ADARES MERGE CLOG,NUMLOG=3
/*
//

Refer to ADARESCM in the MVSJOBS dataset for this example.

Backout from a Sequential Protection Log

//ADARESSP JOB
//*
//* ADARES: BACKOUT FROM A SEQUENTIAL PLOG
//*
//RES EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDBACK DD DSN=EXAMPLE.DByyyyy.PLOG(-5), <=== PLOG TAPE
// UNIT=TAPE,DISP=OLD
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*

//DDKARTE DD *
ADARES BACKOUT PLOGNUM=nnn
/*

Refer to ADARESSP in the MVSJOBS dataset for this example.

Backout from Dual/Multiple Protection Log

//ADARESB JOB
//*
//* ADARES: BACKOUT FROM DUAL/MULTIPLE PLOG
//*
//RES EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK

592

Adabas UtilitiesJCL/JCS Requirements and Examples

//DDPLOGR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR1 <=== PLOG1
//DDPLOGR2 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR2 <=== PLOG2
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADARES BACKOUT DPLOG
/*

Refer to ADARESB in the MVSJOBS dataset for this example.

Regenerate Function

//ADARESR JOB
//*
//* ADARES: REGENERATE
//*
//RES EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDSIIN DD DSN=EXAMPLE.DByyyyy.PLOG(-5), <=== PLOG TAPE
// UNIT=TAPE,DISP=OLD
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADARES REGENERATE FILE=1
/*

Refer to ADARESR in the MVSJOBS dataset for this example.

Repair Data Storage

//ADARESRP JOB
//*
//* ADARES: REPAIR DATASTORAGE
//*
//RES EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDSIIN DD DSN=EXAMPLE.DByyyyy.SAVE, <=== SAVE
OUTPUT
// DISP=OLD,UNIT=TAPE
// DD DSN=EXAMPLE.DByyyyy.PLOG(-5), <=== PLOG TAPE
// DISP=OLD,UNIT=TAPE
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *

593

JCL/JCS Requirements and ExamplesAdabas Utilities

ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADARES REPAIR DSRABN=3456-3490

Refer to ADARESRP in the MVSJOBS dataset for this example.

VM/ESA or z/VM

Dataset DD Name Storage More Information

Sequential protection log
or ADASAV DDSAVEn
output

DDSIIN tape/ disk Input log for COPY,
REGENERATE and
REPAIR functions.

Multiple protection log DDPLOGRn disk Input logs for
PLCOPY and
BACKOUT DPLOG.

Multiple command log DDCLOGRn disk Input logs for
CLCOPY.

Sequential protection log DDBACK tape Input log for
BACKOUT (not
BACKOUT
DPLOG).

Copied log DDSIAUS1 tape/ disk Output of CLCOPY
and PLCOPY.

Extra copied log DDSIAUS2 tape/ disk Required for
TWOCOPIES.

Data Storage DDDATARn disk Required for
REGENERATE if
FROMCP=SYN1 or
SYN4.

Associator DDASSORn disk

Recovery log (RLOG) DDRLOGR1 disk Required when using
ADARAI.

ADARUN parameters DDCARD disk/
terminal/reader

Operations

ADARES parameters DDKARTE disk/
terminal/reader

ADARUN messages DDPRINT disk/
terminal/printer

Messages and Codes

ADARES messages DDDRUCK disk/
terminal/printer

Messages and Codes

594

Adabas UtilitiesJCL/JCS Requirements and Examples

ADARES JCL Examples (VM/ESA or z/VM)

Copy Sequential Protection Log

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDSIIN,DSN=ADABASVv.SIBA,MODE=A
DATADEF DDSIAUS1,DSN=ADABASVv.SIAUS1,UNIT=181,VOL=SIBA01
DATADEF DDPRINT,DSN=ADARES.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADARES.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNRES.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADARES.CONTROL,MODE=A
ADARUN

Contents of RUNRES CONTROL A1

ADARUN PROG=ADARES,DEVICE=dddd,DB=yyyyy

Contents of ADARES CONTROL A1

ADARES COPY PLOGNUM=ppp

Copy Dual/Multiple Protection Log

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDPLOGR1,DSN=ADABASVv.PLOG1,VOL=PLOGV1
DATADEF DDPLOGR2,DSN=ADABASVv.PLOG2,VOL=PLOGV2
DATADEF DDSIAUS1,DSN=ADABASVv.SIAUS1,UNIT=181,VOL=SIBA01
DATADEF DDSIAUS2,DSN=ADABASVv.SIAUS2,UNIT=182,VOL=SIBA02
DATADEF DDPRINT,DSN=ADARES.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADARES.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNRES.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADARES.CONTROL,MODE=A
ADARUN

Contents of RUNRES CONTROL A1

ADARUN PROG=ADARES,DEVICE=dddd,DB=yyyyy

Contents of ADARES CONTROL A1

ADARES PLCOPY TWOCOPIES

Copy Dual/Multiple Command Log

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDCLOGR1,DSN=ADABASVv.CLOG1,VOL=CLOGV1
DATADEF DDCLOGR1,DSN=ADABASVv.CLOG1,VOL=CLOGV2
DATADEF DDSIAUS1,DSN=ADABASVv.CLOG1,UNIT=181,VOL=CLOG01
DATADEF DDPRINT,DSN=ADARES.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADARES.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNRES.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADARES.CONTROL,MODE=A
LOAD ADARUN (START

595

JCL/JCS Requirements and ExamplesAdabas Utilities

Contents of RUNRES CONTROL A1

ADARUN PROG=ADARES,DEVICE=dddd,DB=yyyyy

Contents of ADARES CONTROL A1

ADARES CLCOPY

Backout Using a Sequential Protection Log

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDBACK,DSN=ADABASVv.SIBA,MODE=A
DATADEF DDPRINT,DSN=ADARES.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADARES.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNRES.CONTROL,MODE=A
DATADEF DDKARTE,DSN=BACKOUT.CONTROL,MODE=A
LOAD ADARUN (START

Contents of RUNRES CONTROL A1

ADARUN PROG=ADARES,DEVICE=dddd,DB=yyyyy

Contents of BACKOUT CONTROL A1

ADARES BACKOUT

Backout Using a Dual/Multiple Protection Log

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDPLOGR1,DSN=ADABASVv.PLOG1,VOL=PLOGV1
DATADEF DDPLOGR2,DSN=ADABASVv.PLOG2,VOL=PLOGV2
DATADEF DDPRINT,DSN=ADARES.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADARES.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNRES.CONTROL,MODE=A
DATADEF DDKARTE,DSN=BACKOUT.CONTROL,MODE=A
LOAD ADARUN (START

Contents of RUNRES CONTROL A1

ADARUN PROG=ADARES,DEVICE=dddd,DB=yyyyy

Contents of BACKOUT CONTROL A1

ADARES BACKOUT DPLOG

Regenerate Function

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDSIIN,DSN=ADABASVv.SIBA,MODE=A
DATADEF DDPRINT,DSN=ADARES.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADARES.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNRES.CONTROL,MODE=A
DATADEF DDKARTE,DSN=REGENER.CONTROL,MODE=A
LOAD ADARUN (START

596

Adabas UtilitiesJCL/JCS Requirements and Examples

Contents of RUNRES CONTROL A1

ADARUN PROG=ADARES,DEVICE=dddd,DB=yyyyy

Contents of REGENER CONTROL A1

ADARES REGENERATE FILE=1

Repair Data Storage

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDSIIN,DSN=ADABASVv.SAVE,MODE=A
DATADEF DDSIIN,DSN=ADABASVv.SIBA,MODE=A,CONCAT=1
DATADEF DDPLOGR1,DSN=ADABASVv.PLOG1,VOL=PLOGV1
DATADEF DDPLOGR2,DSN=ADABASVv.PLOG2,VOL=PLOGV2
DATADEF DDPRINT,DSN=ADARES.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADARES.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNRES.CONTROL,MODE=A
DATADEF DDKARTE,DSN=BACKOUT.CONTROL,MODE=A
LOAD ADARUN (START

Contents of RUNRES CONTROL A1

ADARUN PROG=ADARES,DEVICE=dddd,DB=yyyyy

Contents of BACKOUT CONTROL A1

ADARES REPAIR DSRABN=3456-3490

VSE/ESA

597

JCL/JCS Requirements and ExamplesAdabas Utilities

Dataset Symbolic Storage Logical Unit More
Information

Sequential
protection log or
ADASAV
SAVEn output

SIIN tape
disk

SYS020 See note Input log for
COPY,
REGENERATE,
and REPAIR.

Multiple
protection log

PLOGRn disk See note Input logs for
PLCOPY and
BACKOUT
DPLOG.

Multiple command
log

CLOGRn disk See note Input logs for
CLCOPY.

Sequential
protection log

BACK tape SYS020 Input log for
BACKOUT (not
BACKOUT
DPLOG).

Copied log SIAUS1 tape
disk

SYS021
See note

Output of COPY,
CLCOPY, and
PLCOPY.

Extra copied log SIAUS2 tape
disk

SYS022
See note

Required for
TWOCOPIES.

Data Storage DATARn disk Required for
REGENERATE if
FROMCP=SYN1
or SYN4.

Associator ASSORn See note

Recovery log
(RLOG)

RLOGR1 disk Required when
using ADARAI.

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
See note

ADARES
parameters

 reader SYSIPT

ADARUN
messages

 printer SYSLST

ADARES
messages

 printer SYS009

Note:
Any programmer logical unit can be used.

598

Adabas UtilitiesJCL/JCS Requirements and Examples

ADARES JCS Examples (VSE/ESA)

See Procedures for VSE/ESA Examples for descriptions of the VSE/ESA procedures (PROCs).

Refer to the following members for these examples:

Example Member

Copy sequential protection log ADARESCP.X

Copy dual/multiple protection log ADARESCD.X

Copy dual/multiple command log ADARESCC.X

Regenerate ADARESR.X

Backout from a sequential protection
log

ADARESSP.X

Backout from a dual protection log ADARESB.X

Repair Data Storage ADARESRP.X

Copy Sequential Protection Log

* $$ JOB JNM=ADARESCP,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADARESCP
* COPY SEQUENTIAL PLOG(TAPE)
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS020,TAPE,D0
// PAUSE MOUNT INPUT TAPE ON TAPE cuu
// MTC REW,SYS020
// TLBL SIIN,’ADABAS.Vvr.SIBA’
// ASSGN SYS022,TAPE,D0
// PAUSE MOUNT SCRATCH TAPE ON TAPE cuu
// MTC REW,SYS022
// MTC WTM,SYS022,5
// MTC REW,SYS022
// TLBL SIAUS1,’ADABAS.Vvr.SIAUS1’
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADARES COPY
/*
/&
* $$ EOJ

Copy Dual/Multiple Protection Log

* $$ JOB JNM=ADARESCD,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADARESCD
* CLCOPY WITH OPTION TWOCOPIES(TAPE)
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS021,TAPE,D0
// ASSGN SYS022,TAPE,D0
// PAUSE MOUNT SCRATCH TAPE ON TAPES cu1 AND cu2
// MTC REW,SYS022

599

JCL/JCS Requirements and ExamplesAdabas Utilities

// MTC WTM,SYS022,5
// MTC REW,SYS022
// MTC REW,SYS021
// MTC WTM,SYS021,5
// MTC REW,SYS021
// TLBL SIAUS1,’ADABAS.Vvr.PLOGC1’
// TLBL SIAUS2,’ADABAS.Vvr.PLOGC2’
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADARES PLCOPY TWOCOPIES
/*
/&
* $$ EOJ

Copy Dual/Multiple Command Log

* $$ JOB JNM=ADARESCC,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADARESCC
* COPY DUAL/MULTIPLE COMMAND LOG
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS022,DISK,VOL=vvvvvv,SHR
// DLBL SIAUS1,’ADABAS.Vvr.CLOG’,0,SD
// EXTENT SYS022,vvvvvv,1,0,sssss,nnnnn
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADARES CLCOPY
/*
/&
* $$ EOJ

Regenerate

* $$ JOB JNM=ADARESR,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADARESR
* REGENERATE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS020,DISK,VOL=vvvvvv,SHR
// DLBL SIIN,’EXAMPLE.DByyyyy.PLOG’
// EXTENT SYS020,vvvvvv
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADARES REGENERATE FILE=1
/*
/&
* $$ EOJ

Backout from a Sequential Protection Log

* $$ JOB JNM=ADARESSP,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADARESSP
* BACKOUT FROM A SEQUENTIAL PLOG
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS020,TAPE

600

Adabas UtilitiesJCL/JCS Requirements and Examples

// PAUSE *** PLEASE MOUNT TAPE ***
// MTC REW,SYS020
// TLBL BACK,’DByyyyy.PLCOPY.TAPE’
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADARES BACKOUT PLOGNUM=ppp
/*
/&
* $$ EOJ

Backout from a Dual Protection Log

* $$ JOB JNM=ADARESB,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADARESB
* BACKOUT FROM DUAL PLOG
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADARES BACKOUT DPLOG
/*
/&
* $$ EOJ

Repair Data Storage

* $$ JOB JNM=ADARESRP,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADARESRP
* REPAIR DATASTORAGE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS020,TAPE
// PAUSE MOUNT INPUT TAPE ON cuu
// MTC REW,SYS020
// TLBL SIIN,’EXAMPLE.ADAyyyyy.SAVE1’
// TLBL SIIN01,’ADABAS.ADAyyyyy.PLOG5’ (*)
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADARES,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADARES REPAIR DSRABN=3456-3490
/*
/&
* $$ EOJ

(*) See Sequential Input Files, VSE concatenation.

601

JCL/JCS Requirements and ExamplesAdabas Utilities

ADASAV: Save/Restore Database or Files
The ADASAV utility is used to

Functional Overview

RESTONL: Restore Database from Online Source

RESTONL GCB: Restore Database Incremental from Online Source

RESTONL FILES: Restore Files to Original RABNs from Online Source

RESTONL FMOVE: Restore Files to Any RABNs from Online Source

RESTORE: Restore Database from Offline Source

RESTORE GCB: Restore Database Incremental from Offline Source

RESTORE FILES: Restore Files to Original RABNs from Offline Source

RESTORE FMOVE: Restore Files to Any RABNs from Offline Source

RESTPLOG: Restore Protection Log Only

SAVE: Save Database

SAVE FILES: Save Specified Files

JCL/JCS Requirements and Examples

602

Adabas UtilitiesADASAV: Save/Restore Database or Files

Functional Overview
The ADASAV utility saves and restores the contents of the database, specific files, or a file to or from a
sequential dataset.

ADASAV should be run as often as required for the number and size of the files contained in the database,
and the amount and type of updating.

For large databases, ADASAV functions may be run in parallel for the various disk packs on which the
database is contained.

Special ADASAV functions are available for use with the Adabas Delta Save Facility. For more
information, see the Adabas Delta Save Facility documentation.

RESTONL and RESTORE Functions
For either RESTORE or RESTONL function operations, the Associator and Data Storage datasets must
first be formatted. If either operation is interrupted, no database update activity should be attempted until
the function has been successfully reexecuted.

RESTONL functions restore from a SAVE dataset created while the Adabas nucleus was active (that is,
online); RESTORE functions restore from a SAVE dataset created while the Adabas nucleus was inactive
(that is, offline).

RESTONL and RESTORE have the subfunctions GCB, FILES, and FMOVE:

Without a subfunction, RESTONL and RESTORE restore entire databases.

With the GCB subfunction, they restore the general control block, Associator RABNs 2-30 of the
database, and specified files.

With the FILES subfunction, they restore one or more files into an existing database to their original
RABNs.

With the FMOVE subfunction, they restore one or more files into an existing database to any free
space, allowing changes to extent sizes.

RESTPLOG and RESTONL Functions

If changes occurred during the online SAVE, the RESTONL function is followed automatically by the
RESTPLOG function. RESTPLOG applies the updates that occurred during, and therefore were not
included in, the online SAVE.

RESTPLOG is also executed following a RESTONL or RESTONL FILES function that ended before
completing restoration of protection log (PLOG) updates. RESTPLOG applies the database updates not
applied by the unsuccessful RESTONL function.

603

Functional OverviewAdabas Utilities

Online and Offline SAVEs

The SAVE function to save a database, or one or more files may be executed while the Adabas nucleus is
active (online) or inactive (offline). If the Recovery Aid option is active, a SAVE database operation
begins a new RLOG generation.

604

Adabas UtilitiesFunctional Overview

RESTONL: Restore Database from Online
Source
The RESTONL function restores a database from a database SAVE dataset created while the Adabas
nucleus was active.

Notes:

1. An interrupted RESTONL (database) operation must be reexecuted from the beginning. If the
interruption occurred while RESTONL (database) was restoring the PLOG, the restore operation can
be completed using the RESTPLOG function. Until successful completion or reexecution of the
restore operation, the database is inaccessible.

2. If the ADASAV RESTONL (database) job control contains the DD names, symbolic names, or link
names for DD/WORKnn, these datasets are reset.

This chapter covers the following topics:

Conditions

Result

Syntax

Optional Parameters and Subparameters

Examples

Conditions

 To use the RESTONL (database) function, the following conditions must be met:

1. The correct SAVE dataset must be supplied. It must have been created by an online database SAVE
operation with the same version of Adabas as is used for the RESTONL.

2. The output database must have the same physical layout (device types, extent sizes) as the original
database. The Associator and Data Storage datasets must be present and must have been previously
formatted. The SAVE dataset to be restored may have originated for this or from a different database.

3. No Adabas nucleus may be active on the output database or on a database with the DBID of the
output database.

4. The protection log (PLOG) dataset containing information written by the nucleus session at the time
of the SAVE operation (see output of SAVE run) must be supplied. PLOG datasets from other
sessions may also be included.

5. If the SAVE operation was performed with the DRIVES parameter, the SAVE datasets created can
also be restored with the DRIVES parameter. In that case, the restore operation is performed from the
different SAVE datasets in parallel. Alternatively, the SAVE datasets can be concatenated to a single
SAVE dataset for a restore operation without the DRIVES parameter.

605

RESTONL: Restore Database from Online SourceAdabas Utilities

Result
The result of this function is a database with the same physical status it had at the end of the ADASAV
SAVE operation.

Syntax

Optional Parameters and Subparameters
BUFNO: Count of Buffers Per Drive

The BUFNO value, multiplied by the DRIVES parameter value, allocates fixed buffers for
RESTONL operation. A value of 2 or 3 usually provides optimum performance; up to 255 is
possible. A value greater than 5, however, provides little advantage and allocates a lot of space.
The default is 1 (one buffer per drive).

CLOGDEV: Command Log Device Type

The device type of the dual/multiple command log (CLOG). This parameter is required only if
the device type of the CLOG is different from that specified by the ADARUN DEVICE
parameter, which is the default.

DRIVES: Tape Drives for Parallel Restore

DRIVES is the number of tape drives to be used for parallel restore processing. The number can
range 1 to 8, inclusively; the default is 1.

EXCLUDE: Exclude Specified Files from Restore

EXCLUDE lists the numbers of the files to be excluded from the restore operation; that is, the
files that are not to be restored. For a database restore:

no files specified in the EXCLUDE parameter will exist in the restored database; and

all files specified in the EXCLUDE parameter must exist on the save dataset.

606

Adabas UtilitiesRESTONL: Restore Database from Online Source

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

NEWDBID: New ID for Restored Database

NEWDBID may be used to assign a different database ID to the restored database. The ID can
be in the range 1-65,535; if Adabas Online System Security is installed, DBID 999 is reserved.

If NEWDBID is specified, the ADARUN DBID parameter must specify the ID of the database
on the SAVE dataset.

No Adabas nucleus may be active with the DBID specified on NEWDBID.

NEWDBNAME: New Name for Restored Database

NEWDBNAME assigns a new name to the restored database. If NEWDBNAME is not
specified, the restored database keeps its old name.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

OVERWRITE: Overwrite Existing Database

If the restore operation is to overwrite an existing database, the OVERWRITE parameter must
be specified. No Adabas nucleus may be active on the database to be overwritten.

PLOGDEV: Protection Log Device Type

The device type to be assigned to the dual/multiple protection log (PLOG). This parameter is
required only if the device type of the PLOG is different from that specified by the ADARUN
DEVICE parameter.

PLOGNUM: Protection Log Number

PLOGNUM specifies the number of the nucleus protection log used while the ADASAV SAVE
operation was active (see output listing of the online SAVE function). Sequential protection
(SIBA) logs from more than one nucleus session can be concatenated. ADASAV skips
protection logs with a number lower than the PLOGNUM value. PLOGNUM is optional.

If PLOGNUM is not specified, ADASAV automatically determines the correct value from
information stored in the SAVE dataset.

SYN1: Beginning Block Number

607

RESTONL: Restore Database from Online SourceAdabas Utilities

SYN1 specifies the block number containing the SYN1 checkpoint at which the corresponding
SAVE operation began (see output listing of the online SAVE function). This parameter is optional.

If SYN1 is not specified, ADASAV automatically determines the correct value from
information stored in the SAVE dataset.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

Examples
Example 1:

ADASAV RESTONL

Restore the database saved when the nucleus was active (online). The protection log number and SYN1
block number required for the restore operation are determined automatically by ADASAV.

Example 2:

ADASAV RESTONL
ADASAV EXCLUDE=255
ADASAV EXCLUDE=400

Files 255 and 400 are excluded from the restore of the database from an online-save dataset.

608

Adabas UtilitiesRESTONL: Restore Database from Online Source

RESTONL GCB: Restore Database
Incremental from Online Source
From a database SAVE dataset created while the Adabas nucleus was active, the RESTONL GCB
function restores

the general control block (GCB);

Associator RABNs 2-30 of the database;

the checkpoint file;

the security file (if present); and

all files specified with the FILES parameter.

Notes:

1. An interrupted RESTONL GCB operation must be reexecuted from the beginning. If the interruption
occurred while RESTONL GCB was restoring the PLOG, the restore operation can be completed
using the RESTPLOG function. Until successful completion or reexecution of the restore operation,
the database is inaccessible.

2. If the ADASAV RESTONL GCB job control contains the DD names, symbolic names, or link names
for DD/WORKnn, these datasets are reset.

This chapter covers the following topics:

Conditions

Result

Syntax

Optional Parameters and Subparameters

Examples

Conditions

 To use the RESTONL GCB function, the following conditions must be met:

1. The correct SAVE dataset must be supplied. It must have been created by an online database SAVE
operation with the same version of Adabas as is used for the RESTONL and must contain the file(s)
to be restored.

2. The output database must have the same physical layout (device types, extent sizes) as the original
database. The Associator and Data Storage datasets must be present and must have been previously
formatted. The SAVE dataset to be restored may have originated from this or from a different
database.

609

RESTONL GCB: Restore Database Incremental from Online SourceAdabas Utilities

3. No Adabas nucleus may be active on the output database or on a database with the DBID of the
output database.

4. The protection log (PLOG) dataset containing information written by the nucleus session at the time
of the SAVE operation (see output of SAVE run) must be supplied. PLOG datasets from other sessions
may also be included.

5. If the SAVE operation was performed with the DRIVES parameter, the SAVE datasets created can
also be restored with the DRIVES parameter. In that case, the restore operation is performed from the
different SAVE datasets in parallel. Alternatively, the SAVE datasets can be concatenated to a single
SAVE dataset for a restore operation without the DRIVES parameter.

6. For restoring just a few files from a multivolume database SAVE dataset, only those tape volumes
that actually contain data of the files to be restored need to be supplied in the ADASAV job control. The
job protocol of the SAVE operation as well as the corresponding SYNV checkpoints indicate the files or
parts of files contained on each volume.

Result
The result of this function is a database containing the specified files and the checkpoint and security files
with the same physical status they had at the end of the ADASAV SAVE operation.

This operation is equivalent to a RESTONL (database), but excludes any files not specified in the FILES
parameter.

Important:
Any existing database in the target Associator and Data Storage datasets is completely overwritten and
any files in that database are lost.

Syntax

610

Adabas UtilitiesRESTONL GCB: Restore Database Incremental from Online Source

Optional Parameters and Subparameters
BUFNO: Count of Buffers Per Drive

The BUFNO value, multiplied by the DRIVES parameter value, allocates fixed buffers for
RESTONL operation. A value of 2 or 3 usually provides optimum performance; up to 255 is
possible. A value greater than 5, however, provides little advantage and allocates a lot of space.
The default is 1 (one buffer per drive).

CLOGDEV: Command Log Device Type

The device type of the command log (CLOG). This parameter is required only if the device type
of the CLOG is different from that specified by the ADARUN DEVICE parameter.

DRIVES: Tape Drives for Parallel Restore

DRIVES is the number of tape drives to be used for parallel restore processing. The number can
range 1 to 8, inclusively; the default is 1.

EXCLUDE: Exclude Specified Files from Restore

EXCLUDE lists the numbers of the files to be excluded from the restore operation; that is, the
files that are not to be restored.

No files specified in the EXCLUDE parameter will exist in the restored database.

All files specified in the EXCLUDE parameter must exist on the save dataset.

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

FILES: Files to Be Restored

FILES specifies the file or files to be included in the database restore operation. The checkpoint
and security files (if any) are always restored. If the specified file is a component file of an
Adabas expanded file, all other component files of the expanded file must also be specified here.
If a specified file is coupled to other files, the coupled files must also be specified.

NEWDBID: New ID for Restored Database

NEWDBID may be used to assign a different database ID to the restored database. The ID can
be in the range 1-65,535; if Adabas Online System Security is installed, DBID 999 is reserved.

If NEWDBID is specified, the ADARUN DBID parameter must specify the ID of the database
on the SAVE dataset.

No Adabas nucleus may be active with the DBID specified on NEWDBID.

NEWDBNAME: New Database Name

611

RESTONL GCB: Restore Database Incremental from Online SourceAdabas Utilities

NEWDBNAME assigns a new name to the restored database. If NEWDBNAME is not
specified, the restored database keeps its old name.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

OVERWRITE: Overwrite Existing Database

If the restore operation is to overwrite an existing database, the OVERWRITE parameter must
be specified.

No Adabas nucleus may be active on the database to be overwritten.

PLOGDEV: Protection Log Device Type

The device type of the dual/multiple protection log (PLOG). This parameter is required only if
the device type of the PLOG is different from that specified by the ADARUN DEVICE
parameter.

PLOGNUM: Protection Log Number

PLOGNUM specifies the number of the nucleus protection log used while the ADASAV SAVE
operation was active (see output listing of the online SAVE function). Sequential protection
(SIBA) logs from more than one nucleus session can be concatenated. ADASAV skips
protection logs with a number lower than the PLOGNUM value. The PLOGNUM parameter is
optional.

If PLOGNUM is not specified, ADASAV automatically determines the correct value from
information stored in the SAVE dataset.

SYN1: Beginning Block Number

SYN1 specifies the protection log block number containing the SYN1 checkpoint at which the
corresponding SAVE operation began (see output listing of the online SAVE function). This
parameter is optional.

If SYN1 is not specified, ADASAV automatically determines the correct value from
information stored in the SAVE dataset.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

612

Adabas UtilitiesRESTONL GCB: Restore Database Incremental from Online Source

Examples
Example 1:

ADASAV RESTONL GCB

Restore the database GCB saved when the nucleus was active (online). The checkpoint and security files
are also restored. ADASAV determines the protection log number and SYN1 block number required for
the restore operation automatically.

Example 2:

ADASAV RESTONL GCB,FILES=3,4,5,OVERWRITE
ADASAV PLOGNUM=15,SYN1=20

Files 3, 4 and 5 as well as the checkpoint and security files are restored. The protection log number is 15
and the block containing the SYN1 checkpoint is 20. The old database is to be overwritten.

613

RESTONL GCB: Restore Database Incremental from Online SourceAdabas Utilities

RESTONL FILES: Restore Files to Original
RABNs from Online Source
The RESTONL FILES function restores files from a file or database SAVE dataset created while the
Adabas nucleus was active . One or more files can be restored. The files are restored into an existing
database to their original RABNs.

Notes:

1. An interrupted RESTONL FILES operation must be reexecuted from the beginning. If the
interruption occurred while RESTONL FILES was restoring the PLOG, the restore operation can be
completed using the RESTPLOG function. Until successful completion or reexecution of the restore
operation, the files to be restored are inaccessible.

2. Checkpoint and security files from Adabas version 5 cannot be restored.

This chapter covers the following topics:

Conditions

Result

Syntax

Optional Parameters and Subparameters

Examples

Conditions

 To use the RESTONL FILES function, the following conditions must be met:

1. The correct SAVE dataset must be supplied. It can be a database or file SAVE dataset and must
contain the files to be restored. SAVE datasets from version 5.1 or above can be used.

2. An existing database must be present. The files to be restored may have originated from this or from
a different database.

3. All RABNs originally used by the file(s) to be restored must either be free (available according to the
free space table) or be occupied by files to be overwritten.

4. The Adabas nucleus may be active or inactive on the output database.

If the Adabas nucleus is active for restoring the checkpoint or security files, the ADASAV utility
requires exclusive database control; that is, no user may be active on the database.

5. The protection log (PLOG) dataset containing information written by the nucleus session at the time
of the SAVE operation (see output of SAVE run) must be supplied. PLOG datasets from other
sessions may also be included. If none of the files to be restored were modified during the online
SAVE operation, the protection log dataset(s) can be omitted.

614

Adabas UtilitiesRESTONL FILES: Restore Files to Original RABNs from Online Source

6. If the SAVE tape was created with Adabas version 5.1, the location of the SYN1/SYN4 checkpoint
written by the Adabas nucleus at the beginning of the online SAVE operation must be specified.

7. If the SAVE operation was performed with the DRIVES parameter, the SAVE datasets created can
also be restored with the DRIVES parameter. In that case, the restore operation is performed from the
different SAVE datasets in parallel. Alternatively, the SAVE datasets can be concatenated to a single
SAVE dataset for a restore operation without the DRIVES parameter.

8. For restoring just a few files from a multivolume database SAVE dataset, only those tape volumes
that actually contain data of the files to be restored need to be supplied in the ADASAV job control. The
job protocol of the SAVE operation as well as the corresponding SYNV checkpoints indicate the files or
parts of files contained on each volume.

9. Expanded files and coupled files can only be restored or overwritten as a whole. That is, if one file in
an expanded file is specified, all other files in the expanded file must be specified. If one file in a coupled
relationship is specified, all other files in that relationship must be specified.

10. A checkpoint, security, trigger, or user-defined system file can be overwritten only by another
checkpoint, security, trigger, or user-defined system file, respectively. A checkpoint, security, or trigger
file cannot be restored if such a file already exists in the database with a different file number.

11. New file numbers can be assigned to the files to be restored using the NEWFILES parameter.

Result
The result of this function is the specified files with the same physical status they had at the end of the
ADASAV SAVE operation.

Syntax

The FILES file list specifies the file or files to be restored. If the specified file is a component file of an
Adabas expanded file, all other component files of the expanded file must also be specified here. If a
specified file is coupled to other files, the coupled files must also be specified.

The file list specified need not correspond to a file list used in the corresponding SAVE function. A file
list may be specified even if no file list was used for the corresponding SAVE function.

615

RESTONL FILES: Restore Files to Original RABNs from Online SourceAdabas Utilities

A file may also be restored using a SAVE tape created from a different database; however, the device
types must be identical.

Optional Parameters and Subparameters
ALLOCATION: Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameters ACRABN, DSRABN, NIRABN, or UIRABN.

ALLOCATION pertains to the implicit RABN specifications derived from the files on the save
dataset.

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameters fails,
the utility retries the allocation without the placement parameter.

Note:
An ADASAV RESTONL FILES operation with ALLOCATION=NOFORCE specified cannot
be completed with RESTPLOG if the function fails after completing the restore from the save
dataset but before completing the restore from the protection log.

BUFNO: Count of Buffers Per Drive

The BUFNO value, multiplied by the DRIVES parameter value, allocates fixed buffers for
RESTONL operation. A value of 2 or 3 usually provides optimum performance; up to 255 is
possible. A value greater than 5, however, provides little advantage and allocates a lot of space.
The default is 1 (one buffer per drive).

DRIVES: Tape Drives for Parallel Restore

DRIVES is the number of tape drives to be used for parallel restore processing. The number can
range 1 to 8, inclusively; the default is 1.

EXCLUDE: Exclude Specified Files from Restore

EXCLUDE lists the numbers of the files to be excluded from the restore operation; that is, the
files that are not to be restored.

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

If the NEWFILES parameter

is not specified, all files specified in the EXCLUDE parameter must also be specified in the
FILES parameter.

is specified, all files specified in the EXCLUDE parameter must also be specified in the
NEWFILES parameter. In this case, the file numbers specified in the EXCLUDE parameter
refer to the new file numbers in NEWFILES, not to the old file numbers in the FILES
parameter.

616

Adabas UtilitiesRESTONL FILES: Restore Files to Original RABNs from Online Source

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

NEWFILES: New File Numbers

The NEWFILES parameter specifies the new file number to be assigned to each file specified
by FILES.

The parameter is optional: if no new file number is assigned to a file, the file retains its original
number.

NEWFILES may not be specified for expanded files, physically coupled files, or replicated files.

If a file with a number specified by NEWFILES already exists in the database, the
corresponding file will not be restored unless the OVERWRITE parameter is also specified. If
the file to be overwritten is password-protected, the corresponding PASSWORD parameter must
also be specified.

If several files are to be restored, the list of file numbers in the NEWFILES parameter must
correspond to the list of files in the FILES parameter. If no new file number is to be assigned to
a file, its entry in the file number list of NEWFILES must be specified as zero. See the
Examples.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

OVERWRITE: Overwrite Existing File

This parameter causes an existing file to be deleted and then restored. If a file which is to be
restored is already present in the database, ADASAV will skip this file unless the OVERWRITE
parameter is supplied.

Note:
To avoid unintentionally overwriting the database, Software AG recommends that you always
specify the OVERWRITE parameter after, and not before, the FILES file list.

PASSWORD: File Password/Passwords

PASSWORD specifies one password or a list of passwords if one or more files in the FILES file
list are password protected. This only applies to files already in the database that are to be
overwritten. If the NEWFILES parameter is specified, the PASSWORD parameter must specify
the passwords related to the new file numbers.

When restoring more than one password-protected file, the correct passwords must be specified
as positional values corresponding to the protected file numbers’ positions in the FILES list.
Refer to the Examples for more information about the PASSWORD parameter. The Adabas
nucleus must be active if password-protected files are being overwritten.

617

RESTONL FILES: Restore Files to Original RABNs from Online SourceAdabas Utilities

PLOGNUM: Protection Log Number

PLOGNUM specifies the number of the nucleus protection log (PLOG) used while the
ADASAV SAVE operation was active (see output listing of the online SAVE function). This
parameter is optional when restoring a SAVE tape created by ADASAV version 5.2 or above, or
when none of the files to be restored were changed during the SAVE operation. Sequential
protection (SIBA) logs from more than one nucleus session can be concatenated. ADASAV
skips PLOGs with a number lower than the PLOGNUM value.

If PLOGNUM is not specified, ADASAV automatically determines the correct value from
information stored in the SAVE dataset.

Note:
This is not possible when restoring from a version 5.1 SAVE dataset.

SYN1|SYN4: Starting Block Number

The block number containing the SYN1/SYN4 checkpoint at which the restore operation is to
begin (refer to the output listing of the online SAVE function for the block number). When
restoring a SAVE tape created by ADASAV version 5.2 or above, this parameter is optional.

If SYN1/SYN4 is not specified, ADASAV automatically determines the correct value from
information stored in the SAVE dataset.

Note:
This is not possible when restoring from a version 5.1 SAVE dataset.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

Examples
Example 1:

ADASAV RESTONL FILES=3,4,5, OVERWRITE
ADASAV PASSWORD=’PWDFIL3,,PWDFIL5’
ADASAV PLOGNUM=15,SYN1=20

Files 3, 4, and 5 are to be restored. Files 3 and 5 are password-protected and their passwords are
PWDFIL3 and PWDFIL5. The PLOG number is 15 and the block containing the SYN1 checkpoint is 20.
The old files are to be overwritten.

Example 2:

ADASAV RESTONL FILES=11,12,13,14,OVERWRITE
ADASAV NEWFILES=16,0,17

Files 11, 12, 13, and 14 are to be restored. Files 11 and 13 are to be restored as files 16 and 17,
respectively. The file numbers of files 12 and 14 will not be changed because the corresponding
NEWFILES parameter values are specified as zero or omitted. Files 12, 14, 16, and 17 are to be
overwritten, if already present in the database.

618

Adabas UtilitiesRESTONL FILES: Restore Files to Original RABNs from Online Source

RESTONL FMOVE: Restore Files to Any
RABNs from Online Source
The RESTONL FMOVE function restores files from a file or database SAVE dataset created while the
Adabas nucleus was active . One or more files can be restored. The files are restored into an existing
database to any free space. Their extent sizes may be changed.

Notes:

1. An interrupted RESTONL FMOVE operation must be reexecuted from the beginning. It is not
possible to use the RESTPLOG function to recover from an interrupted RESTONL FMOVE
operation that ended while restoring the PLOG. Until successful completion or reexecution of the
restore operation, the files to be restored are inaccessible.

2. Checkpoint and security files from Adabas version 5 cannot be restored.

This chapter covers the following topics:

Conditions

Result

Syntax

Optional Parameters

Examples

Conditions

 To use the RESTONL FMOVE function, the following conditions must be met:

1. The correct SAVE dataset must be supplied. It can be a database or file SAVE dataset and must
contain the files to be restored. SAVE datasets from Adabas version 5.1 or above can be used.

2. An existing database must be present. The files to be restored may have originated from this or from
a different database.

3. For the file(s) to be restored, sufficient space, either free space (according to the free space table) or
space occupied by files to be overwritten, must be available in the database.

4. The Adabas nucleus may be active or inactive on the output database.

If the Adabas nucleus is active for restoring the checkpoint or security files, the ADASAV utility
requires exclusive database control; that is, no user may be active on the database.

5. The protection log (PLOG) dataset containing information written by the nucleus session at the time
of the SAVE operation (see output of SAVE run) must be supplied. PLOG datasets from other
sessions may also be included. If none of the files to be restored were modified during the online
SAVE operation, the protection log dataset(s) can be omitted.

619

RESTONL FMOVE: Restore Files to Any RABNs from Online SourceAdabas Utilities

6. If the SAVE tape was created with Adabas version 5.1, the location of the SYN1/SYN4 checkpoint
written by the Adabas nucleus at the beginning of the online SAVE operation must be specified.

7. If the SAVE operation was performed with the DRIVES parameter, the SAVE datasets created can
also be restored with the DRIVES parameter. In that case, the restore operation is performed from the
different SAVE datasets in parallel. Alternatively, the SAVE datasets can be concatenated to a single
SAVE dataset for a restore operation without the DRIVES parameter.

8. For restoring just a few files from a multivolume database SAVE dataset, only those tape volumes
that actually contain data of the files to be restored need to be supplied in the ADASAV job control. The
job protocol of the SAVE operation as well as the corresponding SYNV checkpoints indicate the files or
parts of files contained on each volume.

9. Expanded files and coupled files can only be restored or overwritten as a whole. That is, if one file in
an expanded file is specified, all other files in the expanded file must be specified. If one file in a coupled
relationship is specified, all other files in that relationship must be specified.

10. A checkpoint, security, trigger, or user-defined system file can be overwritten only by another
checkpoint, security, trigger, or user-defined system file, respectively. A checkpoint, security, or trigger
file cannot be restored if such a file already exists in the database with a different file number.

11. New file numbers can be assigned to the files to be restored using the NEWFILES parameter.

Result
The result of this function is the specified files with the same contents they had at the end of the
ADASAV SAVE operation but not necessarily in the same database blocks.

Syntax

620

Adabas UtilitiesRESTONL FMOVE: Restore Files to Any RABNs from Online Source

The FMOVE file list specifies the file or files to be restored using new RABNs. The RABNs must be
located on the same device type as used originally.

If the specified file is a component file of an Adabas expanded file, all other component files of the
expanded file must also be specified. If a specified file is coupled to other files, the coupled files must also
be specified.

Optional Parameters
ACRABN: Starting Address Converter RABN/RABN List

ACRABN specifies the starting address converter RABN for each file specified by FMOVE. It
can only be used in conjunction with the FMOVE parameter.

If FMOVE is specified and ACRABN omitted, the location of the address converter is chosen
by ADASAV from the free areas in the Associator that have the same device type as used
originally.

If several files are to be restored, the list of RABNs in the ACRABN parameter must correspond
to the list of files in the FMOVE parameter. If no ACRABN value is to be given for a file, its
entry in the RABN list must be specified as zero. See the examples.

ALLOCATION: Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameters ACRABN, DSRABN, NIRABN, or UIRABN.

621

RESTONL FMOVE: Restore Files to Any RABNs from Online SourceAdabas Utilities

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameters fails,
the utility retries the allocation without the placement parameter.

ASSOVOLUME: Associator Extent Volume

Note:
The value for ASSOVOLUME must be enclosed in apostrophes.

ASSOVOLUME identifies the volume on which the file’s Associator space (that is, the AC, NI,
and UI extents) is to be allocated. If the requested number of blocks cannot be found on the
specified volume, ADASAV retries the allocation while disregarding the ASSOVOLUME
parameter.

If ACRABN, UIRABN, or NIRABN is specified, ADASAV ignores the ASSOVOLUME value
when allocating the corresponding extent type. If ASSOVOLUME is not specified, the file’s
Associator space is allocated according to ADASAV’s default allocation rules.

If several files are to be restored, the list of volumes in the ASSOVOLUME parameter must
correspond to the list of files in the FMOVE parameter. If no volume is to be given for a file, its
entry in the volume list must be left empty. See the Examples .

BUFNO: Count of Buffers Per Drive

The BUFNO value allocates fixed buffers for RESTONL operation. A value of 2 or 3 usually
provides optimum performance; up to 255 is possible. A value greater than 5, however, provides
little advantage and allocates a lot of space. The default is 1 (one buffer per drive).

DATAVOLUME: Data Storage Extent Volume

Note:
The value for DATAVOLUME must be enclosed in apostrophes.

DATAVOLUME specifies the volume on which the file’s Data Storage space (DS extents) is to
be allocated. If the number of blocks requested with DSSIZE cannot be found on the specified
volume, ADASAV retries the allocation while disregarding the DATAVOLUME value.

If DSRABN is specified, DATAVOLUME is ignored for the related file. If DATAVOLUME is
not specified, the Data Storage space is allocated according to ADASAV’s default allocation
rules.

If several files are to be restored, the list of volumes in the DATAVOLUME parameter must
correspond to the list of files in the FMOVE parameter. If no volume is to be given for a file, its
entry in the volume list must be left empty. See the Examples .

DRIVES: Tape Drives for Parallel Restore

ADASAV is able to restore files from multiple save dataset volumes in parallel to RABNs that
are different from their original RABNs in the database. DRIVES is the number of tape drives to
be used for parallel restore processing. The number can range 1 to 8, inclusively; the default is
1.

622

Adabas UtilitiesRESTONL FMOVE: Restore Files to Any RABNs from Online Source

DSRABN: Starting Data Storage RABN/RABN List

DSRABN specifies the starting Data Storage RABN for each file specified by FMOVE.
DSRABN can only be used in conjunction with the FMOVE parameter.

If FMOVE is specified and DSRABN omitted, the location of the file’s Data Storage is chosen
by ADASAV from the free areas in Data Storage that have the same device type as used
originally.

If several files are to be restored, the list of RABNs in the DSRABN parameter must correspond
to the list of files in the FMOVE parameter. If no DSRABN value is specified for a file, its entry
in the RABN list must be specified as zero. See the examples .

DSSIZE: New Data Storage Size

DSSIZE is the new size to be allocated for Data Storage for each file specified by FMOVE. It
can only be used in conjunction with the FMOVE parameter.

The size can be specified in cylinders, or in blocks (by appending "B" to the number). It must be
at least as large as the used area of the original Data Storage.

If DSSIZE is omitted, the original Data Storage size is used.

If several files are to be restored, the list of sizes in the DSSIZE parameter must correspond to
the list of files in the FMOVE parameter. If no size is to be given for a file, its entry in the size
list must be specified as zero. See the examples.

EXCLUDE: Exclude Specified Files from Restore

EXCLUDE lists the numbers of the files to be excluded from the restore operation; that is, the
files that are not to be restored.

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

If the NEWFILES parameter

is not specified, all files specified in the EXCLUDE parameter must also be specified in the
FMOVE parameter.

is specified, all files specified in the EXCLUDE parameter must also be specified in the
NEWFILES parameter. In this case, the file numbers specified in the EXCLUDE parameter
refer to the new file numbers in NEWFILES, not to the old file numbers in the FMOVE
parameter.

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

MAXISN: New Maximum ISN

MAXISN is the new number of ISNs to be allocated for each file specified by FMOVE. It can
only be used in conjunction with the FMOVE parameter.

623

RESTONL FMOVE: Restore Files to Any RABNs from Online SourceAdabas Utilities

The value must be at least as large as the original highest allocated ISN (MAXISN).

If MAXISN is omitted, the original ISN count is used.

If several files are to be restored, the list of ISN counts in the MAXISN parameter must
correspond to the list of files in the FMOVE parameter. If no ISN count is to be given for a file, its entry
in the ISN count list must be specified as zero. See the examples.

If the database consists of several Associator extents with different device types, ERROR-171
may occur if MAXISN is specified and the nucleus allocated an addition address converter extent during
the online save operation. If this happens, remove the MAXISN parameter for the file indicated in the
error message and rerun RESTONL FMOVE.

NEWFILES: New File Numbers

The NEWFILES parameter specifies the new file number to be assigned to each file specified
by FMOVE.

The parameter is optional: if no new file number is assigned to a file, the file retains its original
number.

NEWFILES may not be specified for expanded files, physically coupled files, or replicated files.

If a file with a number specified by NEWFILES already exists in the database, the
corresponding file will not be restored unless the OVERWRITE parameter is also specified. If
the file to be overwritten is password-protected, the corresponding PASSWORD parameter must
also be specified.

If several files are to be restored, the list of file numbers in the NEWFILES parameter must
correspond to the list of files in the FMOVE parameter. If no new file number is to be assigned
to a file, its entry in the file number list of NEWFILES must be specified as zero. See the
Examples.

NIRABN: Starting Normal Index RABN/RABN List

NIRABN specifies the starting RABN for the normal index for each file specified by FMOVE.
It can only be used in conjunction with the FMOVE parameter.

If FMOVE is specified and NIRABN omitted, the location of the normal index is chosen by
ADASAV from the free areas in the Associator that have the same device type as used
originally.

If several files are to be restored, the list of RABNs in the NIRABN parameter must correspond
to the list of files in the FMOVE parameter. If no NIRABN value is to be given for a file, its
entry in the RABN list must be specified as zero. See the Examples.

NISIZE: New Size for Normal Index

NISIZE is the new size to be allocated for the normal index for each file specified by FMOVE.
It can only be used in conjunction with the FMOVE parameter.

624

Adabas UtilitiesRESTONL FMOVE: Restore Files to Any RABNs from Online Source

The size can be specified in cylinders, or in blocks (by appending "B" to the number). It must be
at least as large as the used area of the original normal index.

If NISIZE is omitted, the original normal index size is used.

If several files are to be restored, the list of sizes in the NISIZE parameter must correspond to
the list of files in the FMOVE parameter. If no size is to be given for a file, its entry in the size list must be
specified as zero. See the examples.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

OVERWRITE: Overwrite Existing File

This parameter causes an existing file to be deleted and then restored. If a file which is to be
restored is already present in the database, ADASAV will skip this file unless the OVERWRITE
parameter is supplied.

Note:
To avoid unintentionally overwriting the database, Software AG recommends that you always
specify the OVERWRITE parameter after, and not before, the FMOVE file list.

PASSWORD: Adabas Security File Password

PASSWORD specifies one password or a list of passwords if one or more files in the FILES or
FMOVE file list are password-protected. This only applies to files already in the database that
are to be overwritten. If the NEWFILES parameter is specified, the PASSWORD parameter
must specify the passwords related to the new file numbers.

When restoring more than one password-protected file, the correct passwords must be specified
as positional values corresponding to the protected file numbers’ positions in the FILES or
FMOVE list. Refer to the examples for more information about the PASSWORD parameter.
When overwriting password-protected files, the Adabas nucleus must be active.

PLOGNUM: Protection Log Number

PLOGNUM specifies the number of the nucleus protection log (PLOG) used while the
ADASAV SAVE operation was active (see output listing of the online SAVE function). This
parameter is optional when restoring a SAVE tape created by ADASAV version 5.2 or above, or
when none of the files to be restored were changed during the SAVE operation. Sequential
protection (SIBA) logs from more than one nucleus session can be concatenated. ADASAV
skips PLOGs with a number lower than the PLOGNUM value.

If PLOGNUM is not specified, ADASAV automatically determines the correct value from
information stored in the SAVE dataset.

625

RESTONL FMOVE: Restore Files to Any RABNs from Online SourceAdabas Utilities

Note:
This is not possible when restoring from a version 5.1 SAVE dataset.

SYN1|SYN4: Beginning Block Number

The block number containing the SYN1/SYN4 checkpoint at which the restore operation is to
begin (refer to the output listing of the online SAVE function for the block number). When
restoring a SAVE tape created by ADASAV version 5.2 or above, this parameter is optional.

If SYN1/SYN4 is not specified, ADASAV automatically determines the correct value from
information stored in the SAVE dataset.

Note:
This is not possible when restoring from a version 5.1 SAVE dataset.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Note
that the validity of values and variables cannot be tested; only the syntax of the specified
parameters can be tested.

UIRABN: Starting Upper Index RABN/RABN List

UIRABN specifies the starting RABN for the upper index for each file specified by FMOVE. It
can only be used in conjunction with the FMOVE parameter.

If FMOVE is specified and UIRABN omitted, the location of the upper index is chosen by
ADASAV from the free areas in the Associator that have the same device type as used
originally.

If several files are to be restored, the list of RABNs in the UIRABN parameter must correspond
to the list of files in the FMOVE parameter. If no UIRABN value is to be given for a file, its
entry in the RABN list must be specified as zero. See the examples.

UISIZE: New Upper Index Size

UISIZE is the new size to be allocated for the upper index for each file specified by FMOVE. It
can only be used in conjunction with the FMOVE parameter.

The size can be specified in cylinders, or in blocks (by appending "B" to the number). It must be
at least as large as the used area of the original upper index.

If UISIZE is omitted, the original upper index size is used.

If several files are to be restored, the list of sizes in the UISIZE parameter must correspond to
the list of files in the FMOVE parameter. If no size is to be given for a file, its entry in the size
list must be specified as zero. See the Examples.

Examples

626

Adabas UtilitiesRESTONL FMOVE: Restore Files to Any RABNs from Online Source

Example 1:

ADASAV RESTONL PLOGNUM=25,SYN1=160,OVERWRITE
ADASAV FMOVE=1,2
ADASAV ACRABN=2100,2300
ADASAV DSRABN=1500,2000
ADASAV NIRABN=0,2380
ADASAV UIRABN=2190

Protection log 25 is to be used. The block containing the SYN1 checkpoint is 160. Files 1 and 2 are to be
deleted and restored. File 1 is to be restored using starting RABNs:

Address Converter 2100

Data Storage 1500

Normal Index (chosen by ADASAV)

Upper Index 2190

File 2 is to be restored using starting RABNs:

Address Converter 2300

Data Storage 2000

Normal Index 2380

Upper Index (chosen by ADASAV)

Example 2:

ADASAV RESTONL
PLOGNUM=4711,SYN4=99,FMOVE=3,4,5,OVERWRITE
ADASAV PASSWORD=’PWD3,,PWD5’

The files specified by the FMOVE file list may possibly be restored to different RABNs than they had
before. Files 3 and 5 are password-protected and their passwords are PWD3 and PWD5.

Example 3:

ADASAV RESTONL FMOVE=11,12,13,14,OVERWRITE
ADASAV NEWFILES=16,0,17

Files 11, 12, 13, and 14 are to be restored. Files 11 and 13 are to be restored as files 16 and 17,
respectively. The file numbers of files 12 and 14 will not be changed because the corresponding
NEWFILES parameter values are specified as zero or omitted. Files 12, 14, 16, and 17 are to be
overwritten, if already present in the database.

627

RESTONL FMOVE: Restore Files to Any RABNs from Online SourceAdabas Utilities

RESTORE: Restore Database from Offline
Source
The RESTORE function restores a database from a database SAVE dataset created while the Adabas
nucleus was inactive.

Notes:

1. An interrupted RESTORE (database) operation must be reexecuted from the beginning. Until
successful completion or reexecution of the restore operation, the database is inaccessible.

2. If the ADASAV RESTORE (database) job control contains the DD names, symbolic names, or link
names for DDWORKnn/ WORKnn, these datasets are reset.

This chapter covers the following topics:

Conditions

Result

Syntax

Optional Parameters

Examples

Conditions

 To use the RESTORE (database) function, the following conditions must be met:

1. The correct SAVE dataset must be supplied. It must have been created by an offline database SAVE
operation with the same version of Adabas as is used for the RESTORE.

2. The output database must have the same physical layout (device types, extent sizes) as the original
database. The Associator and Data Storage datasets must be present and must have been previously
formatted. The SAVE dataset to be restored may have originated for this or from a different database.

3. No Adabas nucleus may be active on the output database or on a database with the DBID of the
output database.

4. If the SAVE operation was performed with the DRIVES parameter, the SAVE datasets created can
also be restored with the DRIVES parameter. In that case, the restore operation is performed from the
different SAVE datasets in parallel. Alternatively, the SAVE datasets can be concatenated to a single
SAVE dataset for a restore operation without the DRIVES parameter.

628

Adabas UtilitiesRESTORE: Restore Database from Offline Source

Result
The result of this function is a database with the same physical status it had at the time of the ADASAV
SAVE operation.

Syntax

Optional Parameters
BUFNO: Count of Buffers Per Drive

The BUFNO value, multiplied by the DRIVES parameter value, allocates fixed buffers for
RESTORE operation. A value of 2 or 3 usually provides optimum performance; up to 255 is
possible. A value greater than 5, however, provides little advantage and allocates a lot of space.
The default is 1 (one buffer per drive).

CLOGDEV: Command Log Device Type

The device type to be assigned to the dual/multiple command log (CLOG). This parameter is
required only if the device type to be used for the CLOG is different from that specified by the
ADARUN DEVICE parameter.

DRIVES: Tape Drives for Parallel Restore

DRIVES is the number of tape drives to be used for parallel restore processing. The number can
range 1 to 8, inclusively; the default is 1.

EXCLUDE: Exclude Specified Files from Restore

EXCLUDE lists the numbers of the files to be excluded from the restore operation; that is, the
files that are not to be restored. For a database restore:

no files specified in the EXCLUDE parameter will exist in the restored database; and

all files specified in the EXCLUDE parameter must exist on the save dataset.

629

RESTORE: Restore Database from Offline SourceAdabas Utilities

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

NEWDBID: New ID for Restored Database

NEWDBID may be used to assign a different database ID to the restored database. The ID can
be in the range 1-65,535; if Adabas Online System Security is installed, DBID 999 is reserved.

If NEWDBID is specified, the ADARUN DBID parameter must specify the ID of the database
on the SAVE dataset.

No Adabas nucleus may be active with the DBID specified on NEWDBID.

NEWDBNAME: New Database Name

NEWDBNAME assigns a new name to the restored database. If NEWDBNAME is not
specified, the restored database keeps its old name.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

OVERWRITE: Overwrite Existing Database

If the restore operation is to overwrite an existing database, the OVERWRITE parameter must
be specified.

No Adabas nucleus may be active on the database to be overwritten.

PLOGDEV: Protection Log Device Type

The device type of the dual/multiple protection log (PLOG). This parameter is required only if
the device type of the PLOG is different from that specified by the ADARUN DEVICE
parameter.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

Examples

630

Adabas UtilitiesRESTORE: Restore Database from Offline Source

Example 1:

ADASAV RESTORE OVERWRITE

A database is to be restored. An existing database might be overwritten.

Example 2:

ADASAV RESTORE EXCLUDE=10,11,12

Files 10 through 12 are excluded from the restore of the database from an offline-save dataset.

631

RESTORE: Restore Database from Offline SourceAdabas Utilities

RESTORE GCB: Restore Database
Incremental from Offline Source
From a database SAVE dataset created while the Adabas nucleus was inactive, the RESTORE GCB
function restores

the general control block (GCB);

Associator RABNs 2-30 of the database;

the checkpoint file;

the security file (if present); and

all files specified with the FILES parameter.

Notes:

1. An interrupted RESTORE GCB operation must be reexecuted from the beginning. Until successful
completion or reexecution of the restore operation, the database is inaccessible.

2. If the ADASAV RESTORE GCB job control contains the DD names, symbolic names, or link names
for DDWORKnn/ WORKnn, these datasets are reset.

This chapter covers the following topics:

Conditions

Result

Syntax

Optional Parameters

Examples

Conditions

 To use the RESTORE GCB function, the following conditions must be met:

1. The correct SAVE dataset must be supplied. It must have been created by an offline database SAVE
operation with the same version of Adabas as is used for the RESTORE and must contain the file(s)
to be restored.

2. The output database must have the same physical layout (device types, extent sizes) as the original
database. The Associator and Data Storage datasets must be present and must have been previously
formatted. The SAVE dataset to be restored may have originated for this or from a different database.

632

Adabas UtilitiesRESTORE GCB: Restore Database Incremental from Offline Source

3. No Adabas nucleus may be active on the output database or on a database with the DBID of the
output database.

4. If the SAVE operation was performed with the DRIVES parameter, the SAVE datasets created can
also be restored with the DRIVES parameter. In that case, the restore operation is performed from the
different SAVE datasets in parallel. Alternatively, the SAVE datasets can be concatenated to a single
SAVE dataset for a restore operation without the DRIVES parameter.

5. For restoring just a few files from a multivolume database SAVE dataset, only those tape volumes
that actually contain data of the files to be restored need to be supplied in the ADASAV job control. The
job protocol of the SAVE operation as well as the corresponding SYNV checkpoints indicate the files or
parts of files contained on each volume.

Result
The result of this function is a database containing the specified files and the checkpoint and security files
with the same physical status they had at the time of the ADASAV SAVE operation.

This operation is equivalent to a RESTORE (database), but excludes any files not specified in the FILES
parameter.

Important:
Any existing database in the target Associator and Data Storage datasets is completely overwritten and
any files in that database are lost.

Syntax

Optional Parameters
BUFNO: Count of Buffers Per Drive

The BUFNO value, multiplied by the DRIVES parameter value, allocates fixed buffers for
RESTORE operation. A value of 2 or 3 usually provides optimum performance; up to 255 is
possible. A value greater than 5, however, provides little advantage and allocates a lot of space.
The default is 1 (one buffer per drive).

633

RESTORE GCB: Restore Database Incremental from Offline SourceAdabas Utilities

CLOGDEV: Command Log Device Type

The device type of the command log (CLOG). This parameter is required only if the device type
of the CLOG is different from that specified by the ADARUN DEVICE parameter.

DRIVES: Tape Drives for Parallel Restore

DRIVES is the number of tape drives to be used for parallel restore processing. The number can
range 1 to 8, inclusively; the default is 1.

EXCLUDE: Exclude Specified Files from Restore

EXCLUDE lists the numbers of the files to be excluded from the restore operation; that is, the
files that are not to be restored.

No files specified in the EXCLUDE parameter will exist in the restored database.

All files specified in the EXCLUDE parameter must exist on the save dataset.

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

FILES: Files to Be Restored

FILES specifies the file or files to be included in the database restore operation. If the specified
file is a component file of an Adabas expanded file, all other component files of the expanded
file must also be specified here. If a specified file is coupled to other files, the coupled files must
also be specified. The checkpoint and security files are always restored.

NEWDBID: New ID for Restored Database

NEWDBID may be used to assign a different database ID to the restored database. The ID can
be in the range 1-65,535; if Adabas Online System Security is installed, DBID 999 is reserved.

If NEWDBID is specified, the ADARUN DBID parameter must specify the ID of the database
on the SAVE dataset.

No Adabas nucleus may be active with the DBID specified on NEWDBID.

NEWDBNAME: New Database Name

NEWDBNAME assigns a new name to the restored database. If NEWDBNAME is not
specified, the restored database keeps its old name.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

634

Adabas UtilitiesRESTORE GCB: Restore Database Incremental from Offline Source

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and the utility
terminates with condition code 20.

OVERWRITE: Overwrite Existing Database

If the restore operation is to overwrite an existing database, the OVERWRITE parameter must
be specified.

No Adabas nucleus may be active on the database to be overwritten.

PLOGDEV: Protection Log Device Type

The device type of the dual/multiple protection log (PLOG). This parameter is required only if
the device type of the PLOG is different from that specified by the ADARUN DEVICE
parameter.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

Examples
Example 1:

ADASAV RESTORE GCB,FILES=2,4,6,8

The database Associator GCB, RABNs 2-30, the checkpoint and security files, and files 2,4,6, and 8 are to
be restored.

Example 2:

ADASAV RESTORE GCB,FILES=3,4,5,OVERWRITE

The Associator’s GCB and files 3, 4, and 5 are to be restored; the existing database will be overwritten.

635

RESTORE GCB: Restore Database Incremental from Offline SourceAdabas Utilities

RESTORE FILES: Restore Files to Original
RABNs from Offline Source
The RESTORE FILES function restores files from a file or database SAVE dataset created while the
Adabas nucleus was inactive, or from a file SAVE dataset created with UTYPE=EXU. One or more files
can be restored. The files are restored into an existing database to their original RABNs.

Notes:

1. An interrupted RESTORE FILES operation must be reexecuted from the beginning. Until successful
completion or reexecution of the restore operation, the files to be restored are inaccessible.

2. Checkpoint and security files from Adabas version 5 cannot be restored.

This chapter covers the following topics:

Conditions

Result

Syntax

Optional Parameters

Examples

Conditions

 To use the RESTORE FILES function, the following conditions must be met:

1. The correct SAVE dataset must be supplied. It can be a database or file SAVE dataset and must
contain the files to be restored.

2. An existing database must be present. The files to be restored may have originated from this or from
a different database. SAVE datasets from Adabas version 5.1 or above can be used.

3. All RABNs originally used by the file(s) to be restored must either be free (available according to the
Free Space Table) or be occupied by files to be overwritten.

4. The Adabas nucleus may be active or inactive on the output database.

If the Adabas nucleus is active for restoring the checkpoint or security files, the ADASAV utility
requires exclusive database control; that is, no user may be active on the database.

5. If the SAVE operation was performed with the DRIVES parameter, the SAVE datasets created can
also be restored with the DRIVES parameter. In that case, the restore operation is performed from the
different SAVE datasets in parallel. Alternatively, the SAVE datasets can be concatenated to a single
SAVE dataset for a restore operation without the DRIVES parameter.

636

Adabas UtilitiesRESTORE FILES: Restore Files to Original RABNs from Offline Source

6. For restoring just a few files from a multivolume database SAVE dataset, only those tape volumes
that actually contain data of the files to be restored need to be supplied in the ADASAV job control. The
job protocol of the SAVE operation as well as the corresponding SYNV checkpoints indicate the files or
parts of files contained on each volume.

7. Expanded files and coupled files can only be restored or overwritten as a whole. That is, if one file in
an expanded file is specified, all other files in the expanded file must be specified. If one file in a coupled
relationship is specified, all other files in that relationship must be specified.

8. A checkpoint, security, trigger, or user-defined system file can be overwritten only by another
checkpoint, security, trigger, or user-defined system file, respectively. A checkpoint, security, or trigger
file cannot be restored if such a file already exists in the database with a different file number.

9. New file numbers can be assigned to the files to be restored using the NEWFILES parameter.

Result
The result of this function is the specified files with the same physical status they had at the time of the
ADASAV SAVE operation.

Syntax

The FILES file list specifies the file or files to be restored.

For an Adabas expanded file, all component files of the expanded file including the anchor file must be
specified. If a specified file is coupled to other files, the coupled files must also be specified.

The file list specified need not correspond to the file list used for the corresponding SAVE function. A file
list may be specified even if no file list was used for the corresponding SAVE function.

A file may also be restored using a SAVE dataset created using a different database as long as identical
device types are used.

Optional Parameters
ALLOCATION: Action to Follow File Extent Allocation Failure

637

RESTORE FILES: Restore Files to Original RABNs from Offline SourceAdabas Utilities

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameters ACRABN, DSRABN, NIRABN, or UIRABN.

ALLOCATION pertains to the implicit RABN specifications derived from the files on the save
dataset.

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameters fails,
the utility retries the allocation without the placement parameter.

BUFNO: Count of Buffers Per Drive

The BUFNO value, multiplied by the DRIVES parameter value, allocates fixed buffers for
RESTORE operation. A value of 2 or 3 usually provides optimum performance; up to 255 is
possible. A value greater than 5, however, provides little advantage and allocates a lot of space.
The default is 1 (one buffer per drive).

DRIVES: Tape Drives for Parallel Restore

DRIVES is the number of tape drives to be used for parallel restore processing. The number can
range 1 to 8, inclusively; the default is 1.

EXCLUDE: Exclude Specified Files from Restore

EXCLUDE lists the numbers of the files to be excluded from the restore operation; that is, the
files that are not to be restored.

The parameter is optional: if not specified, no files are excluded. A file number may be listed
only once.

If the NEWFILES parameter

is not specified, all files specified in the EXCLUDE parameter must also be specified in the
FILES parameter.

is specified, all files specified in the EXCLUDE parameter must also be specified in the
NEWFILES parameter. In this case, the file numbers specified in the EXCLUDE parameter
refer to the new file numbers in NEWFILES, not to the old file numbers in the FILES
parameter.

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

NEWFILES: New File Numbers

The NEWFILES parameter specifies the new file number to be assigned to each file specified
by FILES.

The parameter is optional: if no new file number is assigned to a file, the file retains its original
number.

638

Adabas UtilitiesRESTORE FILES: Restore Files to Original RABNs from Offline Source

NEWFILES may not be specified for expanded files, physically coupled files, or replicated files.

If a file with a number specified by NEWFILES already exists in the database, the
corresponding file will not be restored unless the OVERWRITE parameter is also specified. If the file to
be overwritten is password-protected, the corresponding PASSWORD parameter must also be specified.

If several files are to be restored, the list of file numbers in the NEWFILES parameter must
correspond to the list of files in the FILES parameter. If no new file number is to be assigned to a file, its
entry in the file number list of NEWFILES must be specified as zero. See the examples.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

OVERWRITE: Overwrite Existing File

This parameter causes an existing file to be deleted and then restored. If a file which is to be
restored is already present in the database, ADASAV will skip this file unless the OVERWRITE
parameter is supplied.

Note:
To avoid unintentionally overwriting the database, Software AG recommends that you always
specify the OVERWRITE parameter after, and not before, the FILES file list.

PASSWORD

PASSWORD specifies one password or a list of passwords if one or more files specified in
FILES are password-protected. This only applies to files already in the database which are to be
overwritten. If the NEWFILES parameter is specified, the PASSWORD parameter must specify
the passwords related to the new file numbers.

When restoring more than one password-protected file, the correct passwords must be specified
as positional values corresponding to the protected file numbers’ positions in the FILES list.
Refer to the examples for more information about the PASSWORD parameter. When
overwriting password-protected files, the Adabas nucleus must be active.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

Examples

639

RESTORE FILES: Restore Files to Original RABNs from Offline SourceAdabas Utilities

Example 1:

ADASAV RESTORE FILES=3,4,5,OVERWRITE,
ADASAV PASSWORD=’PWD3,,PWD5’

Files 3, 4, and 5 are to be restored. Existing files 3, 4, and 5 are to be overwritten by the restored files.
Passwords PWD3 and PWD5 are provided for files 3 and 5.

Example 2:

 ADASAV RESTORE FILES=11,12,13,14,OVERWRITE
 ADASAV NEWFILES=16,0,17

Files 11, 12, 13, and 14 are to be restored. Files 11 and 13 are to be restored as files 16 and 17,
respectively. The file numbers of files 12 and 14 will not be changed because the corresponding
NEWFILES parameter values are specified as zero or omitted. Files 12, 14, 16, and 17 are to be
overwritten, if already present in the database.

640

Adabas UtilitiesRESTORE FILES: Restore Files to Original RABNs from Offline Source

RESTORE FMOVE: Restore Files to Any
RABNs from Offline Source
The RESTORE FMOVE function restores files from a file or database SAVE dataset created while the
Adabas nucleus was inactive, or from a file SAVE dataset created with UTYPE=EXU. One or more files
can be restored. The files are restored into an existing database to any free space. Their extent sizes may
be changed.

Notes:

1. An interrupted RESTORE FMOVE operation must be reexecuted from the beginning. Until
successful completion or reexecution of the restore operation, the files to be restored are inaccessible.

2. Checkpoint and security files from Adabas version 5 cannot be restored.

This chapter covers the following topics:

Conditions

Result

Syntax

Optional Parameters

Examples

Conditions

 To use the RESTORE FMOVE function, the following conditions must be met:

1. The correct SAVE dataset must be supplied. It can be a database or file SAVE dataset and must
contain the files to be restored. SAVE datasets from Adabas version 5.1 or above can be used.

2. An existing database must be present. The files to be restored may have originated from this or from
a different database.

3. For the file(s) to be restored, sufficient space, either free space (according to the free space table) or
space occupied by files to be overwritten, must be available in the database.

4. The Adabas nucleus may be active or inactive on the output database.

If the Adabas nucleus is active for restoring the checkpoint or security files, the ADASAV utility
requires exclusive database control; that is, no user may be active on the database.

5. If the SAVE operation was performed with the DRIVES parameter, the SAVE datasets created can
also be restored with the DRIVES parameter. In that case, the restore operation is performed from the
different SAVE datasets in parallel. Alternatively, the SAVE datasets can be concatenated to a single
SAVE dataset for a restore operation without the DRIVES parameter.

641

RESTORE FMOVE: Restore Files to Any RABNs from Offline SourceAdabas Utilities

6. For restoring just a few files from a multivolume database SAVE dataset, only those tape volumes
that actually contain data of the files to be restored need to be supplied in the ADASAV job control. The
job protocol of the SAVE operation as well as the corresponding SYNV checkpoints indicate the files or
parts of files contained on each volume.

7. Expanded files and coupled files can only be restored or overwritten as a whole. That is, if one file in
an expanded file is specified, all other files in the expanded file must be specified. If one file in a coupled
relationship is specified, all other files in that relationship must be specified.

8. A checkpoint, security, trigger, or user-defined system file can be overwritten only by another
checkpoint, security, trigger, or user-defined system file, respectively. A checkpoint, security, or trigger
file cannot be restored if such a file already exists in the database with a different file number.

9. New file numbers can be assigned to the files to be restored using the NEWFILES parameter.

Result
The result of this function is the specified files with the same contents they had at the time of the
ADASAV SAVE operation but not necessarily in the same database blocks.

Syntax
The FMOVE file list specifies a file or files to be restored using new RABNs (and sizes).

For an Adabas expanded file, all component files of the expanded file including the anchor file must be
specified. If a specified file is coupled to other files, the coupled files must also be specified.

The RABNs must be located on the same device type as used originally for the respective files. Files can
be restored into other than the original database as long as device types are identical.

642

Adabas UtilitiesRESTORE FMOVE: Restore Files to Any RABNs from Offline Source

Optional Parameters
ACRABN: Starting Address Converter RABN/RABN List

ACRABN specifies the starting address converter RABN for each file specified by FMOVE. It
can only be used in conjunction with the FMOVE parameter.

If FMOVE is specified and ACRABN omitted, the location of the address converter is chosen
by ADASAV from the free areas in the Associator that have the same device type as used
originally.

If several files are to be restored, the list of RABNs in the ACRABN parameter must correspond
to the list of files in the FMOVE parameter. If no ACRABN value is to be given for a file, its
entry in the RABN list must be specified as zero. See the examples .

ALLOCATION: Action to Follow File Extent Allocation Failure

ALLOCATION specifies the action to be taken if file extent allocations cannot be obtained
according to the placement parameters ACRABN, DSRABN, NIRABN, or UIRABN.

By default (that is, ALLOCATION=FORCE), the utility terminates with error if any file extent
allocation cannot be met according to RABN placement parameters.

If ALLOCATION=NOFORCE is specified and any allocation with placement parameters fails,
the utility retries the allocation without the placement parameter.

ASSOVOLUME: Associator Extent Volume

Note:
The value for ASSOVOLUME must be enclosed in apostrophes.

ASSOVOLUME identifies the volume on which the file’s Associator space (that is, the AC, NI,
and UI extents) is to be allocated. If the requested number of blocks cannot be found on the
specified volume, ADASAV retries the allocation while disregarding the ASSOVOLUME
parameter.

If ACRABN, UIRABN, or NIRABN is specified, ADASAV ignores the ASSOVOLUME value
when allocating the corresponding extent type. If ASSOVOLUME is not specified, the file’s
Associator space is allocated according to ADASAV’s default allocation rules.

If several files are to be restored, the list of volumes in the ASSOVOLUME parameter must
correspond to the list of files in the FMOVE parameter. If no volume is to be given for a file, its
entry in the volume list must be left empty. See the examples on page 59.

BUFNO: Count of Buffers

The BUFNO value allocates fixed buffers for RESTORE operation. A value of 2 or 3 usually
provides optimum performance; up to 255 is possible. A value greater than 5, however, provides
little advantage and allocates a lot of space. The default is 1 (one buffer per drive).

DATAVOLUME: Data Storage Extent Volume

643

RESTORE FMOVE: Restore Files to Any RABNs from Offline SourceAdabas Utilities

Note:
The value for DATAVOLUME must be enclosed in apostrophes.

DATAVOLUME specifies the volume on which the file’s Data Storage space (DS extents) is to
be allocated. If the number of blocks requested with DSSIZE cannot be found on the specified volume,
ADASAV retries the allocation while disregarding the DATAVOLUME value.

If DSRABN is specified, DATAVOLUME is ignored for the related file. If DATAVOLUME is
not specified, the Data Storage space is allocated according to ADASAV’s default allocation rules.

If several files are to be restored, the list of volumes in the DATAVOLUME parameter must
correspond to the list of files in the FMOVE parameter. If no volume is to be given for a file, its entry in
the volume list must be left empty. See the examples.

DRIVES: Tape Drives for Parallel Restore

ADASAV is able to restore files from multiple save dataset volumes in parallel to RABNs that
are different from their original RABNs in the database. DRIVES is the number of tape drives to
be used for parallel restore processing. The number can range 1 to 8, inclusively; the default is
1.

DSRABN: Starting Data Storage RABN/RABN List

DSRABN specifies the starting Data Storage RABN for each file specified by FMOVE.
DSRABN can only be used in conjunction with the FMOVE parameter.

If FMOVE is specified and DSRABN omitted, the location of the file’s Data Storage is chosen
by ADASAV from the free areas in Data Storage that have the same device type as used
originally.

If several files are to be restored, the list of RABNs in the DSRABN parameter must correspond
to the list of files in the FMOVE parameter. If no DSRABN value is specified for a file, its entry
in the RABN list must be specified as zero. See the examples.

DSSIZE: New Data Storage Size

DSSIZE is the new size to be allocated for Data Storage for each file specified by FMOVE. It
can only be used in conjunction with the FMOVE parameter.

The size can be specified in cylinders, or in blocks (by appending "B" to the number). It must be
at least as large as the used area of the original Data Storage.

If DSSIZE is omitted, the original Data Storage size is used.

If several files are to be restored, the list of sizes in the DSSIZE parameter must correspond to
the list of files in the FMOVE parameter. If no size is to be given for a file, its entry in the size
list must be specified as zero. See the examples.

EXCLUDE: Exclude Specified Files from Restore

If specified, EXCLUDE lists the numbers of the files to be excluded from the restore operation;
that is, the files that are not to be restored. A file number may be listed only once.

644

Adabas UtilitiesRESTORE FMOVE: Restore Files to Any RABNs from Offline Source

If not specified, no files are excluded.

If the NEWFILES parameter

is not specified, all files specified in the EXCLUDE parameter must also be specified in the
FMOVE parameter.

is specified, all files specified in the EXCLUDE parameter must also be specified in the
NEWFILES parameter. In this case, the file numbers specified in the EXCLUDE parameter
refer to the new file numbers in NEWFILES, not to the old file numbers in the FMOVE
parameter.

The EXCLUDE parameter is provided for use in recovery jobs built by the Adabas Recovery
Aid (ADARAI).

MAXISN: New Maximum ISN

MAXISN is the new number of ISNs to be allocated for each file specified by FMOVE. It can
only be used in conjunction with the FMOVE parameter. The value must be at least as large as
the original highest allocated ISN (MAXISN).

If MAXISN is omitted, the original ISN count is used.

If several files are to be restored, the list of ISN counts in the MAXISN parameter must
correspond to the list of files in the FMOVE parameter. If no ISN count is to be given for a file,
its entry in the ISN count list must be specified as zero. See the examples.

NEWFILES: New File Numbers

The NEWFILES parameter specifies the new file number to be assigned to each file specified
by FMOVE.

The parameter is optional: if no new file number is assigned to a file, the file retains its original
number.

NEWFILES may not be specified for expanded files, physically coupled files, or replicated files.

If a file with a number specified by NEWFILES already exists in the database, the
corresponding file will not be restored unless the OVERWRITE parameter is also specified. If
the file to be overwritten is password-protected, the corresponding PASSWORD parameter must
also be specified.

If several files are to be restored, the list of file numbers in the NEWFILES parameter must
correspond to the list of files in the FMOVE parameter. If no new file number is to be assigned
to a file, its entry in the file number list of NEWFILES must be specified as zero. See the
examples .

NIRABN: Starting Normal Index RABN/RABN List

NIRABN specifies the starting RABN for the normal index for each file specified by FMOVE.
It can only be used in conjunction with the FMOVE parameter.

645

RESTORE FMOVE: Restore Files to Any RABNs from Offline SourceAdabas Utilities

If FMOVE is specified and NIRABN omitted, the location of the normal index is chosen by
ADASAV from the free areas in the Associator that have the same device type as used originally.

If several files are to be restored, the list of RABNs in the NIRABN parameter must correspond
to the list of files in the FMOVE parameter. If no NIRABN value is to be given for a file, its entry in the
RABN list must be specified as zero. See the examples .

NISIZE: New Size for Normal Index

NISIZE is the new size to be allocated for the normal index for each file specified by FMOVE.
It can only be used in conjunction with the FMOVE parameter.

The size can be specified in cylinders, or in blocks (by appending "B" to the number). It must be
at least as large as the used area of the original normal index.

If NISIZE is omitted, the original normal index size is used.

If several files are to be restored, the list of sizes in the NISIZE parameter must correspond to
the list of files in the FMOVE parameter. If no size is to be given for a file, its entry in the size
list must be specified as zero. See the examples .

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

OVERWRITE: Overwrite Existing File

This parameter causes an existing file to be deleted and then restored. If a file which is to be
restored is already present in the database, ADASAV will skip this file unless the OVERWRITE
parameter is supplied.

Note:
To avoid unintentionally overwriting the database, Software AG recommends that you always
specify the OVERWRITE parameter after, and not before, the FMOVE file list.

PASSWORD: Adabas Security File Password

PASSWORD specifies one password or a list of passwords if one or more files in the FILES or
FMOVE file list are password-protected. This only applies to files already in the database that
are to be overwritten. If the NEWFILES parameter is specified, the PASSWORD parameter
must specify the passwords related to the new file numbers.

When restoring more than one password-protected file, the correct passwords must be specified
as positional values corresponding to the positions of the protected file numbers in the FILES or
FMOVE list. Refer to the examples for more information about the PASSWORD parameter.
When overwriting password-protected files, the Adabas nucleus must be active.

646

Adabas UtilitiesRESTORE FMOVE: Restore Files to Any RABNs from Offline Source

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

UIRABN: Starting Upper Index RABN/RABN List

UIRABN specifies the starting RABN for the upper index for each file specified by FMOVE. It
can only be used in conjunction with the FMOVE parameter.

If FMOVE is specified and UIRABN omitted, the location of the upper index is chosen by
ADASAV from the free areas in the Associator that have the same device type as used
originally.

If several files are to be restored, the list of RABNs in the UIRABN parameter must correspond
to the list of files in the FMOVE parameter. If no UIRABN value is to be given for a file, its
entry in the RABN list must be specified as zero. See the examples.

UISIZE: New Upper Index Size

UISIZE is the new size to be allocated for the upper index for each file specified by FMOVE. It
can only be used in conjunction with the FMOVE parameter.

The size can be specified in cylinders, or in blocks (by appending "B" to the number). It must be
at least as large as the used area of the original upper index.

If UISIZE is omitted, the original upper index size is used.

If several files are to be restored, the list of sizes in the UISIZE parameter must correspond to
the list of files in the FMOVE parameter. If no size is to be given for a file, its entry in the size
list must be specified as zero. See the examples.

Examples
Example 1:

ADASAV RESTORE FMOVE=4,6, ACRABN=0,3820,
MAXISN=0,2000000

Three tape drives are available for parallel RESTORE processing. Files 4 and 6 are to be restored with
new RABNs. The space allocation for file 4 is to be done using original sizes.

The address converter for file 6 is to begin at Associator RABN 3820, and the value for the file’s
MAXISN is to be increased to 2,000,000.

Example 2:

ADASAV RESTORE FMOVE=3,4,5, OVERWRITE
ADASAV PASSWORD=’PWD3,,PWD5’

Files 3, 4 and 5 are to be restored. If they already exist in the database, they are overwritten. Passwords are
provided for files 3 and 5 to allow them to be overwritten. All original size values are used. The files
might be restored to other than the original RABNs.

647

RESTORE FMOVE: Restore Files to Any RABNs from Offline SourceAdabas Utilities

Example 3:

ADASAV RESTORE FMOVE=1,2
ADASAV FMOVE=3,4

Restore files 1 through 4.

Example 4:

ADASAV RESTORE FMOVE=11,12,13,14,OVERWRITE
ADASAV NEWFILES=16,0,17

Files 11, 12, 13, and 14 are to be restored. Files 11 and 13 are to be restored as files 16 and 17,
respectively. The file numbers of files 12 and 14 will not be changed because the corresponding
NEWFILES parameter values are specified as zero or omitted. Files 12, 14, 16, and 17 are to be
overwritten, if already present in the database.

648

Adabas UtilitiesRESTORE FMOVE: Restore Files to Any RABNs from Offline Source

RESTPLOG: Restore Protection Log Only
RESTPLOG restores changes contained in the PLOG to the already restored database or (if specified)
files. RESTPLOG restores only the PLOG changes that were recorded during the related online SAVE
(database or FILES) operation.

The RESTPLOG function is used when the following sequence occurs:

1. A SAVE dataset is created online; that is, while the Adabas nucleus is active.

2. Using output created during the online SAVE, the RESTONL function is executed to restore the
database or files, completes restoring the database or files from the SAVE tape, but ends due to an
error condition before completing the updates recorded in PLOG.

3. The RESTPLOG function is executed to reapply all updates to the restored database or files that were
recorded in PLOG. This avoids the need for restoring the complete database or files again with
RESTONL.

RESTPLOG cannot be used to complete an ADASAV RESTONL FMOVE or an ADASAV RESTONL
FILES with ALLOCATION=NOFORCE operation. These operations must be restarted.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Example

Essential Parameters
PLOGNUM: Protection Log Number

PLOGNUM specifies the number of the protection log to be restored.

SYN1|SYN4: Starting Block Number

SYN1 or SYN4 specifies the block number containing the respective SYN1 or SYN4
checkpoint at which the restore operation is to begin.

649

RESTPLOG: Restore Protection Log OnlyAdabas Utilities

Optional Parameters
FILES: List of Files to Restore

The FILES parameter specifies the files that were being restored in the RESTONL FILES or
RESTONL GCB execution that was interrupted. For RESTPLOG, the same files must be
specified that were specified for the interrupted function.

The FILES parameter must be omitted if a RESTONL (database) execution was interrupted. In
this case, the RESTPLOG function is performed for all files of the database.

NEWFILES: New File Numbers

The NEWFILES parameter specifies the new file numbers to be assigned to each file listed in
the FILES parameter. The same new file number assignments must be specified that were
specified for the interrupted RESTONL FILE function that RESTPLOG is to complete.

If NEWFILES is not specified, the files to be restored retain their original numbers.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

Example
ADASAV RESTPLOG PLOGNUM=30,SYN1=150

All updates contained on protection log 30 are to be reapplied to all affected files. The block containing
the SYN1 checkpoint is 150.

650

Adabas UtilitiesRESTPLOG: Restore Protection Log Only

SAVE: Save Database
The ADASAV SAVE (database) function saves the contents of the database to a sequential dataset. It
saves all blocks that are in use in the database.

The SAVE (database) function may be executed with the Adabas nucleus active or inactive. If executed
while the Adabas nucleus is

active, the RESTONL function must be used to later restore the database.

inactive, the RESTORE function must be used to later restore the database.

In both cases, it is possible to restore just one or a few files from the database saved on the SAVE dataset.

If the Adabas nucleus is inactive, it cannot be started while the SAVE function is executing, and no utility
(such as ADALOD, for example) that makes changes to the database being saved can be run during the
save. The SAVE function cannot be executed offline if a nucleus session autorestart is pending, or if
another offline utility (such as ADALOD or ADASAV) is currently running.

If the Adabas nucleus is active during the execution of the save operation, users have full access to the
database being saved. They can perform read, find, update, insert, and delete commands. However,
utilities that make changes to the database to be saved (such as ADALOD, ADAINV, or ADADBS
REFRESH, for example) must not be running and cannot be started while the save function is executing.
An online save operation is also not possible if the nucleus is running without protection logging.

In an online save operation, the database to be saved may be changed while ADASAV is performing the
save operation. Therefore, the Adabas nucleus writes all changed blocks to the protection log as well. This
protection log must be supplied for a subsequent restore operation (that is, a RESTONL function).

The start of an online database save is marked by a SYN1 checkpoint. At the end of the online save, the
nucleus synchronizes all currently active transactions. This means that Adabas performs no more update
commands for users at ET status but allows the other active users to continue until they reach ET status.
This status is then marked by a SYN2 checkpoint. The SYN2 checkpoint thus marks a consistent state of
the database where no transactions are in progress. This state is reproduced when the database or files are
restored from the SAVE dataset later on.

The maximum time required for the transaction synchronization can be limited by the TTSYN parameter.

Databases residing on several disk volumes are saved to several SAVE datasets in parallel when the
DRIVES parameter is specified. This mode of operation may significantly reduce the duration of the save.
The resulting SAVE datasets, when concatenated in the order of ascending drive number, are equivalent to
a single SAVE dataset produced without the DRIVES parameter.

The SAVE (database) function does not save files that are in invert, load, refresh, reorder, or restore
status. In fact, it removes such files from the file list, prints message ADAU15, and performs the save
operation for the remaining files. At the end, ADASAV terminates with return code 4.

If the Recovery Aid (RLOG) option is active, the SAVE (database) function starts a new RLOG
generation.

651

SAVE: Save DatabaseAdabas Utilities

This chapter covers the following topics:

Syntax

Optional Parameters

Example

Syntax

Optional Parameters
BUFNO: Count of Buffers

The BUFNO value allocates fixed buffers for the SAVE operation. A value of 2 or 3 usually
provides optimum performance; up to 255 is possible. A value greater than 5, however, provides
little advantage and allocates a lot of space. The default is 1 (one buffer per drive).

DRIVES: Tape Drives for Parallel Save Processing

DRIVES is the number of tape drives to be used for parallel SAVE operation. A maximum of 8
drives may be specified. The default is 1.

INCREMENTAL: Save Changed Files Only

INCREMENTAL saves only those files that have been changed since the last ADASAV SAVE
operation. If INCREMENTAL is not specified, the SAVE function saves all database files.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PERDRIVE: Disk Drives Per Tape Drive

652

Adabas UtilitiesSAVE: Save Database

PERDRIVE specifies the number of disk drives to be assigned to a single DRIVES tape drive.
For example, if the database is contained on seven disk drives and three tape drives are available for
SAVE processing, PERDRIVE=3,2,2 would cause the first three disk drives to be written to tape drive 1,
the next two disk drives to be written to tape drive 2, and the next two disk drives to be written to tape
drive 3. The drive sequence corresponds to the DD/SAVEn and DD/DUALn job control specifications, as
described at the end of this document.

The total number of drives specified by PERDRIVE must equal the sum of all Associator
(ASSO) and DATA disks; if both ASSO and DATA are on a single disk, this counts as two separate disks.
If the DRIVES parameter is used and the PERDRIVE parameter is omitted, ADASAV determines the
most efficient utilization of the tape drives.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

TTSYN: SYN2 Checkpoint Control

TTSYN allows the user to decrease the ADARUN TT (maximum transaction time) of the
nucleus during the synchronized checkpoint processing of the current ADASAV operation. The
value specified is the approximate time in seconds (TT � 1.05 seconds), and must be
less than the current ADARUN TT value. If TTSYN is not specified or if TTSYN is greater than
the TT value of the nucleus, that TT value becomes the default.

If the Adabas nucleus is active while ADASAV SAVE is running, a synchronized SYN2
checkpoint is taken at the end of the SAVE operation. This ensures that there is a point in time
where all users are at ET status. If a user is not at ET status, no new transactions can be started
for other users; they must wait until the SYN2 checkpoint can be taken.

The ADARUN TT value controls the maximum elapsed time permitted for a logical transaction.
This is the maximum wait time until the SYN2 checkpoint can be processed. The ADASAV
SAVE TTSYN parameter allows the user to decrease the TT value only during the synchronized
checkpoint processing. The original TT value becomes effective again when ADASAV ends the
SAVE operation.

TWOCOPIES: Create Two Copies of Output

TWOCOPIES creates two physical copies of the ADASAV output.

Example
ADASAV SAVE DRIVES=4

The SAVE function is to be executed using four tape drives in parallel.

653

SAVE: Save DatabaseAdabas Utilities

SAVE FILES: Save Specified Files
The ADASAV SAVE FILES function saves the contents of one or more files to a sequential dataset. It
saves all blocks that are in use in the file(s).

The SAVE FILES function may be executed with the Adabas nucleus active or inactive. If executed while
the Adabas nucleus is

active, the RESTONL function must be used to later restore the file(s).

inactive, the RESTORE function must be used to later restore the file(s).

In both cases, it is possible to restore just one or a few files from all files saved on the SAVE dataset.

If the Adabas nucleus is inactive, it cannot be started while the SAVE function is executing, and no utility
(such as ADALOD, for example) that makes changes to the file(s) being saved can be run during the save.
The SAVE function cannot be executed offline if a nucleus session autorestart is pending, or if another
offline utility (such as ADALOD or ADASAV) is currently running on the file(s) to be saved.

If the Adabas nucleus is active during the execution of the save operation, users have full access to the
file(s) being saved. They can perform read, find, update, insert, and delete commands. However, utilities
that make changes to the files to be saved (such as ADALOD, ADAINV, or ADADBS REFRESH, for
example) must not be running and cannot be started while the save function is executing. An online save
operation is also not possible if the nucleus is running without protection logging.

In an online save operation, the file(s) to be saved may be changed while ADASAV is performing the
save operation. Therefore, the Adabas nucleus writes all changed blocks of the file(s) being saved to the
protection log as well. This protection log must be supplied for a subsequent restore operation (that is, a
RESTONL function).

The start of an online file save is marked by a SYN4 checkpoint. At the end of the online save, the nucleus
synchronizes all currently active transactions. This means that Adabas performs no more update
commands for users at ET status but allows the other active users to continue until they reach ET status.
This status is then marked by a SYN5 checkpoint. The SYN5 checkpoint thus marks a consistent state of
the database where no transactions are in progress. This state is reproduced when files are restored from
the SAVE dataset later on.

The maximum time required for the transaction synchronization can be limited by the TTSYN parameter.

If the parameter UTYPE=EXU is specified and the Adabas nucleus is active, the save operation is
performed like an offline save. ADASAV locks all files to be saved with an EXU-open against concurrent
updates. The RESTORE function (rather than RESTONL) must be used for a later restore of the file(s).

Several offline file save operations, or file saves with UTYPE=EXU can be performed on different files in
parallel. Only one online file save operation can be active at a time.

Files from databases residing on several disk volumes are saved to several SAVE datasets in parallel when
the DRIVES parameter is specified. This mode of operation may significantly reduce the duration of the
save. The resulting SAVE datasets, when concatenated in the order of ascending drive number, are
equivalent to a single SAVE dataset produced without the DRIVES parameter.

654

Adabas UtilitiesSAVE FILES: Save Specified Files

The SAVE FILES function does not save files that are in invert, load, refresh, reorder, or restore status. In
fact, it removes such files from the file list, prints message ADAU15, and performs the save operation for
the remaining files. At the end, ADASAV terminates with return code 4.

This chapter covers the following topics:

Syntax

Optional Parameters

Examples

Syntax

The FILES file list specifies the file(s) to be saved. If a specified file is coupled to another file or is a
component of an expanded file, and the ADASAV SAVE FILES function is executed

with an active nucleus, ADASAV only accepts a SAVE FILES operation if all component files of an
expanded file and all files coupled to the file are specified in the FILES file list.

with an inactive nucleus, the SAVE FILES operation is accepted if any one component file of an
expanded file or one of several coupled files is specified. ADASAV then extends the file list
automatically.

Optional Parameters
BUFNO: Count of Buffers

The BUFNO value allocates fixed buffers for the SAVE operation. A value of 2 or 3 usually
provides optimum performance; up to 255 is possible. A value greater than 5, however, provides
little advantage and allocates a lot of space. The default is 1 (one buffer per drive).

DRIVES: Tape Drives for Parallel Save Processing

DRIVES is the number of tape drives to be used for parallel SAVE operation. A maximum of 8
drives can be specified. The default is 1.

655

SAVE FILES: Save Specified FilesAdabas Utilities

INCREMENTAL: Save Changed Files Only

INCREMENTAL saves only those files in the FILES list that have been changed since the last
ADASAV SAVE operation. If INCREMENTAL is not specified, the SAVE function saves all
files in the FILES list.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: File Password

PASSWORD specifies one password or a list of passwords if one or more files in the FILES file
list are password-protected. For more than one password-protected file, the correct passwords
must be specified as positional values corresponding to the protected file numbers’ positions in
the FILES list. Refer to the examples at the end of this section for more information about the
PASSWORD parameter. When saving password-protected files, the Adabas nucleus must be
active.

PERDRIVE: Disk Drives per Tape Drive

PERDRIVE specifies the number of disk drives to be assigned to a single tape drive. For
example, if the database is contained on seven disk drives, and three tape drives are available for
SAVE processing, PERDRIVE=3,2,2 would cause the first three disk drives to be written to
tape drive 1, the next two disk drives to be written to tape drive 2, and the next two disk drives
to be written to tape drive 3. The drive sequence corresponds to the DDSAVEn/DDDUALn or
SAVEn/DUALn job control specifications, as described at the end of this document.

The total number of drives specified by PERDRIVE must equal the sum of all Associator
(ASSO) and DATA disks; if both ASSO and DATA are one a single disk, this counts as two
separate disks. If the DRIVES parameter is used and the PERDRIVE parameter is omitted,
ADASAV will determine the most efficient utilization of the tape drives.

TEST: Test Syntax

The TEST parameter tests the operation syntax without actually performing the operation. Only
the syntax of the specified parameters can be tested; not the validity of values and variables.

TTSYN: SYN5 Checkpoint Control

TTSYN allows the user to decrease the ADARUN TT (maximum transaction time) of the
nucleus during the synchronized checkpoint processing of the current ADASAV operation. The
value specified is the approximate time in seconds (TT � 1.05 seconds), and must be
less than the current ADARUN TT value. If TTSYN is not specified or if TTSYN is greater than
the TT value of the nucleus, the nucleus’ TT value becomes the default.

656

Adabas UtilitiesSAVE FILES: Save Specified Files

Note:
TTSYN is ineffective if UTYPE=EXU.

If the Adabas nucleus is active while ADASAV SAVE is running, a synchronized SYN5
checkpoint is taken at the end of the SAVE operation. This ensures that there is a point in time where all
users are at ET status. If a user is not at ET status, no new transactions can be started for other users; they
must wait until the SYN5 checkpoint can be taken.

The ADARUN TT value controls the maximum elapsed time permitted for a logical transaction.
This is the maximum wait time until the SYN5 checkpoint can be processed. The ADASAV SAVE
TTSYN parameter allows the user to decrease the TT value only during the synchronized checkpoint
processing. The original TT value becomes effective again when ADASAV ends the SAVE operation.

TWOCOPIES: Create Two Copies of Output

TWOCOPIES creates two physical copies of the ADASAV output.

UTYPE=EXU: User Type for Open

ADASAV issues an Adabas open command with a record buffer "EXU=file-list". This enables a
file to be saved where an Adabas nucleus is active with no protection log. No updates to the files
being saved are permitted while the SAVE function is operating. The corresponding RESTORE
file operation does not require a protection log.

Examples
Example 1:

ADASAV SAVE FILES=10,15

Files 10 and 15 are to be saved.

Example 2:

ADASAV SAVE FILES=3,4,5,
ADASAV PASSWORD=’PWD3,,PWD5’

Save files 3, 4, and 5. Files 3 and 5 are password protected and their passwords are PWD3 and PWD5.

657

SAVE FILES: Save Specified FilesAdabas Utilities

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADASAV with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000

658

Adabas UtilitiesJCL/JCS Requirements and Examples

Dataset Link Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Work DDWORKR1 disk Required if Adabas
nucleus is not active

Multiple protection log DDPLOGRn disk Optional for
RESTORE and
RESTONL
database/GCB

Multiple command log DDCLOGRn disk Optional for
RESTORE and
RESTONL
database/GCB

Recovery log (RLOG) DDRLOGR1 disk Required for
ADARAI

Backup copy DDSAVE1-8 tape/ disk Required for SAVE

Dual copy DDDUAL1-8 tape/ disk Required for SAVE
with two
backup copies

Backup copy (input to
the RESTORE function)

DDREST1-8 tape/ disk Required for
RESTORE and
RESTONL

Sequential protection log DDPLOG tape/ disk Required for
RESTONL and
RESTPLOG

ADARUN parameters SYSDTA/ DDCARD Operations

ADASAV parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT/ DDPRINT Messages and Codes

ADASAV messages SYSLST/ DDDRUCK Messages and Codes

Note:
For RESTONL, the input SAVE tapes and the sequential protection log can be concatenated, using the
name DDREST1.

ADASAV JCL Examples (BS2000)

Save Files, Save Database

In SDF Format:

/.ADASAV LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A S A V SAVE FILES, SAVE DATABASE
 /REMARK *

659

JCL/JCS Requirements and ExamplesAdabas Utilities

 /DELETE-FILE ADAyyyyy.SAVE1
 /SET-JOB-STEP
 /CREATE-FILE ADAyyyyy.SAVE1,SUP=TAPE(DEVICE=TAPE-C1,VOL=SAV101),-
 / PROT=(USER-ACCESS=ALL-USERS)
 /SET-JOB-STEP
 /DELETE-FILE ADAyyyyy.DUAL1
 /SET-JOB-STEP
 /CREATE-FILE ADAyyyyy.DUAL1,SUP=TAPE(DEVICE=TAPE-C1,VOL=SAV101),-
 / PROT=(USER-ACCESS=ALL-USERS)
 /SET-JOB-STEP
 /ASS-SYSLST L.SAV.SAVE
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
 /SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK,SHARE-UPD=YES
 /SET-FILE-LINK DDSSAVE1,ADAyyyyy.SAVE1,TAPE(FILE-SEQ=1)
 /SET-FILE-LINK DDSDUAL1,ADAyyyyy.DUAL1,TAPE(FILE-SEQ=1)
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADASAV,DB=yyyyy,IDTNAME=ADABAS5B
 ADASAV SAVE TWOCOPIES
 /LOGOFF SYS-OUTPUT=DEL

Save Files, Save Database (Continued)

In ISP Format:

/.ADASAV LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A S A V SAVE FILES, SAVE DATABASE
 /REMARK *

/SYSFILE SYSLST=L.SAV.SAVE
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
 /FILE ADAyyyyy.WORK ,LINK=DDWORKR1,SHARUPD=YES
 /FILE ADAyyyyy.SAVE1 ,LINK=DDSAVE1 ,DEVICE=TAPE-C1,VOLUME=SAV101
 /FILE ADAyyyyy.DUAL1 ,LINK=DDDUAL1 ,DEVICE=TAPE-C1,VOLUME=SAV201
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADASAV,DB=yyyyy,IDTNAME=ADABAS5B
 ADASAV SAVE TWOCOPIES
 /LOGOFF NOSPOOL

Restore Files from SAVE Datasets Created Online

In SDF Format:

/.ADASAV LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A S A V RESTORE FILES, RESTORE DATABASE
 /REMARK * FROM ONLINE CREATED SAVE DATASETS
 /REMARK *
 /ASS-SYSLST L.SAV.REON
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
 /SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK,SHARE-UPD=YES
 /SET-FILE-LINK DDPLOGR1,ADAyyyyy.PLOGR1,SHARE-UPD=YES

660

Adabas UtilitiesJCL/JCS Requirements and Examples

 /SET-FILE-LINK DDPLOGR2,ADAyyyyy.PLOGR2,SHARE-UPD=YES
 /SET-FILE-LINK DDREST1,ADAyyyyy.SAVE1
 /SET-FILE-LINK DDPLOG,ADAyyyyy.PLOG
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADASAV,DB=yyyyy,IDTNAME=ADABAS5B
 ADASAV RESTONL FILES=2,PLOGNUM=ppp,SYN1=43
 /LOGOFF SYS-OUTPUT=DEL

Restore Files from SAVE Datasets Created Online (Continued)

In ISP Format:

/.ADASAV LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A S A V RESTORE FILES, RESTORE DATABASE
 /REMARK * FROM ONLINE CREATED SAVE DATASETS
 /REMARK *

/SYSFILE SYSLST=L.SAV.REON
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
 /FILE ADAyyyyy.WORK ,LINK=DDWORKR1,SHARUPD=YES
 /FILE ADAyyyyy.SAVE1 ,LINK=DDREST1
 /FILE ADAyyyyy.PLOG ,LINK=DDPLOG
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADASAV,DB=yyyyy,IDTNAME=ADABAS5B
 ADASAV RESTONL FILES=2,PLOGNUM=ppp,SYN1=43
 /LOGOFF NOSPOOL

Restore Database

In SDF Format:

/.ADASAV LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * ADASAV:
 /REMARK * EXAMPLE HOW TO USE ADASAV TO RESTORE THE
 /REMARK * ENTIRE DATABASE /REMARK *
 /REMARK *
 /DELETE-FILE ADAyyyyy.SAVE1
 /SET-JOB-STEP
 /IMPORT-FILE
SUP=TAPE(F-NAME=ADAyyyyy.SAVE1,DEV-TYPE=TAPE-C1,VOL=SAV101)
 /SET-JOB-STEP
 /ASS-SYSLST L.SAV.REST
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
 /SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK,SHARE-UPD=YES
 /SET-FILE-LINK DDPLOGR1,ADAyyyyy.PLOGR1,SHARE-UPD=YES
 /SET-FILE-LINK DDPLOGR2,ADAyyyyy.PLOGR2,SHARE-UPD=YES
 /SET-FILE-LINK DDREST1,ADAyyyyy.SAVE1,TAPE(FILE-SEQ=1),ACC-METH=SAM,-
 / BUFF-LEN=32768,REC-FORM=V
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADASAV,DB=yyyyy,IDTNAME=ADABAS5B
 ADASAV RESTORE OVERWRITE
 /LOGOFF SYS-OUTPUT=DEL

661

JCL/JCS Requirements and ExamplesAdabas Utilities

Restore Database (Continued)

In ISP Format:

/.ADASAV LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * ADASAV:
 /REMARK * EXAMPLE HOW TO USE ADASAV TO RESTORE THE
 /REMARK * ENTIRE DATABASE
 /REMARK *
 /SYSFILE SYSLST=L.SAV.REST
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
 /FILE ADAyyyyy.WORK ,LINK=DDWORKR1,SHARUPD=YES
 /FILE ADAyyyyy.SAVE1 ,LINK=DDREST1,DEVICE=TAPE-C1,VOLUME=ADA001,-
 / STATE=FOREIGN.-
 / FCBTYPE=SAM,RECFORM=V,RECSIZE=,BLKSIZE=32768,LABEL=STD
 /FILE ADAyyyyy.PLOGR1,LINK=DDPLOGR1,SHARUPD=YES
 /FILE ADAyyyyy.PLOGR2,LINK=DDPLOGR2,SHARUPD=YES
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADASAV,DB=yyyyy,IDTNAME=ADABAS5B
 ADASAV RESTORE OVERWRITE
 /LOGOFF NOSPOOL

Restore Protection Log after an Interrupted RESTONL Function

In SDF Format:

/.ADASAV LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A S A V RESTORE PROTECTION LOG
 /REMARK *
 /ASS-SYSLST L.SAV.REPL
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
 /SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK,SHARE-UPD=YES
 /SET-FILE-LINK DDPLOG,ADAyyyyy.PLOG
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADASAV,DB=yyyyy,IDTNAME=ADABAS5B
 ADASAV RESTPLOG FILES=2,PLOGNUM=ppp,SYN1=43
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADASAV LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A S A V RESTORE PROTECTION LOG
 /REMARK *
 /SYSFILE SYSLST=L.SAV.REPL
 /FILE ADA.MOD,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
 /FILE ADAyyyyy.WORK ,LINK=DDWORKR1,SHARUPD=YES
 /FILE ADAyyyyy.PLOG ,LINK=DDPLOG

662

Adabas UtilitiesJCL/JCS Requirements and Examples

 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADASAV,DB=yyyyy,IDTNAME=ADABAS5B
 ADASAV RESTPLOG FILES=2,PLOGNUM=ppp,SYN1=43
 /LOGOFF NOSPOOL

Restore Files from SAVE Datasets Created Offline

In SDF Format:

/.ADASAV LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A S A V RESTORE FILES, RESTORE DATABASE
 /REMARK * FROM OFFLINE CREATED SAVE DATASETS
 /REMARK *
 /ASS-SYSLST L.SAV.REFM
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO,SHARE-UPD=YES
 /SET-FILE-LINK DDDATAR1,ADAyyyyy.DATA,SHARE-UPD=YES
 /SET-FILE-LINK DDWORKR1,ADAyyyyy.WORK,SHARE-UPD=YES
 /SET-FILE-LINK DDREST1,ADAyyyyy.SAVE1
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADASAV,DB=yyyyy,IDTNAME=ADABAS5B
 ADASAV RESTORE FMOVE=2
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADASAV LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A S A V RESTORE FILES, RESTORE DATABASE
 /REMARK * FROM OFFLINE CREATED SAVE DATASETS
 /REMARK *
 /SYSFILE SYSLST=L.SAV.REFM
 /FILE ADA.MOD ,LINK=DDLIB
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1,SHARUPD=YES
 /FILE ADAyyyyy.DATA ,LINK=DDDATAR1,SHARUPD=YES
 /FILE ADAyyyyy.WORK ,LINK=DDWORKR1,SHARUPD=YES
 /FILE ADAyyyyy.SAVE1 ,LINK=DDREST1
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADASAV,DB=yyyyy,IDTNAME=ADABAS5B
 ADASAV RESTORE FMOVE=2
 /LOGOFF NOSPOOL

OS/390 or z/OS

663

JCL/JCS Requirements and ExamplesAdabas Utilities

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Work DDWORKR1 disk Required if Adabas
nucleus is not active

Multiple protection log DDPLOGRn disk Optional for
RESTORE and
RESTONL
database/GCB

Multiple command log DDCLOGRn disk Optional for
RESTORE and
RESTONL
database/GCB

Recovery log (RLOG) DDRLOGR1 disk Required for
ADARAI

Backup copy DDSAVE1-8 tape/ disk Required for SAVE

Dual copy DDDUAL1-8 tape/ disk Required for SAVE
with two backup
copies

Backup copy (input for
RESTORE function)

DDREST1-8 tape/ disk Required for
RESTORE and
RESTONL

Sequential protection log DDPLOG tape/ disk Required for
RESTONL and
RESTPLOG

ADARUN parameters DDCARD reader Operations

ADASAV parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADASAV messages DDDRUCK printer Messages and Codes

Note:
For RESTONL, the input SAVE tapes and the sequential protection log can be concatenated, using the
name DDREST1.

ADASAV JCL Examples (OS/390 or z/OS)

Save Database

//ADASAV JOB
//*
//* ADASAV:
//* EXAMPLE HOW TO USE ADASAV TO SAVE THE
//* ENTIRE DATABASE
//*
//SAVE EXEC PGM=ADARUN

664

Adabas UtilitiesJCL/JCS Requirements and Examples

//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDSAVE1 DD DSN=EXAMPLE.DByyyyy.DDSAVE1,UNIT=TAPE, <=== OUTPUT
// DISP=(,CATLG),VOL=SER=ADABCK
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADASAV,SVC=xxx,DE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADASAV SAVE
/*

Refer to ADASAV in the MVSJOBS dataset for this example.

Save Database with Two Copies of Output

//ADASAVT JOB
//*
//* ADASAV:
//* EXAMPLE HOW TO USE ADASAV TO SAVE THE
//* ENTIRE DATABASE CREATING TWO COPIES OF THE OUTPUT
//*
//SAVE EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDSAVE1 DD DSN=EXAMPLE.DByyyyy.DDSAVE1,UNIT=TAPE, <=== OUTPUT
// DISP=(,CATLG),VOL=SER=ADABCK
//DDDUAL1 DD DSN=EXAMPLE.DByyyyy.DDSAVD1,UNIT=TAPE, <=== OUTPUT
// DISP=(,CATLG),VOL=SER=ADABCK1
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADASAV,SVC=xxx,DE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADASAV SAVE TWOCOPIES
/*

Refer to ADASAVT in the MVSJOBS dataset for this example.

Restore Database

//ADASAVR JOB
//*
//* ADASAV:
//* EXAMPLE HOW TO USE ADASAV TO RESTORE THE
//* ENTIRE DATABASE
//*
//RESTORE EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO

665

JCL/JCS Requirements and ExamplesAdabas Utilities

//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDPLOGR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR1 <=== PLOG1
//DDPLOGR2 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR2 <=== PLOG2
//DDREST1 DD DSN=EXAMPLE.DByyyyy.SAVE, <=== SAVE OUTPUT
// DISP=OLD,UNIT=TAPE,VOL=SER=ADABCK
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X

//DDCARD DD *
ADARUN PROG=ADASAV,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADASAV RESTORE OVERWRITE
/*

Refer to ADASAVR in the MVSJOBS dataset for this example.

Restore Files From SAVE Datasets Created Offline

//ADASAVRF JOB
//*
//* ADASAV:
//* EXAMPLE HOW TO USE ADASAV TO RESTORE A FILE
//* TO ANY RABNS FROM AN OFFLINE SAVE
//*
//RESTORE EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABASLOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDPLOGR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR1 <=== PLOG1
//DDPLOGR2 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR2 <=== PLOG2
//DDREST1 DD DSN=EXAMPLE.DByyyyy.SAVE, <=== SAVE OUTPUT
// DISP=OLD,UNIT=TAPE,VOL=SER=ADABCK
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADASAV,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADASAV RESTORE FMOVE=2
/*

Refer to ADASAVRF in the MVSJOBS dataset for this example.

Restore Files From SAVE Datasets Created Online

//ADASAVRO JOB
//*
//* ADASAV:
//* EXAMPLE HOW TO USE ADASAV TO RESTORE FILES
//* FROM SAVE DATA SETS CREATED ONLINE
//*
//RESTORE EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA

666

Adabas UtilitiesJCL/JCS Requirements and Examples

//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDPLOGR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR1 <=== PLOG1
//DDPLOGR2 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR2 <=== PLOG2
//DDREST1 DD DSN=EXAMPLE.DByyyyy.SAVE, <=== SAVE OUTPUT
// DISP=OLD,UNIT=TAPE,VOL=SER=ADABCK
//DDPLOG DD DSN=EXAMPLE.DByyyyy.PLOG, <=== PLOG OUTPUT
// DISP=OLD,UNIT=TAPE,VOL=SER=PLOGD1
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADASAV,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADASAV RESTONL FILES=2,PLOGNUM=ppp,SYN1=1
/*

Refer to ADASAVRO in the MVSJOBS dataset for this example.

Restore Protection Log after an Interrupted RESTONL Function

//ADASAVRP JOB
//*
//* ADASAV:
//* EXAMPLE HOW TO USE ADASAV TO RESTORE THE
//* PROTECTION LOG AFTER AN INTERRUPTED RESTONL
//*
//RESTORE EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*

//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDPLOGR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR1 <=== PLOG1
//DDPLOGR2 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.PLOGR2 <=== PLOG2
//DDPLOG DD DSN=EXAMPLE.DByyyyy.PLOG, <=== PLOG INPUT
// DISP=OLD,UNIT=TAPE,VOL=SER=PLOGD1
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADASAV,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADASAV RESTPLOG PLOGNUM=ppp,SYN1=1
/*

Refer to ADASAVRP in the MVSJOBS dataset for this example.

VM/ESA or z/VM

667

JCL/JCS Requirements and ExamplesAdabas Utilities

Dataset DD Name Storage More Information

Associator DDASSORn disk

Data Storage DDDATARn disk

Work DDWORKR1 disk Required if Adabas
nucleus not active

Multiple protection log DDPLOGRn disk Optional for
RESTORE and
RESTONL
database/GCB

Multiple command log DDCLOGRn disk Optional for
RESTORE and
RESTONL
database/GCB

Recovery log (RLOG) DDRLOGR1 disk Required for
ADARAI

Backup copy DDSAVE1-8 tape/ disk Required for SAVE

Dual copy DDDUAL1-8 tape/ disk Required for SAVE
with two backup
copies

Backup copy (input to
RESTORE function)

DDREST1-8 tape/ disk Required for
RESTORE and
RESTONL

Sequential protection log DDPLOG tape/ disk Required for
RESTONL and
RESTPLOG

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADASAV parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADASAV messages DDDRUCK disk/ terminal/ printer Messages and Codes

Note:
For RESTONL, the input SAVE tapes and the sequential protection log can be concatenated, using the
name DDREST1.

ADASAV Job Control Examples (VM/ESA or z/VM)

Save Database

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDWORKR1,DSN=ADABASVv.WORK,VOL=WORKV1
DATADEF DDSAVE1,DSN=ADABASVv.COPY1,MODE=A
DATADEF DDDUAL1,DSN=ADABASVv.COPY2,MODE=A
DATADEF DDPRINT,DSN=ADASAV.DDPRINT,MODE=A
DATADEF DUMP,DUMMY

668

Adabas UtilitiesJCL/JCS Requirements and Examples

DATADEF DDDRUCK,DSN=ADASAV.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNSAV.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADASAV.CONTROL,MODE=A
ADARUN

Contents of RUNSAV CONTROL A1

ADARUN PROG=ADASAV,DEVICE=dddd,DB=yyyyy

Contents of ADASAV CONTROL A1

ADASAV SAVE TWOCOPIES

Restore Files from SAVE Datasets Created Online

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDWORKR1,DSN=ADABASVv.WORK,VOL=WORKV1
DATADEF DDREST1,DSN=ADABASVv.SAVE,MODE=A
DATADEF DDPLOG,DSN=ADABASVv.SIBA,MODE=A
DATADEF DDPRINT,DSN=ADASAV.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADASAV.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNSAV.CONTROL,MODE=A
DATADEF DDKARTE,DSN=RESTONL.CONTROL,MODE=A
ADARUN

Contents of RUNSAV CONTROL A1

ADARUN PROG=ADASAV,DEVICE=dddd,DB=yyyyy

Contents of RESTONL CONTROL A1

ADASAV RESTONL FILES=2,PLOGNUM=ppp,SYN1=1

Restore Protection Log After Interrupted RESTONL Function

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDWORKR1,DSN=ADABASVv.WORK,VOL=WORKV1
DATADEF DDPLOG,DSN=ADABASVv.PLOG,MODE=A
DATADEF DDPRINT,DSN=ADASAV.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADASAV.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNSAV.CONTROL,MODE=A
DATADEF DDKARTE,DSN=RESTFILE.CONTROL,MODE=A
ADARUN

Contents of RUNSAV CONTROL A1

ADARUN PROG=ADASAV,DEVICE=dddd,DB=yyyyy

Contents of RESTFILE CONTROL A1

ADASAV RESTPLOG FILES=2,PLOGNUM=ppp,SYN1=1

669

JCL/JCS Requirements and ExamplesAdabas Utilities

Restore Files from SAVE Datasets Created Offline

DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1
DATADEF DDWORKR1,DSN=ADABASVv.WORK,VOL=WORKV1
DATADEF DDREST1,DSN=ADABASVv.SAVE,MODE=A
DATADEF DDPRINT,DSN=ADASAV.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADASAV.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNSAV.CONTROL,MODE=A
DATADEF DDKARTE,DSN=RESTORE.CONTROL,MODE=A
ADARUN

Contents of RUNSAV CONTROL A1

ADARUN PROG=ADASAV,DEVICE=dddd,DB=yyyyy

Contents of RESTORE CONTROL A1

ADASAV RESTORE FMOVE=2

VSE/ESA

670

Adabas UtilitiesJCL/JCS Requirements and Examples

File Symbolic Name Storage Logical Unit Information

Associator ASSORn disk see note 1

Data Storage DATARn disk see note 1

Work WORKR1 disk see note 1 Required if
Adabas nucleus is
not active

Multiple
protection log

PLOGRn disk Optional for
RESTORE and
RESTONL
database/GCB

Multiple command
log

CLOGRn disk Optional for
RESTORE and
RESTONL
database/GCB

Recovery log
(RLOG)

RLOGR1 disk Required for
ADARAI

Backup copy SAVE1-8 tape
disk

SYS011-
SYS018
see note 1

Required for
SAVE

Dual copy DUAL1-8 tape
disk

SYS021-
SYS028
see note 1

Required for
SAVE with two
backup copies

Backup copy
(input for
RESTORE)

REST1-8 tape
disk

SYS011-
SYS018
see note 1

Required for
RESTORE and
RESTONL

Sequential
protection log

PLOG tape
disk

SYS010
see note 1

Required for
RESTONL and
RESTPLOG

ADARUN
parameters

SYSRDR CARD
CARD

reader
tape
disk

SYSRDR
SYS000
See note 1

ADASAV
parameters

 reader SYSIPT

ADARUN
messages

 printer SYSLST

ADASAV
messages

 printer SYS009

Notes:

1. Any programmer logical unit may be used.
2. For RESTONL, the input SAVE tapes and the sequential protection log can be concatenated, using

the name REST1.

671

JCL/JCS Requirements and ExamplesAdabas Utilities

ADASAV JCS Examples (VSE/ESA)

See Procedures for VSE/ESA Examples for descriptions of the VSE/ESA procedures (PROCs).

Refer to the following members for these examples:

Example Member

Save database ADASAV.X

Save database with two copies of output ADASAVT.X

Restore database ADASAVR.X

Restore files from save datasets created
online

ADASAVRO.X

Restore protection log after an interrupted
RESTONL function

ADASAVRP.X

Restore files from save datasets created
offline

ADASAVRF.X

Save Database

* $$ JOB JNM=ADASAV,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADASAV
* SAVE THE ENTIRE DATABASE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS011,TAPE
// PAUSE MOUNT LOAD SAVE FILE ON TAPE cuu
// TLBL SAVE1,’EXAMPLE.DByyyyy.SAVE’
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADASAV,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADASAV SAVE
/*
/&
* $$ EOJ

Save Database with Two Copies of Output

* $$ JOB JNM=ADASAVT,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADASAVT
* SAVE THE ENTIRE DATABASE CREATING TWO COPIES OF THE OUTPUT
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// PAUSE MOUNT LOAD SAVE TAPES ON cu1 AND cu2
// ASSGN SYS011,TAPE
// TLBL SAVE1,’EXAMPLE.DByyyyy.SAVE’
// ASSGN SYS021,TAPE
// TLBL DUAL1,’EXAMPLE.DByyyyy.SAVE.COPY’
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADASAV,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*

672

Adabas UtilitiesJCL/JCS Requirements and Examples

ADASAV SAVE TWOCOPIES
/*
/&
* $$ EOJ

Restore Database

* $$ JOB JNM=ADASAVR,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADASAVR
* RESTORE THE ENTIRE DATABASE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS011,TAPE
// PAUSE MOUNT LOAD SAVE FILE ON TAPE cuu
// TLBL REST1,’EXAMPLE.DByyyyy.SAVE’
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADASAV,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADASAV RESTORE OVERWRITE
/*
/&
* $$ EOJ

Restore Files from Save Datasets Created Online

* $$ JOB JNM=ADASAVRO,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADASAVRO
* RESTORE FILES FROM SAVE DATA SETS CREATED ONLINE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// PAUSE MOUNT LOAD SAVE FILE ON TAPE cu1 AND PLOG ON TAPE cu2
// ASSGN SYS011,TAPE
// TLBL REST1,’EXAMPLE.DByyyyy.SAVE’
// ASSGN SYS010,TAPE
// TLBL PLOG,’EXAMPLE.DByyyyy.PLOG5’
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADASAV,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADASAV RESTONL FILES=2,PLOGNUM=ppp,SYN1=1
/*
/&
* $$ EOJ

Restore Protection Log after an Interrupted RESTONL Function

* $$ JOB JNM=ADASAVRP,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADASAVRP
* RESTORE THE PROTECTION LOG AFTER AN INTERRUPTED RESTONL
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// PAUSE MOUNT LOAD PLOG FILE ON TAPE cuu
// ASSGN SYS010,TAPE
// TLBL PLOG,’EXAMPLE.DByyyyy.PLOG5’
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADASAV,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*

673

JCL/JCS Requirements and ExamplesAdabas Utilities

ADASAV RESTPLOG PLOGNUM=ppp,SYN1=1
/*
/&
* $$ EOJ

Restore Files From Save Datasets Created Offline

* $$ JOB JNM=ADASAVRF,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADASAVRF
* RESTORE A FILE TO ANY RABNS FROM AN OFFLINE SAVE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS011,TAPE
// PAUSE MOUNT LOAD SAVE FILE ON TAPE cuu
// TLBL REST1,’EXAMPLE.DByyyyy.SAVE’
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADASAV,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADASAV RESTORE FMOVE=2
/*
/&
* $$ EOJ

674

Adabas UtilitiesJCL/JCS Requirements and Examples

ADASEL: Select Protection Data
This chapter covers the following topics:

Functional Overview

ADASEL Syntax

Overriding ADASEL Defaults with Global Parameters

JCL/JCS Requirements and Examples

675

ADASEL: Select Protection DataAdabas Utilities

Functional Overview
The ADASEL utility selects information in the Adabas sequential (SIBA) or dual/multiple (PLOG)
protection log. ADASEL decompresses the information and writes it to a print dataset (DDDRUCK/
DRUCK) or to a user-specified output dataset.

The protection log contains information on all updates applied to the database during a given Adabas
session. Information selected with ADASEL can be used for auditing or as input to a Natural or
non-Adabas program.

You can select before-images, after-images, or both for new, updated, and deleted records. You can also
select data written to the protection log with an Adabas C5 command.

Note:
If the Adabas session used dual/multiple protection logging, use the ADARES PLCOPY function to copy
the protection log before using it as input to ADASEL.

If the Adabas session used sequential protection logging, and if the session terminated abnormally, use the
ADARES COPY function to copy the protection log before using it as input to ADASEL.

676

Adabas UtilitiesFunctional Overview

ADASEL Syntax
Unlike other Adabas utilities, ADASEL does not require the utility name at the beginning of each
parameter line. A selection request includes the following parts:

the keyword "SELECT", followed by the selection option and the file number;

optional clauses and statements that specify additional selection criteria;

one or more output instructions;

the keyword "END".

An overview of the ADASEL syntax is shown below.

You can code multiple selection requests. Each request begins with "SELECT" and ends with "END".

Example:

SELECT ALL RECORDS FROM FILE 1
 DISPLAY AA BB CC
END

SELECT BEFORE IMAGE FILE 2
 OUTPUT TO EXPA1
END

677

ADASEL SyntaxAdabas Utilities

This chapter covers the following topics:

SELECT Statement

Additional Selection Criteria

date-time

WITH Clause

IF-statement

value-criterion

output-instruction

SELECT Statement

After the keyword SELECT , specify one of the following selection options:

Option Records Selected

ALL Before-images derived from A1 (update) and E1 (delete) commands;
after-images derived from A1 and N1 (add) commands.

BEFORE IMAGE | BI Before-images derived from A1 and E1 commands.

AFTER IMAGE | AI After-images derived from A1 and N1 commands.

NEW After-images derived from N1 commands.

DELETED Before-images derived from E1 commands.

NEWDEL After-images derived from N1 commands and before-images derived
from E1 commands.

UPDATED Before-images and after-images derived from A1 commands.

678

Adabas UtilitiesADASEL Syntax

file-number

Specify the Adabas file for which protection log data is to be selected. Valid file numbers are 0-5000 or 0
through one less than the ASSO block size, whichever is lower. To select user data written by a C5
command, specify the file number of the checkpoint file.

Additional Selection Criteria
You can use the STARTING FROM, ENDING AT, and WITH clauses and the IF statement to specify
additional selection criteria. These optional clauses and statement take precedence over the selection
option.

The "STARTING FROM" and "ENDING AT" clauses restrict selections to records added, updated, or
deleted within a time range. The "date/time" variable is discussed below in sectiondate-time.

The "WITH" clause is used to select records that satisfy the value-criteria specified. Multiple conditions
can be specified using the logical operators "AND" and "OR". The "WITH" clause is discussed in section
WITH Clause.

The "IF" statement is used to select records and execute output instructions on a conditional basis. The
"IF" statement is discussed in section IF-statement.

The syntax of the "value-criterion" variable used in both the "WITH" clause and the "IF" statement is
described in section value-criterion.

Output instructions are described in section output-instruction.

date-time
The following are valid formats for the "date-time" variable:

Format Description

yyyymmdd hhmmss date/time

J(yyyyddd hhmmss) Julian date/time

X ’ xxxxxxxx ’ store-clock (STCK) representation

679

ADASEL SyntaxAdabas Utilities

Note:
The lowest valid value for yyyy is "1980".

Examples:

Select all records from file 1 that were added, deleted, or updated on or before midnight of May 12, 1996
(Julian date 132):

SELECT ALL RECORDS FROM FILE 1
 ENDING AT J(1996132/240000)
 DISPLAY AA BB CC
END

Select all records from file 112 that were added, deleted, or updated on or between January 1 and
December 31, 1996:

SELECT ALL 112
 STARTING FROM 19960101/000000
 ENDING AT 19961231/240000
 OUTPUT TO EXPA1
END

WITH Clause
The "WITH" clause is used to select records that satisfy the value-criteria specified. Multiple conditions
can be specified using the logical operators "AND" and "OR".

If value-criteria are connected by the "AND" operator, each condition must be satisfied in order for
the record to be selected.

If value-criteria are connected by the "OR" operator, the record is selected if any of the conditions is
satisfied.

The syntax of the "value-criterion" variable is described in section value-criterion.

Example:

The protection log contains before- and after-images for two updated records. The contents of the field BB
in the records are shown below:

Before-Image After-Image

BB = SMITH BB = ZINN

BB = SMITH BB = JONES

The SELECT statement includes a "WITH" clause that further qualifies the selection:

SELECT ALL RECORDS FROM FILE 1
 WITH BB =’SMITH’
 DISPLAY AA BB CC
END

680

Adabas UtilitiesADASEL Syntax

In this example, despite the fact that the "ALL" option is used, only the two before-images are selected
(because the BB field contains "SMITH" in the before-images). ADASEL ignores all records (in this case,
the two after-images) in which the BB field has a value other than "SMITH". If the "AFTER IMAGE"
option were specified, no records would be selected.

IF-statement
The "IF" statement is used to select records and execute output instructions on a conditional basis.

By default, ADASEL permits up to 20 nested "IF" statements. For information about changing the default,
see the section Overriding ADASEL Defaults with Global Parameters Overriding ADASEL Defaults with
Global Parameters.

The syntax of the "value-criterion" variable is described in section value-criterion . Output instructions are
described in section output-instruction.

A "field-name CHANGES" criterion selects records in which the value of a specified field changed during
an update. ADASEL detects the change between the before-image and the after-image. Thus, this criterion
is valid only for the A1 (UPDATE) command, which writes both a before-image and an after-image to the
protection log. The "field-name" must be the two-character Adabas name of an elementary field in the
FDT. It cannot refer to a group, periodic group (PE), superdescriptor, subdescriptor, phonetic descriptor,
or hyperdescriptor. However, it can refer to a multiple-value field (MU) or a member field of a periodic
group (PE); see the section value-criterion, particularly in the subsection Indexes for MUs and PE
Member Fields .

The syntax for DO group is as follows:

A DO group is a sequence of output instructions (NEWPAGE, SKIP, DISPLAY, and OUTPUT). The
group must begin with the keyword "DO" and end with the keyword "DOEND". A DO group cannot
contain nested IF statements and cannot be nested within another DO group.

"IGNORE" instructs ADASEL not to display or output an item.

681

ADASEL SyntaxAdabas Utilities

Example:

SELECT ALL FROM FILE 77
 IF AA =’SMITH’ THEN
 IF BB CHANGES THEN DO
 DISPLAY ’Field BB changed:’ BB AA CC
 SKIP 1 LINE
 DOEND
 ELSE DISPLAY AA BB CC
 ELSE IGNORE
END

value-criterion
The value-criterion is used in a "WITH" clause or an "IF" statement to select records on the basis of a
value or values. It has the following syntax:

The "BUT NOT" clause excludes a value or subrange of values from the range specified in the equality
(=).

Object of the Comparison

ADASEL can compare a value or range of values to the

contents of the specified field. The "field-name" must be the two-character Adabas name of
an elementary field in the FDT. It cannot refer to a group, periodic group (PE),
superdescriptor, subdescriptor, phonetic descriptor, or hyperdescriptor. However, it can
refer to a multiple-value field (MU) or a member field of a periodic group (PE); see
Indexes for MUs and PE Member Fields .

ISN; that is, the Adabas internal sequence number of the record.

USERDATA; that is, the user data written by a C5 command.

USERID; that is, the user ID (ETID) of the user who added, deleted, or updated the record.

USERTID; that is, the terminal ID of the user who added, deleted, or updated the record.

Logical Operator

682

Adabas UtilitiesADASEL Syntax

You can express logical operators for equalities and inequalities in words, abbreviations, or
symbols as shown in the following table:

Comparison Words Abbreviation Symbol

Equals EQUAL EQ =

Greater than GREATER THAN GT >

Greater than or equal to GREATER EQUAL GE > =

Less than or equal to LESS EQUAL LE < =

Less than LESS THAN LT <

Not equal to NOTEQUAL NE ¬=

Note:
The hexadecimal representation of the ¬=s ymbol is X’5F7E’.

Format of the Value

The format of the criterion value depends on the default format of the item that is the object of
the comparison.

The default format of an Adabas field ("field-name") is the format specified in the FDT. The
following table shows the maximum length (in bytes) and valid formats for expressing the
criterion value:

Criterion Value Max.
Bytes

Max.
Digits

Field Format in FDT Valid Formats

Alphanumeric Alphanumeric 253

 Hexadecimal 253 506

Decimal (Packed or
Unpacked)

Decimal digits
(0-9)

29 *

Binary Decimal 4 * 10

 Hexadecimal 126 252

Floating-Point Hexadecimal 8 16

Fixed-Point Hexadecimal 4 8

Wide-character Hexadecimal 253 506

* Excluding minus sign

The default formats and maximum lengths (in bytes) for other items are as follows:

683

ADASEL SyntaxAdabas Utilities

Item Default Format Criterion Value

Valid Formats Max. Length

ISN Binary Decimal, hexadecimal 4

USERDATA Alphanumeric Alphanumeric, hexadecimal 30

USERID Binary Decimal, hexadecimal 8

USERTID Binary Decimal, hexadecimal 8

Value Format Example 1:

If the default format is "alphanumeric", the value can be expressed in alphanumeric or
hexadecimal format.

BA EQ ’SMITH’ or BA EQ X’E2D4C9E3C8’

Value Format Example 2:

If the default format is "packed" or "unpacked decimal", the value is expressed in decimal digits
(0-9). A leading minus sign indicates a negative value. Up to 29 digits (excluding the minus
sign) are permitted. Other special characters ($, decimal points, commas, etc.) are not permitted.

NU = 123456789
NU = -987654321

Value Format Example 3:

If the default format is "binary", the value can be expressed in hexadecimal or numeric format.

Up to 252 hexadecimal digits (126 bytes) are permitted for a binary Adabas field.

In numeric format, up to 10 decimal digits (4 binary bytes) are permitted. Thus, a binary value
expressed in decimal digits can range from -2,147,483,648 through 2,147,483,647.

BB = 2147483647 or BB = X’80000000’
BB = -2147483648 or BB = X’7FFFFFFF’

Alphanumeric Values

Enclose an alphanumeric value in apostrophes:

AA =’SMITH’

To indicate an apostrophe within an alphanumeric string, use two successive apostrophes with
no intervening space or character:

JJ =’Smith’’s Market’

Hexadecimal Values

Begin a hexadecimal value with "X" and enclose the value in apostrophes:

684

Adabas UtilitiesADASEL Syntax

AA = X’E2D4C9E3C8’

A hexadecimal value must have an even number of hexadecimal characters:

JJ = X’04D2’

Continuation Lines

ADASEL treats columns 1-72 as the input line. To continue an alphanumeric or hexadecimal
value on additional lines, place the closing apostrophe only at the end of the entire string. The
value is concatenated until the closing apostrophe is found.

In an alphanumeric string, ADASEL includes leading and trailing spaces within apostrophes as
part of the string; it ignores them in a hexadecimal string.

Example 1: Alphanumeric String

 7
1..2

 AA =’THIS IS AN EXAMPLE OF HOW TO CONTINUE AN ALPHANUMERIC VALU
E. KEY THROUGH COLUMN 72 AND CONTINUE IN COLUMN 1 OF THE NEXT
LINE.’

 7
1..2

 AA =’DO NOT CONTINUE AN ALPHA VALUE THIS WAY. LEADING AND
 TRAILING SPACES IN COLUMNS 1-72 ARE INCLUDED.’

ADASEL treats the second value above as follows:

’DO NOT CONTINUE AN ALPHA VALUE THIS WAY. LEADING AND TRAILING BLANKS
IN COLUMNS 1-72 ARE INCLUDED.’

Example 2: Hexadecimal String

 7
1..2

 XX = X’C1C2C3C4C5C6C7C8C9
 D1D2D3D4D5D6D7D8D9’

ADASEL treats the hexadecimal value above as follows:
X’C1C2C3C4C5C6C7C8C9D1D2D3D4D5D6D7D8D9’

Indexes for MUs and PE Member Fields

MU Field or a Member Field of a PE

If the "field-name" refers to an multiple-value field (MU) or to a member field of a periodic
group (PE), you must include the "index" (occurrence number) immediately after the name:

685

ADASEL SyntaxAdabas Utilities

AAi where "AA" is the field name of an MU and "i" is the
index

BBk where "BB" is a member field of a PE and "k" is the
index of the PE

Valid values for "i" and "k" are 1-191.

Examples:

In file 12, the field JT is an MU. The following statement selects all before-images where the
second occurrence of JT is "Programmer":

SELECT BI FROM FILE 12
 WITH JT2 = ’Programmer’
 DISPLAY NA
END

The field SA is a member of a PE. The following statement selects all records where SA in the
third occurrence of the periodic group is greater than or equal to 35000:

SELECT ALL FROM 12
 WITH SA3 >= 35000
 DISPLAY NA SA3
END

MU Contained Within a PE

If an MU is contained within a PE, both indexes (PE and MU) must be specified:

ABk(i) where "AB" is the name of an MU, "i" is the
occurrence of AB, and "k" is the occurrence of the PE
to which AB belongs

Example:

In file 211, the multiple-value field ST is a member of a PE. The following statement selects all
records in which the third occurrence of ST in the second occurrence of the periodic groupis
"PAST DUE":

SELECT ALL FROM FILE 211
 WITH ST2(3) =’PAST DUE’
 DISPLAY AA BB ST2(3)
END

output-instruction
Output instructions include DISPLAY, OUTPUT, SKIP, and NEWPAGE. At least one output instruction
is required. Multiple output instructions can be specified, and an output instruction can be included as part
of an "IF" statement. The syntax is shown below:

686

Adabas UtilitiesADASEL Syntax

The DISPLAY instruction is discussed below ; the OUTPUT instruction is discussed in sectionOutput
Instruction. See also the discusion SKIP and NEWPAGE.

DISPLAY Instruction

"DISPLAY" writes the output report to DDDRUCK/ DRUCK. The syntax specifies one or more
output types. When specifying multiple output types, they are separated by at least one space:

where

687

ADASEL SyntaxAdabas Utilities

field-name displays the contents of the specified field. The
"field-name" must be the two-character Adabas field
name of an elementary field in the FDT. "field-name"
cannot refer to a group, periodic group (PE),
superdescriptor, subdescriptor, phonetic descriptor, or
hyperdescriptor. However, it can
refer to a multiple-value field (MU) or a member field
of a PE; indexes for MUs and PE member fields are
discussed in section MU or PE Fields.

HEX displays the hexadecimal value corresponding to the
type of output. "HEX" is especially useful if the output
contains unprintable characters. Leave at least one
space between the type of output and the following
"HEX" keyword.

ISN displays the ISN of each selected record.

USERDATA displays records written to the protection log with a C5
command. The file number of the checkpoint file must
be specified in the "SELECT"
statement.

USERID displays the user ID of the user who added, deleted, or
updated the record.

USERTID displays the TID of the user who added, deleted, or
updated the record.

NOHEADER suppresses the header.

’ text’ displays the text string.

Examples:

Select records that have been modified. Display the text string "The following records were
modified:". Then display the fields AA and CC in hexadecimal format and BB in the format
defined in the FDT:

SELECT UPDATED RECORDS FROM FILE 117
 DISPLAY ’The following records were modified:’
 DISPLAY AA HEX BB CC HEX
END

Display the field AA of each new record, along with the user ID and terminal ID of the user who
added the record; suppress the header:

SELECT NEW RECORDS FROM FILE 211
 DISPLAY AA USERID USERTID NOHEADER
END

688

Adabas UtilitiesADASEL Syntax

Default Formats

A field is displayed according to its default format:

Alphanumeric is displayed as entered, with unprintable characters converted
to blanks.

Binary is displayed in unsigned decimal digits (0-9) if the value is less
than X’80000000’; otherwise, the value is displayed in
hexadecimal notation.

Packed/unpacked is displayed in decimal digits (0-9), with a leading minus sign
if the value is negative.

MU or PE Fields

If field-name refers to an MU or a member field of a PE, you can display a single occurrence or
a range of occurrences by specifying the index as part of the field name:

DISPLAY AA5

Valid index values are 1-191. In addition, if you specify "N" as the upper limit of an index
range, ADASEL displays all occurrences, beginning with the first occurrence in the range.

You cannot specify the PE name in a DISPLAY statement. To display the entire periodic group,
you must specify the name of each field in the group.

If an MU is contained within a PE, both indexes (PE and MU) must be specified. In the index
formats shown below, "i" and "j" are the MU indexes; "k" and "l" are the PE indexes. "AB"
refers to a member field of a PE; "MB" refers to an MU that is a member field of a PE.

689

ADASEL SyntaxAdabas Utilities

Index Displays . . .

MUi occurrence "i" of the MU

MUi-j occurrences "i" through "j" of the MU

MUi-N all occurrences of the MU, starting with occurrence "i"

ABk field AB in occurrence "k" of the PE to which the field
belongs

ABk-l field AB in occurrences "k" through "l" of the PE

ABk-N field AB in all occurrences of the PE, starting with
occurrence "k"

MBk(i) occurrence "i" of MB in occurrence "k" of the PE to
which MB belongs

MBk - l(i) occurrence "i" of MB in occurrences "k through "l" of
the PE

MBk - l(i-j) occurrences "i" through "j" of MB in occurrences "k"
through "l" of the PE

MBk - l(i-N) all occurrences of MB (starting with occurrence "i") in
occurrences "k" through "l" of the PE

MBk-N(i - j) occurrences "i" through "j" of MB in all occurrences of
the PE (starting with occurrence "k" of the PE)

MBk-N(i-N) all occurrences of MB (starting with occurrence "i") in
all occurrences of the PE (starting with occurrence "k"
of the PE)

Example:

File 12 contains the following PE:

Level Name Descriptive Name Format Length Options Occ

1 JT JOB TITLE A 16 DE,MU 12

1 PA INCOME PE 12

2 SA SALARY P 6 DE,MU 7

2 BO BONUS P 5

The following are valid DISPLAY statements for file 12:

SELECT NEW FROM FILE 12
 DISPLAY JT1
END

SELECT ALL FROM FILE 12
 DISPLAY JT1-5 SA1-5(1-N) BO1-5
END

690

Adabas UtilitiesADASEL Syntax

SELECT ALL FROM FILE 12
 WITH JT3 =’Programmer’ THRU ’Systems Analyst’
 DISPLAY JT3 SA3(1-N) BO3
END

SELECT UPDATED FROM FILE 12
 DISPLAY JT2-N SA2-N(1-N)
END

OUTPUT Instruction

The "OUTPUT" instruction is used to write the decompressed records from the protection log to
an output dataset.

Up to 20 output datasets are permitted. The output dataset is specified in the "EXPAn"
parameter and the DDEXPAn/ EXPAn job control statement.

Example:

Write the before-images of all updated or deleted records to dataset DDEXPA1/ EXPA1:

SELECT BEFORE IMAGE FILE 2
 OUTPUT TO EXPA1
END

Output Record Format

The format of the output record depends on whether the "LOGINFO" or "EXTENDED"
parameter is specified. LOGINFO and EXTENDED are used to display additional information.

Fields common to all output records are shown below. Values in parentheses are field locations
when LOGINFO (bytes 32-38) or EXTENDED (bytes 64-70) are specified.

691

ADASEL SyntaxAdabas Utilities

Bytes Description

0-1 protection log record length (binary)

2-3 set to zeros (X’0000’)

4-5 record image type:

C’BI’ before-image

C’AI’ after-image

C’C5’ user data

6-7 Adabas file number (binary)

8-9 (32-33, 64-65) decompressed record length (including this length
field and the ISN)

10-13 (34-37, 66-69) ISN (binary) or user data from a C5 command

14 (38, 70) beginning of the decompressed protection log data

Note:
The first record in each block is preceded by the two-byte block length and two bytes of nulls or
blanks.

The fields of the protection log record are provided in the order, length, and format in which
they are defined in the file’s FDT. Alphanumeric fields that are longer than the length defined in
the FDT are truncated. Numeric fields that are longer than the length defined in the FDT cause
ADASEL to end abnormally.

MUs and PEs are preceded by a one-byte binary field containing the number of occurrences.

Variable-length fields have a default length of zero and are preceded by a one-byte field
containing the length of the value (including the length field).

If a field defined with the NC suppression option contains a null value, the null value is
decompressed by ADASEL to an empty value (blanks or zeros, depending on the field’s
format). This type of NC field null processing applies only to ADASEL.

LOGINFO

When "LOGINFO" is specified, the following additional information is included in each record:

692

Adabas UtilitiesADASEL Syntax

Bytes Description

8-15 ID of the user who added, deleted, or updated the
record

16-19 low-order four bytes of the TID of the user who added,
deleted, or updated the record (from the
communications ID; TP monitor users only)

20-23 Data Storage RABN where the record was stored
(binary)

24-27 data protection block number for the record (binary)

28-31 timestamp of update (binary; high-order four
store-clock (STCK) bytes)

EXTENDED

When "EXTENDED" is specified, the following additional information is included in each
record:

Bytes Description

8-15 ID of the user (ETID) who added, deleted, or updated
the record

16-23 low-order eight bytes of the terminal ID of the user
who added, deleted, or updated the record (from the
communications ID; TP monitor users only)

24-27 Data Storage RABN where the record was stored
(binary)

28-31 data protection block number for the record (binary)

32-35 timestamp of update (binary; high-order four
store-clock (STCK) bytes)

36 backout indicator:

C’B’ record is a result of a backout

C’ ’ "normal" record

37 reserved

38-41 transaction number

42-63 reserved

693

ADASEL SyntaxAdabas Utilities

Output Dataset Designation

The EXPAn parameter identifies the output dataset. The value of n must match the value in the
DDEXPAn/ EXPAn JCL statement. Valid output dataset numbers are 1-20 with no leading
zeros:

Valid statement OUTPUT TO EXPA3

Invalid
statement

OUTPUT TO EXPA03

The same rule applies to the DD/EXPAn JCL statement.

Example:

Select all records for file 1. Write decompressed records in which the BA field contains
"SMITH" or "SMYTH" to DDEXPA1/ EXPA1. Write all others to DDEXPA2/ EXPA2:

SELECT ALL RECORDS FROM FILE 1
IF BA =’SMITH’ OR BA =’SMYTH’
 THEN OUTPUT TO EXPA1
ELSE
 OUTPUT TO EXPA2
END

NEWPAGE and SKIP Instructions

The "NEWPAGE" and "SKIP" instructions control page formatting:

NEWPAGE forces a page eject before displaying the next line; and

SKIP prints the specified number of blank lines before displaying the next line of data.

Example:

SELECT ALL RECORDS FROM FILE 1
 WITH BA EQUAL ’SMITH’ THRU ’SMYTH’
IF BA CHANGES THEN DO
 NEWPAGE
 DISPLAY ’NEW NAME’ BA BB BC
 DOEND
ELSE DO
 SKIP 2 LINES
 DISPLAY BA BB BC
 DOEND
END

694

Adabas UtilitiesADASEL Syntax

Overriding ADASEL Defaults with Global
Parameters
ADASEL global parameters override default table and buffer sizes. Overrides are in effect only for the
ADASEL run in which the SET GLOBALS statement is specified.

If used, SET GLOBALS must be the first ADASEL input statement. Comment statements can precede it.
The statement has the following syntax:

No spaces are permitted between the parameter name, the equal sign, and the value. However, at least one
space must separate parameters. Special characters are not permitted as separators.

If multiple lines are used, the "SET GLOBALS" keyword must be repeated on each line.

Example:

SET GLOBALS LST=15000 NF=15
SET GLOBALS LS=132

The first non-blank character string that does not begin with a parameter name terminates the "SET
GLOBALS" statement. Thus, trailing comments are not permitted.

ADASEL provides the following global parameters. Default values are underscored.

Parameter Description

LST={ len | 12000 } Length of the statement table, which is used to store the translated
ADASEL statements. Depending on its complexity, a statement is
translated into one or more segments. Each segment is 44 bytes plus a
value length. For example: IF BA EQ ’SMITH’... requires 49 bytes:
44 bytes plus 5 bytes for "SMITH". The default table size (12 ,000 bytes)
handles approximately 200 segments. If the table size is exceeded, a
SEL003 error occurs.

NCFLD={n | 10}

NCUPD={n | 10}

The maximum count of "field-name CHANGES " statements allowed in the
selection query, and the maximum number of parallel updates during the
original session. When a statement includes a "CHANGES " criterion,
ADASEL uses a change pool with "NCFLD � NCUPD" entries to
track changed field values. If this pool is too small, a SEL060 error occurs.
In this case, it is necessary to increase one or both of the parameters and
then rerun ADASEL.

695

Overriding ADASEL Defaults with Global ParametersAdabas Utilities

Parameter Description

NF={ n | 20} The maximum number of files that can be processed during a single
ADASEL run. "NF" is used to allocate space for the FDT for each file
processed. A SEL014 error occurs if the "NF" value is exceeded. This
value is not related to the maximum number of output files (DDEXPAn/
EXPAn); although more than 20 files can be processed during an
ADASEL run, a maximum of 20 output files can be written.

NIF={ n | 20} Number of nested IF levels permitted.

NOUSERABEND If specified, ADASEL terminates with condition code 20 instead of a user
ABEND 034 after an error is encountered.

NV={n | 100} Number of field values. NV is used to allocate a table for the evaluation of
field values. One entry is required for every field specified in the
statements (including duplications). For example, the following statement
requires two entries even though the same Adabas field name is used:

IF BA =’SMITH’
 THEN OUTPUT TO EXPA1
ELSE IF BA =’SMYTH’
 THEN OUTPUT TO EXPA2

LPV={ n | 0} Length of the PE-value table used in the evaluation of field values for a
PE. Normally, ADASEL uses an estimated number of PE occurrences to
compute the table size. If the table size is insufficient, a SEL047 error
occurs; you can increase the table size using the global "LPV" parameter as
indicated on the screen.

PS={ n | 60} The page size parameter is used to alter the number of lines printed before
a new page is started. The minimum page size is 2; the maximum is 999.

LS={ n | 80} The line size parameter is used to alter the number of printed columns. If
an output line is longer than the line size, the line is truncated at the nearest
blank. The rest of the line is continued on the next output line, beginning in
Column 1. The minimum line size is 1; the maximum is 132.

696

Adabas UtilitiesOverriding ADASEL Defaults with Global Parameters

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADASEL with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Protection log DDSIIN tape/ disk Sequential log

Selected data DDEXPAn tape/ disk Output by ADASEL

Associator DDASSORn disk

ADARUN parameters SYSDTA/ DDCARD Operations

ADASEL parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT/ DDPRINT Messages and Codes

ADASEL messages SYSLST/ DDDRUCK Messages and Codes

ADASEL JCL Example (BS2000)

In SDF Format:

/.ADASEL LOGON
/MODIFY-TEST-OPTIONS DUMP=YES
/REMARK *
/REMARK * A D A S E L ALL FUNCTIONS
/REMARK *
/DELETE-FILE SEL.AUS
/SET-JOB-STEP
/CREATE-FILE SEL.AUS,PUB(SPACE=(48,48))
/SET-JOB-STEP
/ASS-SYSLST L.SEL
/ASS-SYSDTA *SYSCMD
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO
/SET-FILE-LINK DDSIIN,ADAyyyyy.SIBA
/SET-FILE-LINK DDEXPA1,SEL.AUS
/START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
ADARUN PROG=ADASEL,DB=yyyyy,IDTNAME=ADABAS5B

697

JCL/JCS Requirements and ExamplesAdabas Utilities

SELECT ALL FROM FILE 11
DISPLAY AA BB BA BC CA CC
END
/LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADASEL LOGON
/OPTION MSG=FH,DUMP=YES
/REMARK *
/REMARK * A D A S E L ALL FUNCTIONS
/REMARK *
/SYSFILE SYSLST=L.SEL
/FILE ADA.ASSO ,LINK=DDASSOR1
/FILE ADA.MOD ,LINK=DDLIB
/FILE ADAyyyyy.SIBA ,LINK=DDSIIN
/FILE SEL.AUS ,LINK=DDEXPA1 ,SPACE=(48,48)
/EXEC (ADARUN,ADA.MOD)
ADARUN PROG=ADASEL,DB=yyyyy,IDTNAME=ADABAS5B
SELECT ALL FROM FILE 11
DISPLAY AA BB BA BC CA CC
END
/LOGOFF NOSPOOL

OS/390 or z/OS

Dataset DD Name Storage More Information

Protection log DDSIIN tape/ disk Sequential log

Selected data DDEXPAn tape/ disk Output by ADASEL

Associator DDASSORn disk

ADARUN parameters DDCARD reader Operations

ADASEL parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADASEL messages DDDRUCK printer Messages and Codes

ADASEL JCL Example (OS/390 or z/OS)
//ADASEL JOB
//*
//* ADASEL:
//* SELECT PROTECTION DATA
//*
//SEL EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDSIIN DD DISP=OLD,DSN=EXAMPLE.DByyyyy.PLOG5 <=== OUTPUT ADARES
//* PLCOPY
//DDEXPA1 DD DISP=(,CATLG),DSN=EXAMPLE.DByyyyy.EXPA1, <= OUTPUT ADASEL
// SPACE=(TRK,(10,5),RLSE),VOL=SER=vvvvvv,UNIT=uuuu
//DDDRUCK DD SYSOUT=X

698

Adabas UtilitiesJCL/JCS Requirements and Examples

//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADASEL,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *

*
* SELECT UPDATES FOR FILE NUMBER 1
*
SELECT ALL FROM FILE 1
 OUTPUT TO EXPA1
END
/*

Refer to ADASEL in the MVSJOBS dataset for this example.

VM/ESA or z/VM

Dataset DD Name Storage More Information

Protection log DDSIIN tape/ disk Sequential log

Selected data DDEXPAn tape/ disk

Associator DDASSORn disk

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADASEL parameters DDKARTE disk/ terminal/ reader

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADASEL messages DDDRUCK disk/ terminal/ printer Messages and Codes

Example (VM/ESA or z/VM)
DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDSIIN,DSN=ADABASVv.SIBA,UNIT=181,VOL=SIBAXX
DATADEF DDEXPA1,DSN=ADABASVv.EXPA1,MODE=A
DATADEF DDPRINT,DSN=ADASEL.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADASEL.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNSEL.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADASEL.CONTROL,MODE=A
LOAD ADARUN (START

Contents of RUNSEL CONTROL A1

ADARUN PROG=ADASEL,DEVICE=dddd,DB=yyyyy

Contents of ADASEL CONTROL A1

SELECT ALL FROM FILE 11
 DISPLAY ISN
END

699

JCL/JCS Requirements and ExamplesAdabas Utilities

VSE/ESA

File File Name Storage Logical Unit More
Information

Protection log SIIN tape
disk

SYS010
*

Sequential log

Selected data EXPA1-20 tape
disk

SYS011-SYS030
*

Output by
ADASEL

Associator ASSORn disk *

ADARUN
parameters

SYSRDR CARD reader/ tape/ disk Operations

ADASEL
parameters

SYSIPT reader

ADARUN
messages

SYSLST printer Messages and
Codes

ADASEL
messages

SYS009 printer Messages and
Codes

* Any programmer logical unit may be specified.

ADASEL JCS Example (VSE/ESA)
* $$ JOB JNM=ADASEL,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADASEL
* SELECT PROTECTION DATA
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// PAUSE MOUNT LOAD INPUT PLOG FILE ON TAPE cuu
// ASSGN SYS010,TAPE
// TLBL SIIN,’EXAMPLE.DByyyyy.PLOG5’
// DLBL EXPA1,’EXAMPLE.ADAyyyyy.EXPA1’
// EXTENT SYS015,,,,ssss,nnnn
// ASSGN SYS015,DISK,VOL=vvvvvv,SHR
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADASEL,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
* SELECT UPDATES FOR FILE NUMBER 1
*
SELECT ALL FROM FILE 1
 OUTPUT TO EXPA1

END
/*
/&
* $$ EOJ

Refer to member ADASEL.X for this example.

700

Adabas UtilitiesJCL/JCS Requirements and Examples

ADAULD: Files UNLOAD
This chapter covers the following topics:

Functional Overview

UNLOAD FILE: Unload Specified File

ADAULD Input Processing

ADAULD Output Processing

ADAULD User Exit 9

JCL/JCS Requirements and Examples

701

ADAULD: Files UNLOADAdabas Utilities

Functional Overview
The ADAULD utility unloads an Adabas file. Adabas files are unloaded to

permit the data to be processed by a non-Adabas program. In this case, the file must also be
decompressed after unloading using the DECOMPRESS function of the ADACMP utility.

create one or more test files, all of which contain the same data. This procedure requires that a file be
unloaded, and then reloaded as a test file having a different file number.

change the field definition table (FDT). This requires that the file be unloaded, decompressed,
compressed using the modified field definitions, and reloaded. If the ADADBS utility is used to add
field definitions to a file, the file does not need to be unloaded first.

The sequence in which the records are unloaded may be

physical the order in which they are physically positioned within Data Storage.

logical a sequence controlled by the values of a user-specified descriptor.

ISN ascending ISN sequence.

Selection criteria (SELCRIT/SELVAL) are optionally used to indicate a subset of records to be unloaded:

If no such criterion is provided, all records are unloaded in physical sequence.

If a selection criterion is specified but no sort sequence (SORTSEQ), the specified records are
unloaded in ISN sequence.

If both a selection criterion and a sort sequence are provided, the selected records are sorted in the
Work pool area of the nucleus and are unloaded in the specified sort sequence.

If no records that match the selection criteria are found, ADAULD creates a file containing only the
FDT and issues condition code 4 in register 15.

The unloaded record output is in compressed format. The output records have the same format as the
records produced by the ADACMP utility.

When using the MODE=SHORT option, descriptor entries (which are required to create the normal index
and upper index for the file) are omitted during the unload process. This reduces the time required for
unloading. Note, however, that output created using MODE=SHORT has a different FDT from the same
file unloaded without MODE=SHORT, since all descriptor information is removed.

Note:
An interrupted ADAULD UNLOAD FILE run must be reexecuted from the beginning.

702

Adabas UtilitiesFunctional Overview

UNLOAD FILE: Unload Specified File

This chapter covers the following topics:

Essential Parameter

Optional Parameters and Subparameters

Examples

Essential Parameter
FILE

FILE specifies the number of the file to be unloaded. Neither the checkpoint file nor the security
file can be unloaded.

Optional Parameters and Subparameters
CODE: Cipher Code

703

UNLOAD FILE: Unload Specified FileAdabas Utilities

If the file to be unloaded is ciphered, CODE must supply the appropriate cipher code.

DDISN: Create DD/ISN Output File of Unloaded ISNs

Specifying the DDISN parameter instructs ADAULD to write the list of unloaded ISNs to the
sequential output file DD/ISN. DD/ISN is structured so that it can be used as input to ADALOD
UPDATE for the purpose of deleting the unloaded records.

If the DDISN keyword is specified

but the DD/ISN file is missing in the JCL, ADAULD terminates with error 081.

and SORTSEQ specifies a hyperdescriptor or descriptor that refers to a multiple-value
field, ADAULD terminates with error 133 because the DD/ISN may contain duplicate
ISNs.

ERRLIM: Error Threshold

ERRLIM sets the maximum number of nucleus response codes accepted by ADAULD before
operation terminates. The default setting is one, which means that the first error terminates
ADAULD with error 124.

The ERRLIM value may be set higher than one to tolerate conditions that occur intermittently
such as response code 255 (all attached buffers allocated). In this case, the utility terminates
with return code 8 and no user ABEND. The output file of ADAULD can be used, although
records may be missing depending on the nucleus response code returned.

ETID: Multiclient File Owner ID

When unloading multiclient files, the ETID parameter can be used to restrict UNLOAD
processing to only the records owned by the specified user. If the ETID parameter is omitted, all
records are unloaded.

If the SELCRIT/SELVAL parameters are specified for a multiclient file, the ETID parameter
must also be specified.

LPB: Prefetch Buffer Size

LPB specifies the size of the internal prefetch buffer. The maximum value is 32767 bytes.

By default, ADAULD attempts to make the prefetch buffer as large as possible to achieve the
best performance. The LPB parameter gives the user the option of making the prefetch buffer
smaller. This might be advisable, for example, if heavy use of prefetching causes ADAULD to
consume too much nucleus resource relative to other users.

The default value depends on the length of the intermediate user buffer set by the ADARUN LU
parameter. ADAULD subtracts the space required to accommodate the Adabas control
information (108 bytes) and the specified maximum compressed record length (LRECL) from
the LU value to determine the default LPB value. The result must be equal to or less than the
maximum value allowed for LPB; that is, 32767 bytes.

704

Adabas UtilitiesUNLOAD FILE: Unload Specified File

The default value for LU is set to 65535 bytes, the maximum size, to accommodate the record
buffer of utilities such as ADAULD that need the nucleus. If the LU value is too small, ADAULD may
reduce the specified value for the LPB parameter.

LRECL: Maximum Compressed Record Length

LRECL specifies, in bytes, the maximum compressed record length (including DVT) to be
returned.

This length is used as an Adabas record buffer length. If this value is too small, a response code
53 occurs. The default is 4000 bytes; the maximum allowed is 32760 bytes.

MODE=SHORT: Exclude Descriptor Information

This parameter indicates whether the descriptor information used to build the normal index and
upper index are to be included in the output.

If MODE=SHORT is specified, no descriptor information will be unloaded, and all descriptor
information is stripped from the field definition table (FDT) when it is written to the output
dataset.

If the output is to be used as direct input to the ADALOD utility, the file will have no
descriptors.

In the case of superdescriptors, MODE=SHORT unloads them as superfields. If the output is
used as direct input to ADALOD, the loaded file will have superfields.

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

NUMOUT: Number of Output Files

NUMOUT specifies the number of output files to be produced. If the number is greater than
one, user exit 9 must be used to control DD/OUT1 or DD/OUT2 output file selection. For
additional information, see the Adabas DBA Reference documentation. Permitted values are 1
(default) and 2.

NUMREC: Number of Records to Be Unloaded

NUMREC limits the number of records to be unloaded. No limit will be in effect if the
parameter is omitted.

PASSWORD: File Password

The PASSWORD parameter must be specified if the file to be unloaded is password-protected.

705

UNLOAD FILE: Unload Specified FileAdabas Utilities

PLOGNUM: Protection Log Number

When SAVETAPE is specified and an "online" save tape is to be used as input to ADAULD,
the corresponding protection log is expected as a DD/PLOG sequential input dataset.

If an online save tape created using ADASAV version 5.1 is to be used, the additional
parameters PLOGNUM and SYN1 or SYN4 must be specified:

PLOGNUM specifies the number of the nucleus protection log used while the ADASAV
SAVE operation was active; and

SYN1 or SYN4 specifies the block number containing the SYN1 or SYN4 checkpoint at
which the corresponding ADASAV SAVE operation began.

For online save tapes created using ADASAV version 5.2 or above, this information is included
on the tape. You can specify PLOGNUM or SYN1 or SYN4 to override the tape information.

SAVETAPE

SAVETAPE is used to unload a file from a save tape. This is useful when moving a file from a
save tape with one blocksize to a database with another, or when using a file from a save tape in
one or another test environment.

If an "online" save tape is used, the TEMPDEV parameter must also be specified. If the online
save tape was created using ADASAV version 5.1, the parameters PLOGNUM and SYN1 or
SYN4 must also be specified. PLOGNUM and SYN1 or SYN4 may be specified for online save
tapes created using ADASAV version 5.2 or above to override the information included on the
tape.

For more information, see the section Processing a Save Tape as Input.

The SORTSEQ and SELCRIT parameters may not be used with SAVETAPE.

The ETID parameter may not be used with SAVETAPE. User exit 9 must be used to select
records for a particular client of a multiclient file. For more information, see the section
ADAULD User Exit 9.

If the file to be unloaded from the save tape is ciphered, the CODE parameter must be specified
as usual.

Note:
Special SAVETAPE functions are available for use with the Adabas Delta Save Facility. For
more information, see the Adabas Delta Save Facility documentation.

SELCRIT: Selection Criterion

The SELCRIT parameter may be used to restrict the unloaded records to those which meet the
selection criterion provided. The selection criterion must be provided using the search buffer
syntax, as described in the Adabas Command Reference documentation.

For multiple criteria, you can specify each criterion with a separate ADAULD SELCRIT
statement, as follows:

706

Adabas UtilitiesUNLOAD FILE: Unload Specified File

ADAULD SELCRIT =’AA, 20, A, D,’
ADAULD SELCRIT =’AB, 10, A.’

ADAULD concatenates this to:

’AA, 20, A, D, AB, 10, A.’

The values that correspond to the selection criterion must be provided using the SELVAL
parameter.

SELVAL: Values for Selection Criteria

SELVAL specifies the values corresponding to the selection criteria specified with the
SELCRIT parameter. The value formats are the same as those used for the Value Buffer, as
described in the Adabas Command Reference documentation.

Values can be on multiple lines. Packed decimal or binary values can be in hexadecimal format,
as shown in the following example:

SELVAL=’PARIS ’
SELVAL=X’00149C’
SELVAL=’AB100’

SORTSEQ: Unload Sequence

SORTSEQ specifies the sorting sequence for unloaded ISNs. If SORTSEQ is not specified,
ISNs are unloaded in physical sequence.

If a "descriptor" name is specified, the records are unloaded in the ascending logical sequence of
the descriptor values. You can specify the name of a descriptor, subdescriptor, superdescriptor,
or hyperdescriptor. Do not refer to a field in a periodic group.

"MU" must be specified if the descriptor name refers to a multiple-value field. In this case,
the same record is unloaded once for each different value for the descriptor in the record in
ascending value order. If MU is not specified (the default), ADAULD rejects MU
descriptors and issues an error message.

"NU" must be specified if the descriptor name refers to a field defined with the null
suppression (NU) option. In this case, records of the descriptor that contain null values are
not unloaded. If NU is not specified (the default), ADAULD rejects NU descriptors.

Note:
Even when the descriptor field is not null suppressed, the record is not represented in the
inverted list if the descriptor field or a field following it has never been initialized (held a value).
Therefore, the record will be dropped when the utility is executed.

If SORTSEQ=ISN is specified, the records are unloaded in ascending ISN sequence.

If both SELCRIT/SELVAL and SORTSEQ are specified, the records are sorted in the Work
pool area of the nucleus. Therefore, the ADARUN LS and LWP session parameters must
provide enough space; see the Adabas Operations documentation for descriptions of the LS and
LWP parameters.

707

UNLOAD FILE: Unload Specified FileAdabas Utilities

STARTISN: Starting ISN

STARTISN is used with the SELCRIT/SELVAL and SORTSEQ parameters to restrict the
unloaded records according to ISN. Specifying STARTISN alone is not allowed.

Specifying STARTISN with SELCRIT/SELVAL causes all records with ISNs equal to or
greater than the STARTISN-specified value and with field contents satisfying the
SELCRIT/SELVAL criterion to be unloaded in ascending ISN sequence by descriptor
name.

Specifying STARTISN with SORTSEQ=ISN unloads all records beginning with the
STARTISN-specified record in ISN sequence.

SYN1|SYN4: Starting Block Number

When SAVETAPE is specified and an "online" save tape is to be used as input to ADAULD,
the corresponding protection log is expected as a DD/PLOG sequential input dataset.

If an online save tape created using ADASAV version 5.1 is to be used, the additional
parameters PLOGNUM and SYN1 or SYN4 must be specified:

PLOGNUM specifies the number of the nucleus protection log used while the ADASAV
SAVE operation was active; and

SYN1 or SYN4 specifies the block number containing the SYN1 or SYN4 checkpoint at
which the corresponding ADASAV SAVE operation began.

For online save tapes created using ADASAV version 5.2 or above, this information is included
on the tape. You can specify PLOGNUM or SYN1 or SYN4 to override the tape information.

TEMPDEV: Temporary Storage Device Type

When SAVETAPE is specified and an "online" save tape is to be used as input to ADAULD, a
temp dataset is used to store intermediate data during processing. The TEMPDEV parameter
indicates the device type to be used for the temp dataset. This parameter is required only if the
device type to be used is different from the standard device type assigned to Temp by the
ADARUN DEVICE parameter.

The blocksize of the temp dataset must be at least as large as the largest Data Storage blocksize
of the file to be unloaded, plus 16 bytes.

TEMPSIZE: Temporary Storage Size

TEMPSIZE specifies the size of the temp dataset for the file. The size can be either in cylinders
or blocks (followed by "B").

The temp dataset must be large enough to store all Data Storage blocks from the protection log.
In the worst case scenario, it must have as many blocks as the file has Data Storage blocks but
need not be larger than the PLOG dataset. If the temp dataset is too small, ADAULD error-136
(temp dataset too small) is returned.

TEST: Test Syntax

708

Adabas UtilitiesUNLOAD FILE: Unload Specified File

This parameter tests the operation syntax without actually performing the operation. Only the
syntax of the specified parameters can be tested; not the validity of values and variables.

UTYPE: User Type

The user type to be in effect for the unload process.

If EXU (the default) is specified, the file cannot be updated, but other users can read the
file.

If EXF is specified, only ADAULD can use the file; no other users can read or write the
file.

Examples
Example 1:

ADAULD FILE=6

File 6 is to be unloaded. The records are to be unloaded in the sequence in which they are physically
positioned in Data Storage.

Example 2:

ADAULD FILE=6,SORTSEQ=AA

File 6 is to be unloaded. The values for the descriptor AA are to be used to control the sequence in which
the records are to be unloaded.

Example 3:

ADAULD FILE=6,SORTSEQ=ISN

File 6 is to be unloaded. The records are to be unloaded in ascending ISN sequence.

Example 4:

ADAULD FILE=6,SORTSEQ=ISN,STARTISN=10000

File 6 is to be unloaded. The records are to be unloaded in ascending ISN sequence. Only records which
have an ISN equal or greater than 10000 are to be unloaded.

Example 5:

ADAULD FILE=6,SORTSEQ=AB,MODE=SHORT

File 6 is to be unloaded. The values for the descriptor AB are to be used to control the sequence in which
the records are to be unloaded. The entries used to create the normal index and upper index are not to be
unloaded. All descriptor information is removed from the field definition table (FDT) in the output.

709

UNLOAD FILE: Unload Specified FileAdabas Utilities

Example 6:

ADAULD FILE=6,SELCRIT=’AA,1,S,AA,2.’,SELVAL=’AMM’

File 6 is to be unloaded. Only records with AA=A through MM are to be unloaded. The records are
returned in ISN sequence.

Example 7:

ADAULD FILE=6,UTYPE=EXF

File 6 is to be unloaded. The user type is indicated as EXF which locks the file during unload processing,
preventing other users from reading or writing the file.

710

Adabas UtilitiesUNLOAD FILE: Unload Specified File

ADAULD Input Processing
ADAULD is used to unload an Adabas file from

a database; or

a save tape (if the SAVETAPE keyword is specified).

Processing a Save Tape as Input
If a save tape is used as input, a DD/SAVE sequential file is expected. Database or file save tapes created
online and offline are acceptable. The save tape must have been created using ADASAV version 5.1 or
above.

The ADARUN DBID specified for the ADAULD run must match the DBID found on the save tape.

If the file has hyperdescriptors defined, the corresponding hyperexits must be specified in the ADARUN
parameters for ADAULD. If the hyperexit routines are no longer available, the file must be unloaded with
MODE=SHORT specified. See the Adabas DBA Reference documentation for more information about
hyperexits.

For an "online" save tape:

the corresponding protection log is expected as a DD/PLOG sequential input dataset.

a temp (DD/TEMPR1) dataset is required as intermediate storage for the Data Storage blocks on the
protection log. The TEMPSIZE and TEMPDEV parameters must be specified.

If an online save tape created using ADASAV version 5.1 is to be used, the additional parameters
PLOGNUM and SYN1 or SYN4 must be specified:

PLOGNUM specifies the number of the nucleus protection log used while the ADASAV SAVE
operation was active; and

SYN1 or SYN4 specifies the block number containing the SYN1 or SYN4 checkpoint at which the
corresponding ADASAV SAVE operation began.

For online save tapes created using ADASAV version 5.2 or above, this information is included on the
tape. You can specify PLOGNUM or SYN1 or SYN4 to override the tape information.

The ADAULD utility protocol on DD/DRUCK displays a short header indicating the kind of save tape
encountered, when it was created, the version of ADASAV used to create it, the database ID found on the
save tape, and for online save tapes, the session number of the corresponding protection log and the block
number of the SYN1/SYN4 checkpoint:

711

ADAULD Input ProcessingAdabas Utilities

A D A R E P Vv.r SMs DBID = nnnnn STARTED yyyy-mm-dd hh:mm:SS

PARAMETERS:

ADAULD UNLOAD FILE=3, SAVETAPE

* *
* UNLOAD FROM ONLINE DATABASE SAVE *
* CREATED AT yyyy-mm-dd hh:mm:ss *
* BY ADASAV VERSION V vr *
* DBIB nnnnn *
* DSID 1 / 0 / yyyy-mm-dd hh:mm:ss *
* PLOG SESSION NR 17 *
* SYN1 BLOCK NR 137 *
* *

ADAULD first reads the file control block (FCB) and file definition table (FDT) from the save tape. Then:

for "offline" save tapes, ADAULD scans the tape to find the file’s Data Storage RABNs, extracts the
Data Storage records, and for each Data Storage record, generates the descriptor values according to
the FDT.

for "online" save tapes, ADAULD scans the protection log and copies the latest version of each Data
Storage block of the relevant file to the temp dataset. The location of a Data Storage block on the
temp dataset is maintained in a directory in main memory. Then, ADAULD scans the save tape for
Data Storage blocks of the file. If more recent versions of Data Storage blocks exist on the temp
dataset, they are actually unloaded to DD/OUT1 or DD/OUT2. Note that in this case, two parallel
tape units are required: concatenating the save tape and the protection log as for ADASAV
RESTONL is not possible.

After opening the DD/SAVE and DD/PLOG input datasets, ADAULD cross-checks to ensure that the
input tapes are correct. If an invalid save tape is encountered, ADAULD terminates and displays error-134
(invalid save tape supplied). If an invalid protection log tape is encountered, ADAULD terminates with
error-135 (invalid protection log supplied).

712

Adabas UtilitiesADAULD Input Processing

ADAULD Output Processing
ADAULD unloads the records in the specified sequence. The unloaded records are written to one or both
of two sequential datasets: DD/OUT1 and DD/OUT2. Writing to these output datasets is controlled by
user exit 9.

The records output are identical in format to the output produced by the ADACMP utility unless the
MODE=SHORT option is used, in which case the descriptor entries required for the normal index and
upper index are omitted and the descriptor information is removed from the Adabas FDT. The ISN of the
record immediately precedes the compressed data record, and is provided as a four-byte binary number.

Specifying the DDISN parameter instructs ADAULD to write the list of unloaded ISNs to a sequential
output file DD/ISN. Only one DD/ISN file is created, containing the superset of ISNs written to either or
both of DD/OUT1 and DD/OUT2. ISNs that are rejected by userexit 9 are not written to DD/ISN.

DD/ISN is structured so that it can be used as input to ADALOD UPDATE for the purpose of deleting the
unloaded records.

The number of ISNs written to DD/ISN is displayed in the ADAULD statistics on the DD/DRUCK utility
protocol:

A D A U L D STATISTICS

 NUMBER OF OUTPUT DATA SETS = 1
 NUMBER OF REQUESTED RECORDS = 16777215
 STARTISN = 0
 OPTIONS = DVT
 UNLOAD SEQUENCE = PHYS SEQ

 NUMBER OF RECORDS READ = 1000
 NUMBER OF RECORDS WRITTEN = 1000
 RECORDS WRITTEN TO DDOUT1 = 1000
 RECORDS WRITTEN TO DDOUT2 = 0
 RECORDS REJECTED BY USEREXIT = 0
 NUMBER OF ISNS WRITTEN TO DDISN = 1000

The number of ISNs written to DD/ISN should always be the number of records read minus the number of
records rejected by user exit 9.

The ISNs on the DD/ISN file are ISNs as visible to applications; that is, the internal ISN as stored in a
Data Storage record plus MINISN-1.

713

ADAULD Output ProcessingAdabas Utilities

ADAULD User Exit 9
User exit 9 is called (when present) for each record selected before writing the record to the output
dataset. The user exit is supplied with the record address, and returns an action code as follows:

1 Write record to DD/OUT1;

2 Write record to DD/OUT2;

3 Write record to DD/OUT1 and DD/OUT2;

I Ignore this record.

The above datasets must have the same blocksize. See the Adabas DBA Reference documentation for
more information about user exits.

714

Adabas UtilitiesADAULD User Exit 9

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADAULD with BS2000, OS/390 or
z/OS, VM/ESA or z/VM, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Unloaded data DDOUT1 tape/ disk Output by ADAULD
(see note)

Unloaded data DDOUT2 tape/ disk Output by ADAULD
(see note)

Unloaded ISNs DDISN tape/ disk Required with
DDISN

Save tape DDSAVE tape/ disk Required with
SAVETAPE

Sequential PLOG DDPLOG tape/ disk Required for online
save tapes

Temp area DDTEMPR1 disk Required for online
save tapes

Recovery log (RLOG) DDRLOGR1 disk Required for
ADARAI

ADARUN parameters SYSDTA/ DDCARD Operations

ADAULD parameters SYSDTA/ DDKARTE

ADARUN messages SYSOUT/ DDPRINT Messages and Codes

ADAULD messages SYSLST/ DDDRUCK Messages and Codes

Note:
DDOUT1 and DDOUT2 must have the same block size; otherwise, an ADAULD error will occur.
DDOUT2 is required only if NUMOUT=2 is specified.

715

JCL/JCS Requirements and ExamplesAdabas Utilities

ADAULD JCL Examples (BS2000)

Unload from Database

In SDF Format:

/.ADAULD LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A U L D NON-SAVETAPE FUNCTIONS
 /REMARK *
 /DELETE-FILE ADAyyyyy.OUT1
 /SET-JOB-STEP
 /CREATE-FILE ADAyyyyy.OUT1,PUB(SPACE=(480,48))
 /SET-JOB-STEP
 /ASS-SYSLST L.ULD
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDOUT1,ADAyyyyy.OUT1
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAULD,DB=yyyyy,IDTNAME=ADABAS5B
 ADAULD FILE=1,SORTSEQ=AA
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADAULD LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A U L D NON-SAVETAPE FUNCTIONS
 /REMARK *
 /SYSFILE SYSLST=L.ULD
 /FILE ADA.MOD ,LINK=DDLIB
 /FILE ADAyyyyy.OUT1 ,LINK=DDOUT1 ,SPACE=(480,48)
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAULD,DB=yyyyy,IDTNAME=ADABAS5B
 ADAULD FILE=1,SORTSEQ=AA
 /LOGOFF NOSPOOL

Unload from Offline Save Tape

In SDF Format:

/.ADAULD LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A U L D SAVETAPE FUNCTION
 /REMARK *
 /DELETE-FILE ADAyyyyy.OUT1
 /SET-JOB-STEP
 /CREATE-FILE ADAyyyyy.OUT1,PUB(SPACE=(480,48))
 /SET-JOB-STEP
 /ASS-SYSLST L.ULD
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDOUT1,ADAyyyyy.OUT1
 /SET-FILE-LINK DDSAVE,ADAyyyyy.SAVE
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAULD,DB=yyyyy,IDTNAME=ADABAS5B
 ADAULD FILE=1,SAVETAPE
 /LOGOFF SYS-OUTPUT=DEL

716

Adabas UtilitiesJCL/JCS Requirements and Examples

In ISP Format:

/.ADAULD LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A U L D SAVETAPE FUNCTION
 /REMARK *
 /SYSFILE SYSLST=L.ULD
 /FILE ADA.MOD ,LINK=DDLIB
 /FILE ADAyyyyy.OUT1 ,LINK=DDOUT1 ,SPACE=(480,48)
 /FILE ADAyyyyy.SAVE ,LINK=DDSAVE
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAULD,DB=yyyyy,IDTNAME=ADABAS5B
 ADAULD FILE=1,SAVETAPE
 /LOGOFF NOSPOOL

OS/390 or z/OS

Dataset DD Name Storage More Information

Unloaded data DDOUT1 tape/ disk Output by ADAULD
(see note)

Unloaded data DDOUT2 tape/ disk Output by ADAULD
(see note)

Unloaded ISNs DDISN tape/ disk Required with
DDISN

Save tape DDSAVE tape/ disk Required with
SAVETAPE

Sequential PLOG DDPLOG tape/ disk Required for online
save tapes

Temp area DDTEMPR1 disk Required for online
save tapes

Recovery log (RLOG) DDRLOGR1 disk Required for
ADARAI

ADAULD messages DDDRUCK printer Messages and Codes

ADARUN messages DDPRINT printer Messages and Codes

ADARUN parameters DDCARD reader Operations

ADAULD parameters DDKARTE reader

Note:
DDOUT1 and DDOUT2 must have the same block size; otherwise, an ADAULD error will occur.
DDOUT2 is required only if NUMOUT=2 is specified.

717

JCL/JCS Requirements and ExamplesAdabas Utilities

ADAULD JCL Examples (OS/390 or z/OS)

Unload a File

//ADAULD JOB
//*
//* ADAULD:
//* UNLOAD A FILE
//*
//ULD EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X

//DDOUT1 DD
DISP=(,CATLG),DSN=EXAMPLE.DByyyyy.OUT1,UNIT=DISK, <===
// VOL=SER=DISK01,SPACE=(TRK,(200,10),RLSE)
//DDCARD DD *
ADARUN PROG=ADAULD,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAULD FILE=1,SORTSEQ=AA

00000100
/*

Refer to ADAULD in the MVSJOBS dataset for this example.

Unload a File from Save Tape Created Offline

//ADAULDS JOB
//*
//* ADAULD:
//* UNLOAD A FILE FROM AN OFFLINE SAVE TAPE
//*
//ULD EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDSAVE DD DISP=SHR,DSN=EXAMPLE.DByyyyy.SAVE <=== SAVE DATASET
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDOUT1 DD DISP=(,CATLG),DSN=EXAMPLE.DByyyyy.OUT1,UNIT=DISK, <===
// VOL=SER=DISK01,SPACE=(TRK,(200,10),RLSE)
//DDCARD DD *
ADARUN PROG=ADAULD,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
//DDKARTE DD *
ADAULD FILE=1,SAVETAPE

00000100
/*

718

Adabas UtilitiesJCL/JCS Requirements and Examples

Refer to ADAULDS in the MVSJOBS dataset for this example.

VM/ESA or z/VM

Dataset DD Name Storage More Information

Unloaded data DDOUT1 tape/ disk Output by ADAULD
(see note)

Unloaded data DDOUT2 tape/ disk Output by ADAULD
(see note)

Unloaded ISNs DDISN tape/ disk Required with
DDISN

Save tape DDSAVE tape/ disk Required with
SAVETAPE

Sequential PLOG DDPLOG tape/ disk Required for online
save tapes

Temp area DDTEMPR1 disk Required for online
save tapes

Recovery log (RLOG) DDRLOGR1 disk Required for
ADARAI

ADAULD messages DDDRUCK disk/ terminal/ printer Messages and Codes

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADARUN parameters DDCARD disk/ terminal/ reader Operations

ADAULD parameters SYSIPT disk/ terminal/ reader

Note:
DDOUT1 and DDOUT2 must have the same block size; otherwise, an ADAULD error will occur.
DDOUT2 is required only if NUMOUT=2 is specified.

Examples (VM/ESA or z/VM)

Unload from Database

DATADEF DDOUT1,DSN=ADABASVv.ULD1,UNIT=181,VOL=ULDF1
DATADEF DDPRINT,DSN=ADAULD.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAULD.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNULD.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADAULD.CONTROL,MODE=A
ADARUN

Contents of RUNULD CONTROL A1:

ADARUN PROG=ADAULD,DEVICE=dddd,DB=yyyyy

719

JCL/JCS Requirements and ExamplesAdabas Utilities

Contents of ADAULD CONTROL A1:

ADAULD FILE=1,SORTSEQ=AA

Unload from "Offline" Save Tape

DATADEF DDOUT1,DSN=ADABASVv.ULD1,UNIT=181,VOL=ULDF1
DATADEF DDSAVE,DSN=ADABASVv.ULD1,UNIT=181,VOL=ULDF1
DATADEF DDPRINT,DSN=ADAULD.DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAULD.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNULD.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADAULD.CONTROL,MODE=A
ADARUN

Contents of RUNULD CONTROL A1:

ADARUN PROG=ADAULD,DEVICE=dddd,DB=yyyyy

Contents of ADAULD CONTROL A1:

ADAULD FILE=1,SAVETAPE

VSE/ESA

720

Adabas UtilitiesJCL/JCS Requirements and Examples

File Symbolic Name Storage Logical Unit More
Information

Unloaded data OUT1 tape
disk

SYS010
see note 1

Output by
ADAULD
(see note 2)

Unloaded data OUT2 tape
disk

SYS011
see note 1

Output by
ADAULD
(see note 2)

Unloaded ISNs ISN tape
disk

SYS012
see note 1

Required with
DDISN

Save tape SAVE tape
disk

SYS013
see note 1

Required with
SAVETAPE

Sequential PLOG PLOG tape
disk

SYS014
see note 1

Required for
online save tapes

Temp area TEMPR1 disk see note 1 Required for
online save tapes

Recovery log
(RLOG)

RLOGR1 disk see note 1 Required for
ADARAI

Messages SYSLST printer Messages and
Codes

ADARUN
parameters

SYSRDR
CRD

reader/
tape/ disk

 Operations

ADAULD
parameters

SYSIPT reader

Notes:

1. Any programmer logical unit can be used.
2. OUT1 and OUT2 must have the same block size; otherwise, an ADAULD error will occur. OUT2 is

required only if NUMOUT=2 is specified.

ADAULD JCS Examples (VSE/ESA)

See Procedures for VSE/ESA Examples for descriptions of the VSE procedures (PROCs).

Unload a File from a Database

* $$ JOB JNM=ADAULD,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D

// JOB ADAULD
* UNLOAD A FILE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS004,DISK,VOL=vvvvvv,SHR
// DLBL OUT1,’EXAMPLE.ADA99.OUT1’
// EXTENT SYS004,,,,ssss,nnnn
// EXEC ADARUN,SIZE=ADARUN

721

JCL/JCS Requirements and ExamplesAdabas Utilities

ADARUN PROG=ADAULD,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAULD FILE=1,SORTSEQ=AA
/*
/&
* $$ EOJ

Refer to member ADAULD.X for this example.

Unload a File from Save Tape Created Offline

* $$ JOB JNM=ADAULDS,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAULDS
* UNLOAD A FILE FROM AN OFFLINE SAVE TAPE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// ASSGN SYS004,DISK,VOL=vvvvvv,SHR
// DLBL OUT1,’EXAMPLE.ADA99.OUT1’
// EXTENT SYS004,,,,ssss,nnnn
// ASSGN SYS013,TAPE
// PAUSE MOUNT LOAD SAVE FILE ON TAPE cuu
// TLBL SAVE,’EXAMPLE.DByyyyy.SAVE’
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAULD,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAULD FILE=1,SAVETAPE
/*
/&
* $$ EOJ

Refer to member ADAULDS.X for this example.

722

Adabas UtilitiesJCL/JCS Requirements and Examples

ADAVAL : Validate the Database
This chapter covers the following topics:

Functional Overview

VALIDATE: Validate Data Storage and Associator

Example of ADAVAL Output

JCL/JCS Requirements and Examples

723

ADAVAL : Validate the DatabaseAdabas Utilities

Functional Overview
The ADAVAL utility validates any or all files within an Adabas database except the checkpoint and
security files.

ADAVAL compares the actual descriptor values contained in the records in Data Storage with the
corresponding values stored in the Associator to ensure that the Associator and Data Storage are
synchronized, and that there are no values missing from the Associator.

Before running ADAVAL, the consistency of the inverted lists should be checked with the ADAICK
utility.

Note:
If ADAICK has been run and errors occurred, do not run ADAVAL until the cause of the ADAICK error
has been corrected. This ADAVAL run restriction applies for any ADAICK error except ADAICK
WARNING-163.

The Adabas nucleus must be running when executing ADAVAL. ADAVAL assigns EXF (exclusive use)
status to all files to be validated, making them unavailable to other utilities or users. If ADAVAL specifies
a file currently in use, an error message is issued and operation stops. ADAVAL returns condition code 4
if any errors are found.

ADAVAL prints a list of all fields compared and the ISNs rejected during validation on SYSOUT
(DD/DRUCK). The normal ADAVAL output is shown under Example of ADAVAL Output.

If desired, rejected ISNs can also be output to a sequential dataset (DD/FEHL). The first record on
DD/FEHL is always as follows:

Bytes Description

0-1 Record length in binary format (example: X’0012’)

2-3 Set to zero (example: X’0000’)

4-9 Program ID (example: C’ADAVAL’)

10-13 Four-byte packed Julian date in format, "YYYYDDDF" ("F" = B’1111’)

14-17 Four-byte packed time in format, "hhmmssth" (t = tenths of a second,
h = hundredths of a second)

All remaining DD/FEHL records have the following format (items shown with "*" are also in the normal
SYSOUT and DD/DRUCK output):

724

Adabas UtilitiesFunctional Overview

Bytes Description

0-1 Record length in binary format (example: X’0012’)

2-3 Set to zero (example: X’0000’)

4-5* Adabas file number in binary format

6* Flag byte:

C’-’ A value is missing

C’+’ A value is incorrect

7 Set to zero

8-11 ISN in binary format

12-13* Descriptor name as stored in the field definition table (FDT)

14* Descriptor value length in binary format

15, on* Descriptor value

725

Functional OverviewAdabas Utilities

VALIDATE: Validate Data Storage and
Associator

The VALIDATE function validates the contents of the Data Storage against the values in the Associator.
This is done by issuing commands to create a DVT that is validated against each corresponding value in
the indices.

Note:
ADAVAL VALIDATE cannot be performed on the checkpoint or security files.

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Essential Parameters
FILE: Files to Be Validated

FILE specifies a one or more Adabas file numbers and/or file ranges. A maximum of 1000 files
may be specified.

Continuation for a file list is as follows:

ADAVAL VALIDATE FILE=1-10,15
ADAVAL FILE=13,31-35

ADAVAL will concatenate the file list for each specification of the FILE parameter.

SORTSIZE: Sort Area Size

SORTSIZE specifies the number of blocks or cylinders available for the sort dataset. If
specifying blocks, the value must be followed by "B" (for example, 2000B). A block value is
automatically "rounded up" to the next full cylinder. See the Adabas DBA Reference

726

Adabas UtilitiesVALIDATE: Validate Data Storage and Associator

documentation for information about estimating the SORTSIZE value.

TEMPSIZE: Temporary Storage Area Size

TEMPSIZE specifies the number of blocks or cylinders available for the temp dataset. If
specifying blocks, the value must be followed by "B" (for example, 2000B). A block value is
automatically "rounded up" to the next full cylinder. See see the section LOAD File Space
Allocation in the ADALOD description for information about estimating the TEMPSIZE value.

Optional Parameters
CODE: Cipher Code

The CODE parameter is required if the file or file(s) being validated are enciphered.

DESCRIPTOR: List of Descriptors to Validate

The DESCRIPTOR parameter restricts validation processing to one descriptor field, providing a
way to limit the validation run in cases where that the Associator is very large or there is a need
to evaluate a specific descriptor. If DESCRIPTOR is not specified, ADAVAL validates all
qualifying descriptor fields.

The following is an example of DESCRIPTOR use:

ADAVAL VALIDATE
FILE=5,DESCRIPTOR=’AA,CC,BB’

LPB: Prefetch Buffer Size

LPB specifies the size, in bytes, of the internal prefetch buffer. The maximum value is 32760
bytes. The default depends on the current ADARUN LU value. ADAVAL VALIDATE may
reduce the LPB value below that specified if the LU value is too small.

LRECL: Maximum Descriptor Value

LRECL specifies the maximum length of all descriptor values in any record of the file being
validated. This length is used by ADAVAL to create a temporary record buffer. If the LRECL
value is too small, response code 53 occurs when an oversized record is found. The default for
LRECL is 4000 bytes; the maximum length allowed is 32760 bytes.

LWP: Work Pool Size

LWP specifies the size of the work pool to be used for descriptor value sorting. The value can
be specified in bytes or kilobytes followed by a "K". If no value is specified, the default is
1048576 bytes (or 1024K); however, to shorten ADAVAL run time for files with very long
descriptors or an unusually large number of descriptors, set LWP to a higher value. To avoid
problems with the Sort dataset, a smaller LWP value should be specified when validating
relatively small files.

The minimum work pool size depends on the Sort dataset’s device type:

727

VALIDATE: Validate Data Storage and AssociatorAdabas Utilities

Sort Device Minimum LWP Minimum LWP

Bytes Kilobytes

2000 106496 104K

2314 090112 88K

3375 131072 128K

3380 139264 136K

3390 159744 156K

NOUSERABEND: Termination without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

PASSWORD: Files Password

This parameter is required if the file or file(s) to be validated are password-protected.

SORTDEV: Sort Device Type

The SORTDEV parameter indicates the device type to be used for the sort dataset that
ADAVAL uses to sort descriptor values (the sort dataset size is specified with SORTSIZE).
This parameter is required only if the device type to be used is different from that specified by
the ADARUN DEVICE parameter.

TEMPDEV: Temporary Storage Device Type

The TEMPDEV parameter indicates the device type to be used for the temp dataset that
ADAVAL uses to store intermediate data. The dataset size is specified with the TEMPSIZE
parameter. This parameter is required only if the device type to be used is different from that
specified by the ADARUN DEVICE parameter.

728

Adabas UtilitiesVALIDATE: Validate Data Storage and Associator

Example of ADAVAL Output
ADAVAL output provides a SYSOUT (DD/DRUCK) table listing, by file and descriptor, of all data
storage and Associator entries and their status. The following is an example of ADAVAL VALIDATE
output:

FILE DE F ISN DE-VALUE
--
 1 AA *** NO INCONSISTENCIES ***
 1 BA - 35 07C6D935 C5D4C1D5 *.FREEMAN*
 1 BA - 173 07C6D935 C5D4C1D5 *.FREEMAN*
 1 BA - 471 07C6D935 C5D4C1D5 *.FREEMAN*

 1 BA - 534 07C6D935 C5D4C1D5 *.FREEMAN*
 1 BA - 597 07C6D935 C5D4C1D5 *.FREEMAN*
 1 BA - 622 07C6D935 C5D4C1D5 *.FREEMAN*
 1 BA - 658 07C6D935 C5D4C1D5 *.FREEMAN*
 1 BA - 717 07C6D935 C5D4C1D5 *.FREEMAN*
 1 BA - 152 05D4C5E8 C5D9 *.MEYER*
 1 BA + 153 05D4C5E8 C5D9 *.MEYER*
 1 BB *** NO INCONSISTENCIES ***
 1 CA *** NO INCONSISTENCIES ***
 1 CB *** NO INCONSISTENCIES ***
 1 CC *** NO INCONSISTENCIES ***
 1 CD *** NO INCONSISTENCIES ***
 1 PA *** NO INCONSISTENCIES ***

where

In the F (flag) column, "-" indicates that an inverted list entry is missing for the specified Data
Storage descriptor; and "+" indicates that the inverted list entry in the Associator is incorrect.

The DE-VALUE column provides the compressed descriptor value, first in hexadecimal and then in
alphanumeric.

Note:
The "*** NO INCONSISTENCIES ***" entry occurs for every successful descriptor validation.

729

Example of ADAVAL OutputAdabas Utilities

JCL/JCS Requirements and Examples
This section describes the job control information required to run ADAVAL with BS2000, OS/390 or
z/OS, VM/ESA, and VSE/ESA systems and shows examples of each of the job streams.

This chapter covers the following topics:

Collation with User Exit

Sorting Large Files

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE

Collation with User Exit
If a collation user exit is to be used during ADAVAL execution, the ADARUN CDXnn parameter must be
specified for the utility run.

Used in conjunction with the universal encoding subsystem (UES), the format of the collation descriptor
user exit parameter is:

where

nn is the number of the collation descriptor exit, a two-digit decimal integer in the range
01-08 inclusive.

exit-name is the name of the user routine that gets control at the collation descriptor exit; the
name can be up to 8 characters long.

Only one program may be specified for each collation descriptor exit. Up to 8 collation descriptor exits
may be specified (in any order). See the Adabas DBA Reference documentation for more information.

Sorting Large Files
When sorting large files, performance can be improved if either the sort dataset occupies two volumes or
two sort datasets are specified. Both datasets must be on the same device type (SORTDEV parameter),
and each must be exactly half the size specified by the SORTSIZE parameter.

730

Adabas UtilitiesJCL/JCS Requirements and Examples

BS2000

Dataset Link Name Storage More Information

Sort area DDSORTR1 disk

Sort area DDSORTR2 disk Split the sort area
across two volumes
when using large files
(see note)

Temp area DDTEMPR1 disk

Associator area DDASSOR1 disk

ADARUN parameters SYSDTA/DDCARD Operations

ADAVAL parameters SYSDTA/DDKARTE

ADARUN messages SYSOUT/ DDPRINT Messages and Codes

ADAVAL messages SYSLST/ DDDRUCK Messages and Codes

Rejected data DDFEHL tape/disk

ADAVAL JCL Example (BS2000)

In SDF Format:

/.ADAVAL LOGON
 /MODIFY-TEST-OPTIONS DUMP=YES
 /REMARK *
 /REMARK * A D A V A L ALL FUNCTIONS
 /REMARK *
 /DELETE-FILE VAL.FEHL
 /SET-JOB-STEP
 /CREATE-FILE VAL.FEHL,PUB(SPACE=(48,48))
 /SET-JOB-STEP
 /ASS-SYSLST L.VAL
 /ASS-SYSDTA *SYSCMD
 /SET-FILE-LINK DDLIB,ADAvrs.MOD
 /SET-FILE-LINK DDASSOR1,ADAyyyyy.ASSO
 /SET-FILE-LINK DDSORTR1,ADAyyyyy.SORT
 /SET-FILE-LINK DDTEMPR1,ADAyyyyy.TEMP
 /SET-FILE-LINK DDFEHL1,VAL.FEHL
 /START-PROGRAM *M(ADA.MOD,ADARUN),PR-MO=ANY
 ADARUN PROG=ADAVAL,DB=yyyyy,IDTNAME=ADABAS5B
 ADAVAL VALIDATE FILE=30,SORTSIZE=3,TEMPSIZE=5
 /LOGOFF SYS-OUTPUT=DEL

In ISP Format:

/.ADAVAL LOGON
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * A D A V A L ALL FUNCTIONS
 /REMARK *
 /SYSFILE SYSLST=L.VAL
 /FILE ADAyyyyy.TEMP ,LINK=DDTEMPR1
 /FILE ADAyyyyy.SORT ,LINK=DDSORTR1

731

JCL/JCS Requirements and ExamplesAdabas Utilities

 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1
 /FILE ADA.MOD,LINK=DDLIB
 /FILE VAL.FEHL,LINK=DDFEHL,SPACE=(48,48)
 /EXEC (ADARUN,ADA.MOD)
 ADARUN PROG=ADAVAL,DB=yyyyy,IDTNAME=ADABAS5B
 ADAVAL VALIDATE FILE=30,SORTSIZE=3,TEMPSIZE=5
 /LOGOFF NOSPOOL

OS/390 or z/OS

Dataset DD Name Storage More Information

Sort area DDSORTR1 disk

Sort area DDSORTR2 disk Split the sort area
across two volumes
when using large files
(see note)

Temp area DDTEMPR1 disk

Associator area DDASSOR1 disk

ADARUN parameters DDCARD reader Operations

ADAVAL parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADAVAL messages DDDRUCK printer Messages and Codes

Rejected data DDFEHL tape/disk

ADAVAL JCL Example (OS/390 or z/OS)
//ADAVAL JOB
//*
//* ADAVAL: VALIDATE DATA BASE
//*
//VAL EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDSORTR1 DD DISP=OLD,DSN=EXAMPLE.DByyyyy.SORTR1 <=== SORT
//DDTEMPR1 DD DISP=OLD,DSN=EXAMPLE.DByyyyy.TEMPR1 <=== TEMP
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAVAL,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*

//DDKARTE DD *
ADAVAL VALIDATE FILE=1,TEMPSIZE=ttt,SORTSIZE=sss
/*

732

Adabas UtilitiesJCL/JCS Requirements and Examples

Refer to ADAVAL in the MVSJOBS dataset for this example.

VM/ESA or z/VM

Dataset DD Name Storage More Information

Sort area DDSORTR1 disk

Sort area DDSORTR2 disk Split the sort area
across two volumes
when using large files
(see note)

Temp area DDTEMPR1 disk

Associator area DDASSOR1 disk

ADARUN parameters DDCARD disk/terminal/reader Operations

ADAVAL parameters DDKARTE disk/terminal/reader

ADARUN messages DDPRINT disk/ terminal/ printer Messages and Codes

ADAVAL messages DDDRUCK disk/ terminal/ printer

Rejected data DDFEHL tape/disk

Example (VM/ESA or z/VM)
DATADEF DDPRINT,DSN=ADAVAL,DDPRINT,MODE=A
DATADEF DUMP,DUMMY
DATADEF DDDRUCK,DSN=ADAVAL.DDDRUCK,MODE=A
DATADEF DDTEMPR1,DSN=ADABASVv.TEMP,VOL=TEMPV1
DATADEF DDSORTR1,DSN=ADABASVv.SORT,VOL=SORTV1
DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1
DATADEF DDCARD,DSN=RUNVAL.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADAVAL.CONTROL,MODE=A
DATADEF DDFEHL,DSN=FILE030.VALERR,MODE=A
ADARUN

Contents of RUNVAL CONTROL A1:

ADARUN PROG=ADAVAL,DEVICE=dddd,DB=yyyyy

Contents of ADAVAL CONTROL A1:

ADAVAL VALIDATE FILE=30,SORTSIZE=3,TEMPSIZE=5

VSE

733

JCL/JCS Requirements and ExamplesAdabas Utilities

File File Name Storage Logical Unit More
Information

Sort area SORTR1 disk

Sort area SORTR2 disk When using large
files, split the sort
area across two
volumes (see note)

Temp area TEMPR1 disk*

Associator area ASSOR1 disk

ADARUN
parameters

-
CARD
CARD

reader
tape
disk

SYSRDR
SYS000
*

ADAVAL
parameters

- reader SYSIPT Utilities

ADARUN
messages

- printer SYSLST Messages and
Codes

ADAVAL
messages

- printer SYS009 Messages and
Codes

Rejected data FEHL tape
disk

SYS010
*

* Any programmer logical unit can be used.

ADAVAL JCS Example (VSE/ESA)

See Procedures for VSE/ESA Examples for descriptions of the VSE/ESA procedures (PROCs).

* $$ JOB JNM=ADAVAL,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAVAL
* VALIDATE DATABASE
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAVAL,MODE=SINGLE,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAVAL VALIDATE FILE=1,TEMPSIZE=ttt,SORTSIZE=sss
/*
/&
* $$ EOJ

Refer to member ADAVAL.X for this example

734

Adabas UtilitiesJCL/JCS Requirements and Examples

ADAZAP: Display or Modify Asso, Data, and
Work Datasets
This chapter covers the following topics:

Functional Overview

ADAZAP Syntax

JCL/JCS Requirements and Examples

735

ADAZAP: Display or Modify Asso, Data, and Work DatasetsAdabas Utilities

Functional Overview
The ADAZAP utility can be executed only when the Adabas nucleus is inactive.

ADAZAP is used to display in hexadecimal format and optionally to change the contents of the ASSO,
DATA, or WORK datasets.

Because a significant element of risk is involved in modifying physical database blocks, the use of this
utility is restricted. Software AG will provide the mastercode necessary to run the ADAZAP utility only
on written request to the individuals at each customer site who are authorized to receive it.

In addition, Software AG strongly recommends that you use your external security system to protect
ADAZAP just as you protect other ZAP programs.

Software AG also recommends that a current save tape be available before running ADAZAP. If an error
occurs during ADAZAP execution, it may be necessary to restore the affected file or database.

If the data is successfully altered, a SYNP 3F checkpoint record is written containing the REP and VER
data to provide an audit trail of any changes that have been made.

A version of ADAZAP running with different syntax was unofficially distributed with previous releases of
Adabas. No documentation was or is provided for this earlier version and it was and is not supported.

736

Adabas UtilitiesFunctional Overview

ADAZAP Syntax

This chapter covers the following topics:

Essential Parameters

Optional Parameters

Examples

Essential Parameters
MCODE

For security purposes, a mastercode is required to run the ADAZAP utility. Software AG
provides the 8-byte mastercode on written request to authorized individuals.

ASSO | DATA | WORK

It is necessary to specify the physical dataset you wish to display or modify.

Optional Parameters
LENGTH

The length of the data to be displayed. LENGTH cannot be specified if VER is specified, and
the reverse.

The minimum number of bytes displayed is 16 since the lower address is rounded down to a
16-byte boundary and the upper address is rounded up to a 16-byte boundary.

OFFSET

This is the offset from the start of the block. The value must be smaller than or equal to the
length of a block; that is, it must fall within the block. The default value is zero.

RABN

737

ADAZAP SyntaxAdabas Utilities

The relative Adabas block number (RABN) that is to be displayed or altered. The default is ’1’.

REP

The replace data, which must be less than or equal to the verify data specified in the VER
parameter. Up to 128 bytes of hexadecimal data may be specified.

VER

The verify data, which must be at least as long as the replace data. Up to 128 bytes of
hexadecimal data may be specified.

Examples
Example 1:

ADAZAP MCODE=master-code
 ADAZAP ASSO OFFSET=X’10’,LENGTH=16

The default RABN=1 is used. ADAZAP displays the database name.

Example 2:

ADAZAP MCODE=master-code
ADAZAP WORK OFFSET=X’10’
ADAZAP VER=X’C1C2’
ADAZAP REP=X’C2C1’

The default RABN=1 is used. ADAZAP alters data in the Work dataset.

738

Adabas UtilitiesADAZAP Syntax

JCL/JCS Requirements and Examples
Below are sample jobs to use the ADAZAP utility. They can be used to change the contents of a specific
Adabas RABN in DATA, ASSO, or WORK.

Specify the RABN, the offset, and the values to be replaced in hexadecimal.

To obtain the master password, contact your local support center.

Important:
This utility must be used carefully. Any misuse may lead to serious problems.

This chapter covers the following topics:

BS2000

OS/390 or z/OS

VM/ESA or z/VM

VSE/ESA

BS2000

Dataset Link Name Storage More Information

Associator DDASSORn disk required if ASSO is
being zapped

Data Storage DDDATARn disk required if DATA is
being zapped

Work DDWORKRn disk required if WORK is
being zapped

ADARUN parameters DDCARD reader Operations

ADAZAP parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADAZAP messages DDDRUCK printer Messages and Codes

ADAZAP JCL Example (BS2000)

In SDF Format:

/BEGIN-PROC A
/REMA
/REMA SAMPLE JCL FOR ADAZAP
/REMA
/ASS-SYSOUT L.ADAZAP.OUT
/ASS-SYSLST L.ADAZAP.LST
/ASS-SYSDTA *SYSCMD

739

JCL/JCS Requirements and ExamplesAdabas Utilities

/SET-FILE-LINK DDLIB,ADABAS.Vvrs.MOD
/SET-FILE-LINK DDASSOR1,DByyyyyy.ASSOR1,SUP=DISK(SHARE-UPD=YES)
/SET-FILE-LINK DDDATAR1,DByyyyyy.DATAR1,SUP=DISK(SHARE-UPD=YES)
/SET-FILE-LINK DDWORKR1,DByyyyyy.WORKR1,SUP=DISK(SHARE-UPD=YES)
/STA-PROG *M(ADABAS.Vvrs.MOD,ADARUN),RUN-MODE=*ADV(ALT=Y)
ADARUN PROG=ADAZAP,DB=yyyyyy
ADAZAP MCODE=xxxxxxxxxx <<--- MASTER PASSWORD
ADAZAP ASSO RABN=1,OFFSET=X’10’,LENGTH=16 <=== DISPLAY ASSO RABN 1
ADAZAP ASSO
RABN=1,OFFSET=X’10’,VER=X’C1C2’,REP=X’C2C1’
ADAZAP ASSO RABN=1,OFFSET=X’10’,LENGTH=16 <=== DISPLAY ASSO RABN 1
/SET-JOB-STEP
/ASS-SYSDTA *PRIM
/ASS-SYSLST *PRIM
/ASS-SYSOUT *PRIM
/END-PROC

In ISP Format:

/.ADAZAP PROC
 /OPTION MSG=FH,DUMP=YES
 /REMARK *
 /REMARK * SAMPLE JCL FOR ADAZAP
 /REMARK *
 /SYSFILE SYSLST=L.ZAP
 /SYSFILE SYSDTA=(SYSCMD)
 /FILE ADAyyyyy.TEMP ,LINK=DDTEMPR1
 /FILE ADAyyyyy.SORT ,LINK=DDSORTR1
 /FILE ADAyyyyy.ASSO ,LINK=DDASSOR1
 /EXEC (ADARUN,ADA.MOD)
 ADAZAP MCODE=xxxxxxxxxx << MASTER PASSWORD
 ADAZAP ASSO RABN=1,OFFSET=X 10 ,LENGTH=16 <===DISPLAY ASSO RABN 1
 ADAZAP ASSO RABN=1,OFFSET=X 10 ,VER=X C1C2 ,REP=X C2C1
 ADAZAP ASSO RABN=1,OFFSET=X 10 ,LENGTH=16 <===DISPLAY ASSO RABN 1
 /STEP
 /SYSFILE SYSDTA=()
 /SYSFILE SYSLST=()
 /ENDP

OS/390 or z/OS

Dataset Link Name Storage More Information

Associator DDASSORn disk required if ASSO is being
zapped

Data Storage DDDATARn disk required if DATA is being
zapped

Work DDWORKRn disk required if WORK is being
zapped

ADARUN parameters DDCARD reader Operations

ADAZAP parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADAZAP messages DDDRUCK printer Messages and Codes

740

Adabas UtilitiesJCL/JCS Requirements and Examples

Example (OS/390 or z/OS)
//ADAZAP JOB
//*
//ZAP EXEC PGM=ADARUN
//STEPLIB DD DISP=SHR,DSN=ADABAS.Vvrs.LOAD <=== ADABAS LOAD
//*
//DDASSOR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.ASSOR1 <=== ASSO
//DDDATAR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.DATAR1 <=== DATA
//DDWORKR1 DD DISP=SHR,DSN=EXAMPLE.DByyyyy.WORKR1 <=== WORK
//DDDRUCK DD SYSOUT=X
//DDPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//DDCARD DD *
ADARUN PROG=ADAZAP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
//DDKARTE DD *
 ADAZAP MCODE=mmmmmmmm <<--- MASTER PASSWORD
 ADAZAP ASSO RABN=1,OFFSET=X’10’,LENGTH=16 <=== DISPLAY ASSO RABN 1
 ADAZAP ASSO
RABN=1,OFFSET=X’10’,VER=’C1C2’,REP=X’C2C1’
 ADAZAP ASSO RABN=1,OFFSET=X’10’,LENGTH=16 <=== DISPLAY ASSO RABN 1
/*

Refer to ADAZAP in the MVSJOBS dataset for this example.

VM/ESA or z/VM

Dataset Link Name Storage More Information

Associator DDASSORn disk required if ASSO is
being zapped

Data Storage DDDATARn disk required if DATA is
being zapped

Work DDWORKRn disk required if WORK is
being zapped

ADARUN parameters DDCARD reader Operations

ADAZAP parameters DDKARTE reader

ADARUN messages DDPRINT printer Messages and Codes

ADAZAP messages DDDRUCK printer Messages and Codes

Example (VM/ESA or z/VM)
DATADEF DDASSOR1,DSN=ADABASVv.ASSO,VOL=ASSOV1 <=== ASSO
DATADEF DDDATAR1,DSN=ADABASVv.DATA,VOL=DATAV1 <=== DATA
DATADEF DDWORKR1,DSN=ADABASVv.WORK,VOL=WORKV1 <=== WORK
DATADEF DDPRINT,DSN=ADAZAP.DDPRINT,MODE=A
DATADEF DUMP,DUMMY

DATADEF DDDRUCK,DSN=ADAZAP.DDDRUCK,MODE=A
DATADEF DDCARD,DSN=RUNZAP.CONTROL,MODE=A
DATADEF DDKARTE,DSN=ADAZAP.CONTROL,MODE=A
ADARUN

741

JCL/JCS Requirements and ExamplesAdabas Utilities

Contents of RUNREP CONTROL A1:

ADARUN PROG=ADAZAP,DEVICE=dddd:

Contents of ADAREP CONTROL A1:

ADAZAP MCODE=mmmmmmmm <<--- MASTER PASSWORD
ADAZAP ASSO RABN=1,OFFSET=X’10’,LENGTH=16 <===DISPLAY ASSO RABN 1
ADAZAP ASSO RABN=1,OFFSET=X’10’,VER=’C1C2’,REP=X’C2C1’
ADAZAP ASSO RABN=1,OFFSET=X’10’,LENGTH=16 <===DISPLAY ASSO RABN 1

VSE/ESA

Dataset Link Name Storage More Information

Associator ASSORn disk required if ASSO is
being zapped

Data Storage DATARn disk required if DATA is
being zapped

Work WORKRn disk required if WORK is
being zapped

ADARUN parameters CARD reader Operations

ADAZAP parameters KARTE reader

ADARUN messages PRINT printer Messages and Codes

ADAZAP messages DRUCK printer Messages and Codes

Example (VSE/ESA)
* $$ JOB JNM=ADAZAP,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB ADAZAP
*
// EXEC PROC=ADAVvLIB
// EXEC PROC=ADAVvFIL
// EXEC ADARUN,SIZE=ADARUN
ADARUN PROG=ADAZAP,MODE=MULTI,SVC=xxx,DEVICE=dddd,DBID=yyyyy
/*
ADAZAP MCODE=MMMMMMMM <<--- MASTER PASSWORD
ADAZAP ASSO RABN=1,OFFSET=X’10’,LENGTH=16 <===DISPLAY ASSO RABN 1
ADAZAP ASSO
RABN=1,OFFSET=X’10’,VER=’C1C2’,REP=X’C2C1’
ADAZAP ASSO RABN=1,OFFSET=X’10’,LENGTH=16 <===DISPLAY ASSO RABN 1
/*
/&
* $$ EOJ

Refer to member ADAZAP.X for this example.

See Procedures for VSE/ESA Examples for descriptions of the VSE/ESA procedures (PROCs).

742

Adabas UtilitiesJCL/JCS Requirements and Examples

Adabas Sequential Files
This document covers the following topics:

Sequential File Table

Operating System Dependencies

Sequential File Table
This section summarizes the sequential files used by the Adabas utilities. Explanations of the table
heading and contents are in the text following the table.

Utility File Name VSE
Tape SYS

Out In BLKSIZE
by device

Concatenation

ADACDC DD/SIIN 10 x Yes

ADACMP DD/AUSBA
DD/EBAND
DD/FEHL

12
10
14

x
x

x Yes

ADALOD DD/EBAND
DD/FILEA
DD/ISN
DD/OLD

10
12
16
14

x
x

x
x
x

Yes Yes
Yes

ADAMER DD/EBAND 10 x

ADAORD DD/FILEA 10 x x Yes

ADAPLP DD/PLOG 14 x Yes

ADAREP DD/SAVE
DD/PLOG

10
11

 x
x

 Yes
Yes

ADARES DD/BACK
DD/SIAUS1
DD/SIAUS2
DD/SIIN

20
21
22
20

x
x

x
x

 Yes
Yes

743

Adabas Sequential FilesAdabas Utilities

Utility File Name VSE
Tape SYS

Out In BLKSIZE
by device

Concatenation

ADASAV DD/DEL1
DD/DEL2
DD/DEL3
DD/DEL4

31
32
33
34

 x
x
x
x

 Yes
Yes
Yes
Yes

DD/DEL5
DD/DEL6
DD/DEL7
DD/DEL8

35
36
37
38

 x
x
x
x

 Yes
Yes
Yes
Yes

DD/DUAL1
DD/DUAL2
DD/DUAL3
DD/DUAL4

21
22
23
24

x
x
x
x

DD/DUAL5
DD/DUAL6
DD/DUAL7
DD/DUAL8

25
26
27
28

x
x
x
x

DD/FULL
DD/PLOG

30
10

 x
x

 Yes
Yes

DD/REST1
DD/REST2
DD/REST3
DD/REST4

11
12
13
14

 x
x
x
x

 Yes

DD/REST5
DD/REST6
DD/REST7
DD/REST8

15
16
17
18

 x
x
x
x

DD/SAVE1
DD/SAVE2
DD/SAVE3
DD/SAVE4

11
12
13
14

x
x
x
x

DD/SAVE5
DD/SAVE6
DD/SAVE7
DD/SAVE8

15
16
17
18

x
x
x
x

744

Adabas UtilitiesAdabas Sequential Files

Utility File Name VSE
Tape SYS

Out In BLKSIZE
by device

Concatenation

ADASEL DD/EXPA1
DD/EXPA2
DD/EXPA3
DD/EXPA4

11
12
13
14

x
x
x
x

DD/EXPA5
DD/EXPA6
DD/EXPA7
DD/EXPA8

15
16
17
18

x
x
x
x

DD/EXPA9
DD/EXPA10
DD/EXPA11
DD/EXPA12

19
20
21
22

x
x
x
x

DD/EXPA13
DD/EXPA14
DD/EXPA15
DD/EXPA16

23
24
25
26

x
x
x
x

DD/EXPA17
DD/EXPA18
DD/EXPA19
DD/EXPA20

27
28
29
30

x
x
x
x

DD/SIIN 10 x Yes

ADAULD DD/OUT1
DD/OUT2
DD/ISN
DD/SAVE
DD/PLOG
DD/FULL
DD/DEL1-8

10
11
12
13
14
30

31-38

x
x
x

x
x
x
x

Yes
Yes
Yes

Yes
Yes
Yes
Yes

ADAVAL DD/FEHL 10 x Yes

Files that are both output and input are first written and then read by the indicated program. BS2000,
VM/ESA or z/VM, OS/390 or z/OS, and OS-compatible files have "DD..." names (DDSIIN, DDFEHL,
etc.); VSE/ESA file names are without "DD".

Operating System Dependencies
The following sections describe characteristics of file and device definition by operating system.

BS2000 Systems

Note:
This discussion uses SPF format. In ISP format:

745

Adabas Sequential FilesAdabas Utilities

SPF Format ISP Format

BUFF-LEN BLKSIZE defined by BLKSIZE=(STD,16)

REC-FORM RECFM

REC-SIZE RECSIZE

SET-FILE-LINK FILE

The LINK name by which a file is referenced is determined as follows:

The characters DD are prefixed to the file name to form the LINK name.

If files for which the column "Concatenation" contains "Yes" are on tape, they may be concatenated
as follows: the first file is read using the indicated LINK name; at the first end-of-file, 01 is appended
to the LINK name; and, if there is a /SET-FILE-LINK (in ISP format /FILE) statement for that LINK
name, reading continues.

Each subsequent end-of-file adds 1 to the LINK name, and as long as there is a /SET-FILE-LINK (in
ISP format /FILE) statement for that LINK name, reading continues through a maximum of 99. For
LINK names longer than six characters, the excess characters will be overlaid with the file number
increment (e.g., DDEBAND becomes DDEBAN01).

BS2000 does not support the backward reading of multivolume tape files; therefore, all volumes of
the ADARES DDBACK file must be specified in the reverse order in which they were written on
/SET-FILE-LINK (in ISP format /FILE) statements using the LINK names DDBACK, DDBACK01,
DDBACK02, and so on.

The BUFF-LEN of a sequential file is determined as follows:

1. The BUFF-LEN is obtained from the /SET-FILE-LINK statement or the dataset’s catalog entry, if
present.

2. If the BUFF-LEN cannot be obtained from the /SET-FILE-LINK statement and/or catalog, the value
of the ADARUN QBLKSIZE parameter is used, if specified.

3. Otherwise, the BUFF-LEN depends on the device type as follows:

Tape: 32760

Disk: 32768 (BUFF-LEN=(STD,16))

The REC-SIZE and REC-FORM should be as follows:

Tape: REC-SIZE = BUFF-LEN - 4; REC-FORM = V;

Disk: REC-SIZE = BUFF-LEN - 20; RECFORM = V;

Input: Obtained from the /SET-FILE-LINK statement or the dataset’s
catalog entry.

746

Adabas UtilitiesAdabas Sequential Files

Note:
Do not specify REC-FORM, REC-SIZE, or BUFF-LEN for input datasets unless the TAPE dataset
contains no REC-FORM, REC-SIZE, or BUFF-LEN values in HDR2.

The SPACE parameter for primary and secondary allocations must specify a multiple of three (3) times
the number of PAM blocks specified in the BUFF-LEN parameter. Otherwise, I/O errors will occur. For
the default /CREATE-FILE ...,PUB(SPACE(48,48)) and /SET-FILE-LINK ...,BUFF-LEN=STD(16) (in
ISP format, BLKSIZE=(STD,16), SPACE=(48,48)) is the smallest valid value.

The portions of the DDDRUCK and DDPRINT datasets already written to disk can be accessed during
either a regular nucleus or utility session for reading. This includes the following BS2000 read accesses:

SHOW-FILE

@READ dataset

/COPY-FILE (in ISP format, /COPY)

Concatenation of Sequential Input Files for BS2000

For using more than one dataset as input medium to an ADABAS utility, some operating systems (such as
OS/390) provide a concatenation feature.

For BS2000 this feature is simulated by adding /SET-FILE-LINK (in ISP format, /FILE) statements with
modified LINK names created from the original and a two-digit increment (ranging from 01 to 99):

/SET-FILE-LINK DDTEST,firstfile
/SET-FILE-LINK DDTEST01,secondfile
/SET-FILE-LINK DDTEST02,thirdfile
...
/SET-FILE-LINK DDTEST99,lastfile

In ISP format:

/FILE firstfile ,LINK=DDTEST
/FILE secondfile,LINK=DDTEST01
/FILE thirdfile ,LINK=DDTEST02
...
/FILE lastfile ,LINK=DDTEST99

For those original LINK names that are 7 or 8 characters long, the incremental number occupies the 7th
and 8th position. For example:

/SET-FILE-LINK DDEBAND,firstfile
/SET-FILE-LINK DDEBAND01,lastfile

In ISP format:

/FILE firstfile ,LINK=DDEBAND
/FILE secondfile,LINK=DDEBAN01

When processing input files that have the concatenation option at end-of-file of one input file, a check is
made to determine whether a /SET-FILE-LINK (in ISP format, /FILE) statement exists for the next
dataset. If none exists, the sequential GET call returns EOF; otherwise, the dataset currently open is
closed, and an open is tried for the next file.

747

Adabas Sequential FilesAdabas Utilities

Files concatenated in this way must have the same file characteristics (block size, record format and
record size).

This concatenation feature applies also to files that are processed backwards. The order of the LINK
names is the reverse of the creation order. For example, ADARES with DDBACK:

/SET-FILE-LINK DDBACK,lastfile
/SET-FILE-LINK DDBACK01,filebeforelast
/...
/SET-FILE-LINK DDBACKnn,firstfile

In ISP format:

/FILE lastfile ,LINK=DDBACK
/FILE filebeforelast,LINK=DDBACK01
/....
/FILE firstfile ,LINK=DDBACKnn

Note that this feature can also be used to process a multivolume file backwards, if each volume is
specified with a separate /SET-FILE-LINK (in ISP format, /FILE) statement.

The following list is of LINK names/utilities with the concatenation option:

DDDELn
(where n = 1-8)

ADASAV

DDEBAND ADACMP
ADALOD
ADAMER

DDFULL ADASAV

DDISN ADALOD

DDPLOG ADAPLP
ADASAV

DDBACK ADARES

DDSIIN ADARES
ADASEL

DDREST1 ADASAV
(LINK names used are DDREST1, DDREST01, DDREST02, and
so on.)

Example for Use of the Concatenation Feature with ADARES

During the last nucleus session, three protection log files were produced with ADARES PLCOPY named
F1, F2, F3.

When backing out the session to a specific point, use the following /SET-FILE-LINK (in ISP format,
/FILE) statements for the ADARES BACKOUT function:

/SET-FILE-LINK DDBACK,F3
/SET-FILE-LINK DDBACK01,F2
/SET-FILE-LINK DDBACK02,F1

748

Adabas UtilitiesAdabas Sequential Files

In ISP format:

/FILE F3,LINK=DDBACK
/FILE F2,LINK=DDBACK01
/FILE F1,LINK=DDBACK02

To regenerate the database from the protection log that was produced during the session, use the following
/SET-FILE-LINK (in ISP format, /FILE) statements for the ADARES REGENERATE function:

/SET-FILE-LINK DDSIIN,F1
/SET-FILE-LINK DDSIIN01,F2
/SET-FILE-LINK DDSIIN02,F3

In ISP format:

/FILE F1,LINK=DDSIIN
/FILE F2,LINK=DDSIIN01
/FILE F3,LINK=DDSIIN02

Control Statement Read Procedure in Version 11.2 (OSD 2.0)

With BS2000 version 11.2 (OSD 2.0), the SYSIPT system file is no longer available. Beginning with
version 5.3.3, ADABAS can read all control statements from the SYSDTA system file.

When running on BS2000 Versions 10.0 or 11.0, the SYSIPT assignment can still be used; however,
Software AG recommends adapting all ADABAS utility and Entire Net-Work job control to indicate the
SYSDTA system file before migrating to BS2000 version 11.2 (OSD 2.0).

ADARUN TAPEREL: Tape Release Option

The ADARUN parameter TAPEREL is required to perform the tape handling control for utilities that
access files on tape. See the ADABAS Operations documentation for more information.

OS/390 or MVS/ESA Systems

The DDNAME is formed by prefixing the characters DD to the file name.

To allow utilities to access dataset information after closing, the DD statement for sequential datasets used
in utilities should not contain FREE=CLOSE.

The BLKSIZE of a sequential file is determined as follows:

If the column, "BLKSIZE by device" specifies Yes for a file, the default BLKSIZE depends on the
device type as follows:

749

Adabas Sequential FilesAdabas Utilities

Tape: 32760

3330 disk: 13030

3340 disk: 8368

3350 disk: 19069

3375 disk: 17600

3380 disk: 23476

3390 disk: 27998

If the column "BLKSIZE by device" does not specify Yes for a file, the file’s BLKSIZE is obtained
from the DD statement or dataset label, if present. It must be present for any input file.

If the column "BLKSIZE by device" does not specify Yes for a file and the BLKSIZE cannot be
obtained from the DD statement or dataset label, the value of the ADARUN QBLKSIZE parameter is
used, if specified.

Except for ADACMP EBAND, the RECFM and LRECL of all sequential files are VB and BLKSIZE-4,
respectively. For ADACMP EBAND, RECFM and LRECL must be available from the DD statement
and/or dataset label.

If the DCB BUFNO parameter is not provided on the DD statement, the operating system default will be
used.

VM/ESA Systems

The DATADEF name is formed by prefixing the characters DD to the file name.

The BLKSIZE of a sequential file is determined as follows:

If the column, "BLKSIZE by device" specifies Yes for a file, the BLKSIZE depends on the device
type as follows:

Tape: 32760

FBA disk: 32760

3330 disk: 13030

3340 disk: 8368

3350 disk: 19069

3375 disk: 17600

3380 disk: 23476

3390 disk: 27998

If the column "BLKSIZE by device" does not specify Yes for a file, the file’s BLKSIZE is obtained
from the DD statement or dataset label, if present. It must be present for any input file.

750

Adabas UtilitiesAdabas Sequential Files

If the column "BLKSIZE by device" does not specify Yes for a file and the BLKSIZE cannot be
obtained from the DD statement or dataset label, the value of the ADARUN QBLKSIZE parameter is
used, if specified.

For all sequential files except ADACMP EBAND, the RECFM is VB and LRECL is (BLKSIZE - 4). For
ADACMP EBAND, RECFM and LRECL must be available from the DATADEF statement and/or dataset
label.

VSE/ESA Systems

The following items determine how a file is referenced by the utilities running under VSE/ESA:

The file name is used as the filename on the DLBL or TLBL statement.

If files for which the column "Concatenation" contains Yes are on tape, they may be concatenated as
follows:

The file is first read using the indicated file name.

At the first end-of-file, 01 is appended to the file name and, if there is a TLBL statement for that
filename, reading continues.

At each subsequent end-of-file, 1 is added to the file name and reading continues as long as
there is a TLBL statement for that filename, up through a maximum of 99.

Since VSE does not support reading multivolume tape files backward, each volume of the ADARES
BACK file must be specified in reverse order from the way it was written on TLBL statements using
the filenames BACK, BACK01, BACK02, and so on.

Any programmer logical unit may be used for sequential files on disk. The VSE Tape SYS number must be
used for sequential files on tape; any or all of these numbers may be changed using procedures defined in
the ADABAS Installation documentation.

The BLKSIZE of a sequential file is determined as follows:

If the column "BLKSIZE by Device" specifies Yes for a file, the BLKSIZE depends on the device
type as follows:

Tape: 32760

FBA disk: 32760

3330 disk: 13030

3340 disk: 8368

3350 disk: 19069

3375 disk: 17600

3380 disk: 23476

3390 disk: 27998

751

Adabas Sequential FilesAdabas Utilities

If the column "BLKSIZE by Device" does not specify Yes for a file, the value of the ADARUN
QBLKSIZE parameter is used, if specified.

For ADACMP EBAND, this BLKSIZE is checked and may then be changed to an actual BLKSIZE,
depending on the RECFM and LRECL parameters as specified on ADACMP control cards, as follows:

If RECFM= ... then the actual BLKSIZE= ...

F LRECL.

FB BLKSIZE/LRECL*LRECL, where the remainder of the division is
discarded before the multiplication.

U LRECL, which must not be greater than BLKSIZE.

V LRECL+4, which must not be greater than BLKSIZE.

VB BLKSIZE, which must not be less than LRECL+4.

The RECFORM of all sequential files except ADACMP EBAND is VARBLK. For ADACMP EBAND, it
is provided by the RECFM parameter of a control statement.

To distinguish whether VSE message 4140D refers to the first or a subsequent volume of a multivolume
tape file, message ADAI31 is written to the operator whenever a tape file is opened, but not at
end-of-volume.

Concatenation of Sequential Input Files for VSE/ESA

In those cases where it is desired to use more than one dataset as input medium for an ADABAS utility, a
concatenation feature is provided by some operating systems (OS/390 or z/OS, for example).

For VSE, this feature is simulated by adding FILE statements with modified LINK names created from
the original and a two-digit increment (ranging from 01 to 99):

// DLBL TEST ,’firstfile’
// EXTENT ...
// DLBL TEST01,’secondfile’
// EXTENT ...
...
// DLBL TEST99,’lastfile’
// EXTENT ...

When processing input files that have the concatenation option at end-of-file (EOF) of one input file, a
check is made to determine whether a FILE statement exists for the next dataset. If it does not exist the
Sequential Get call returns EOF; otherwise, the dataset currently open is closed and an open is tried for the
next file.

Files concatenated in this way must have the same file characteristics (block size, record format, and
record size).

This concatenation feature applies also to files that are processed backwards. The order of the LINK
names is the reverse of the creation order; for example, ADARES with BACK:

752

Adabas UtilitiesAdabas Sequential Files

// DLBL BACK ,’lastfile’
// EXTENT ...
// DLBL BACK01,’filebeforelast’
// EXTENT ...
...
// DLBL BACKnn,’firstfile’
// EXTENT ...

Note that this feature could also be used to process a multivolume file backwards, if each volume is
specified with a separate FILE statement.

The following are the LINK names/utilities with the concatenation option:

DELn
(where n=1-8)

ADASAV

EBAND ADACMP
ADALOD
ADAMER

FULL ADASAV

ISN ADALOD

PLOG ADAPLP
ADASAV

BACK ADARES

SIIN ADARES
ADASEL

REST1 ADASAV
(LINK names used are REST1, REST101, REST102, and so on.)

Example for use of the Concatenation Feature with ADARES

During the last nucleus session, three protection log files were produced with ADARES PLCOPY named
F1, F2, F3.

When deciding to back out the session to a specific point, the following FILE statements should be used
for the ADARES BACKOUT function:

// DLBL BACK ,’F3’
// EXTENT ...
// DLBL BACK01,’F2’
// EXTENT ...
// DLBL BACK02,’F1’
// EXTENT ...

To regenerate the database from the protection log that was produced during the session, the following
FILE statements should be used for the ADARES REGENERATE function:

// DLBL SIIN ,’F1’
// EXTENT ...
// DLBL SIIN01,’F2’
// EXTENT ...
// DLBL SIIN02,’F3’
// EXTENT ...

753

Adabas Sequential FilesAdabas Utilities

Procedures for VSE/ESA Examples
The VSE/ESA examples assume that the procedures for defining Adabas libraries (ADAVvLIB) and
Adabas files (ADAVvFIL) have been cataloged into an accessible procedure library.

For information about cataloging these procedures, refer to the section Catalog Procedures for Defining
Libraries and the Database in the VSE/ESA section of the Adabas Installation documentation.

Information about cataloging procedures for use with the Delta Save Facility are documented in the
Adabas Delta Save Facility documentation.

This document covers the following topics:

Adabas Libraries (ADAVvLIB)

Adabas Files (ADAVvFIL)

Adabas Libraries (ADAVvLIB)
// PROC
* ** *
* LIBRARY DEFINITIONS AND CHAINING FOR ADABAS *
* ** *
// SETPARM VERS=vrs <- CURRENT VERSION
// SETPARM ADALIB=SAGLIB <- SAG PRODUCT LIBRARY
// SETPARM ADASUB=ADA&VERS <- ADABAS SUBLIBRARY
// DLBL SAGLIB,’SAG.PRODUCT.LIBRARY’
// EXTENT ,vvvvvv
// LIBDEF *,SEARCH=&ADALIB..&ADASUB,TEMP
// LIBDEF PHASE,CATALOG=&ADALIB..&ADASUB,TEMP
// ASSGN SYS009,PRINTER

where

vrs is the Adabas version, revision, and system maintenance (SM) level

vvvvvv is the programmer logical unit assigned

Adabas Files (ADAVvFIL)
// ASSGN SYS031,dddd,VOL=ADA001,SHR
// ASSGN SYS032,dddd,VOL=ADA002,SHR
// ASSGN SYS033,dddd,VOL=ADA003,SHR
// ASSGN SYS034,dddd,VOL=ADA004,SHR
// DLBL ASSOR1,’EXAMPLE.ADAyyyyy.ASSOR1’,99/365,DA
// EXTENT SYS031,ADA001,,,15,1500
// DLBL DATAR1,’EXAMPLE.ADAyyyyy.DATAR1’,99/365,DA
// EXTENT SYS032,ADA002,,,15,3000
// DLBL WORKR1,’EXAMPLE.ADAyyyyy.WORKR1’,99/365,DA
// EXTENT SYS033,ADA003,,,15,600
// DLBL PLOGR1,’EXAMPLE.ADAyyyyy.PLOGR1’,99/365,DA
// EXTENT SYS034,ADA004,,,15,600
// DLBL PLOGR2,’EXAMPLE.ADAyyyyy.PLOGR2’,99/365,DA
// EXTENT SYS034,ADA004,,,615,600

754

Adabas UtilitiesProcedures for VSE/ESA Examples

// DLBL CLOGR1,’EXAMPLE.ADAyyyyy.CLOGR1’,99/365,DA
// EXTENT SYS034,ADA004,,,1215,750
// DLBL CLOGR2,’EXAMPLE.ADAyyyyy.CLOGR2’,99/365,DA
// EXTENT SYS034,ADA004,,,1965,750
// DLBL TEMPR1,’EXAMPLE.ADAyyyyy.TEMPR1’,99/365,DA
// EXTENT SYS032,ADA002,,,3015,1500
// DLBL SORTR1,’EXAMPLE.ADAyyyyy.SORTR1’,99/365,DA
// EXTENT SYS033,ADA003,,,615,375
// EXTENT SYS034,ADA004,,,2715,375
// DLBL RLOGR1,’EXAMPLE.ADAyyyyy.RLOGR1’,99/365,DA
// EXTENT SYS033,ADA003,,,990,150

755

Procedures for VSE/ESA ExamplesAdabas Utilities

